TeV Gamma-Ray Astronomy

Not a "rapporteur talk" !

W. Hofmann Max Planck Institute for Nuclear Physics

28th Cracow Epiphany Conference on Recent Advances in Astroparticle Physics January 2022 Personal comments onState of the field

Ideas for the future

Radio waves

Infrared Vis UV

X-Rays

Gamma Rays TeV (10^{12 ± 2} eV) domain

Gamma rays

- are produced by non-thermal mechanisms
- trace high energy particles
- locate cosmic particle accelerators

Gamma ray image of supernova RX J1713.7-3946

Gamma ray image of supernova RX J1713.7-3946

- TeV particle acceleration everywhere in the cosmos
- Over 200 detected sources
- 3 orders of magnitude in gamma ray flux
- Sky maps with 5' resolution
- Energy spectra over 3 decades in energy
- Light curves on all scales from minutes to years

Multiple telescopes provide stereoscopic views of the cascade

CHERENKOV TELESCOPES

300 m Ø "light pool", 10⁵ m²

H.E.S.S.

Sweet energy range for Cherenkov telescopes:

TeV domain (~100 GeV to few TeV)

- Well-defined showers allowing efficient gamma-hadron separation
- Decent gamma-ray rates

What came together:

- Right dish size for decent photon statistics of images: 100+ m²
- Right pixel size to resolve shower features: ~0.2° or less
- Large field of view, to contain images and extended sources
- Multi-telescope stereoscopic imaging
- Advanced analysis algorithms
- Highly detailed simulations to tune algorithms

1989 VS TODAY

1989 VS TODAY

Whipple 1989 shower image

Modern camera

1989 VS TODAY

Whipple 1989 shower image

Modern array

HAWC

Sierra Negra, Mexico 4100 m asl

Area: 22000 m², 60% active

LHAASO

Sichuan, China 4410 m asl

400

350

LHAASO

Sichuan, China 4410 m asl

What came together:

- High-altitude arrays at 4000+ m asl
- Dense / calorimetric measurement of shower particles

LHAASO

MILAGRO

TIBET

HAWC

- Array areas comparable to / larger than shower footprint
- Large-area muon identification

THE POWER OF LARGE-AREA MUON DETECTORS

CHERENKOV TELESCOPES & GROUND ARRAYS

LHAASO White Paper arXiv:1905.02773

			10-9
	Cherenkov telescopes	Ground arrays	Fermi 1 yr
Exposure per source and year		Factor O(10-100) advantage	10 ⁻¹⁰ To To HAWC
Field of view		Factor O(10-100) advantage	5 10 ⁻¹¹ 500 Crah
Duty cycle		Factor O(10) advantage	HAASO
Energy threshold	Factor O(10) advantage		°ш = Стаб 10 ⁻¹³ ≡ СТА
Angular resolution	Factor O(10) advantage		
ToO response	some 10 s, upon alert	Instantaneous	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$

THE PeV (10¹⁵ eV) SKY

LHAASO Coll., Z. Cao et al., Nature, 17 May 2021

IceCube detection of a neutrino from the direction of AGN TXS0506+056, coincident with a gamma ray flare

MAGIC detection

10

Neutrino

IC170922A

22. Sept. 2017

Science 361 (2018) eaat1378

TEV DETECTION OF GAMMA RAY BURSTS

GRB 190114C MAGIC Coll. + Nature 575 (2019) 455 Nature 575 (2019) 459 GRB 180720B H.E.S.S. Coll., Nature 575 (2019) 464 GRB 190829A H.E.S.S. Coll., Science 372 (2021) 1081

+ 2 more at ICRC 2021

NASA/Swift/Mary Pat Hrybyk-Keith, John Jones

S. Ascenzi et al. arXiv:2011.04001

m

Recurrent nova RS Ophiuchi as TeV source H.E.S.S. ATEL #14844, Aug. 10

WHAT DRIVES HIGH IMPACT RESULTS?

