

Highlights from the ANTARES neutrino telescope

Giulia Illuminati on behalf of the ANTARES Collaboration

XXVIII Cracow EPIPHANY Conference 11/01/2022

Why Neutrino Astronomy?

Introduction

- Neutrino astronomy
- Detection Principle
- Neutrino Telescopes
 - ANTARES

Searches and Results

- o Diffuse Flux
- Point-Sources
- o Multi-messenger
- o Dark Matter

A glance at KM3NeT

Summary and Outlook

2

Neutrinos:

- neutral → trajectory not affected by magnetic fields, point back to the source
- weakly interacting → penetrate regions opaque to photons

Why Neutrino Astronomy?

Introduction

- Neutrino astronomy
- **Detection Principle**
- Neutrino Telescopes
 - ANTARES

Searches and Results

- o Diffuse Flux
- Point-Sources
- o Multi-messenger
- o Dark Matter

A glance at KM3NeT

Summary and Outlook

Hadronic scenario

proton-photon: $p + \gamma \rightarrow \Delta^+ \rightarrow \pi^0 + p$ $\rightarrow \pi^+ + n$

proton-nucleon: $p + p \rightarrow p + p + \pi^{0}$ $\rightarrow p + n + \pi^{+}$

$$\begin{array}{c} p+n \rightarrow p+n+\pi^{0} \\ \rightarrow p+p+\pi^{-} \end{array}$$