Number of H.E.S.S. Nature & Science papers

2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2 3 2 2 1 1 1 **New instrument** CT1-4 CT5 camera 28 m telescope CT1-4 camera operational upgrade CT5 added upgrade

MWL/MM:

- Multimessenger observations of a flaring blazar coincident with high-energy neutrino
- A very-high-energy component deep in the gamma-ray burst afterglow
- Revealing x-ray and gamma ray temporal and spectral similarities in the GRB 190829A afterglow **Deep observations:**

Year

- The exceptionally powerful TeV gamma-ray emitters in the Large Magellanic Cloud
- Acceleration of petaelectronvolt protons in the Galactic Centre

New analysis techniques

- Resolving the Crab pulsar wind nebula at teraelectronvolt energies
- Resolving acceleration to very high energies along the jet of Centaurus A

ANALYSIS

H.E.S.S. Collab., arXiv:2107.01425

Geminga A. Mitchell et al., H.E.S.S. Collab. PoS(ICRC2021)780

CHALLENGE: ORIGIN AND PROPAGATION OF CR

Gamma ray spectra of SNR

See also Tibet ASy on SNR G106.3+2.7, arXiv:2109.0289

HESS Point Source

Gamma-ray Iuminosity 10³⁴ erg/s

HESS Point Source

Gamma-ray Iuminosity 10³⁴ erg/s

HESS Extended Source (0.4°)

HESS Point Source

HAWC

Gamma-ray Iuminosity 10³⁴ erg/s

HESS Extended Source (0.4°)

CHALLENGE: COMPACT OBJECTS AS ACCELERATORS

AGN: What is the jet made of? How is it launched? How are particles accelerated? What causes the variability?

Illustration: Scientific American

CHALLENGE: COMPACT OBJECTS AS ACCELERATORS

CHALLENGE: DARK MATTER @ GC

A. Montanari et al, PoS (ICRC2021)511

THE FUTURE (?)

The Cherenkov Telescope Array

10 GeV	100 GeV	1 lev	10 lev	100 lev
1000 γ / h km²		10 γ / h km²	in the second	0.1 γ / h km²
		L. L. L.		
		·		
		L	*	
			s	
		•	Southern array of Ch	("Omega Config.' erenkov telescope
		and and	*****	about 3 km acros

S

10 GeV	100 GeV	1 TeV	10 TeV	100 TeV
		100 B 100		
			CONCERNMENT OF THE OWNER OF THE REAL OWNER.	

4 m Ø Small Size Telescopes (SST) (South)

4+ decade energy range (20 GeV – 300 TeV)
Peak sensitivity better than 10⁻¹³ erg/cm²s
Over two orders of magnitude gain in survey speed
Fast slewing for transient follow up
Open observatory

SWGO WATER CHERENKOV DETECTOR OPTIONS

SWGO DETECTOR OPTIONS

WHAT'S THE LIMIT? ANGULAR RESOLUTION

WHAT'S THE LIMIT? ANGULAR RESOLUTION

CTA Schwarzschild-Couder Telescope

proposed for CTA enhancement

Crab detection: PoS(ICRC2021)830

NOVEL IACT OPTICS CONCEPTS: THE PLENOSCOPE

S.A. Mueller arXiv:1904.13368

Direction pixel

NOVEL IACT OPTICS CON THE PLENOSCOPE

S.A. Mueller arXiv:1904.13

"Light field" camera measures

- Direction of photon
- Impact position on mirror
- Time

8443 direction pixels ($\simeq 0.07^{\circ}$) x 61 impact cells ($\simeq 9$ m)

Allows

• triggering with $\simeq 1$ GeV threshold

X

- shower tomography
- compensation of aberrations
 - compensation of dish deformation and sensor mis-alignment

Direction pixel

NOVEL IACT OPTICS CON THE PLENOSCOPE

S.A. Mueller arXiv:1904.13

"Light field" camera measures

- Direction of photon
- Impact position on mirror
- Time

8443 direction pixels ($\simeq 0.07^{\circ}$) x 61 impact cells ($\simeq 9$ m)

Allows

XXXXXXXX

■ triggering with ~ 1 GeV threshold

- shower tomography
- compensation of aberrations
 - compensation of dish deformation and sensor mis-alignment

IMPROVING IACT BACKGROUND REJECTION

- Better imaging
- Better gamma-ray PSF
- Muon detection

Potential background rejection
up to 10³ at 25 TeV

up to 10⁵ at 100 TeV

L. Olivera-Nieto et al., arXiv:2111.12041

Muons in a 28 m IACT (H.E.S.S. CT5) Muon effective area: 28 m telescope: $A_{eff} \simeq 30000 - 50000 \text{ m}^2 (r \sim 110 \text{ m})$ 12 m telescope: $A_{eff} \simeq 4000 - 5000 \text{ m}^2 (r \sim 35 \text{ m})$

30 m

TEV GAMMA RAY ASTRONOMY

- A mature field, with Cherenkov arrays and ground particle detectors providing complementary capabilities
- Probes a wide range of topics from astrophysics, particle physics, cosmology
- Many exciting results
- Many open questions
- Powerful next-generation instruments starting or in advanced planning
- Detection technologies have significant potential & reach
- Key issue: large scale / low cost production and deployment of detector elements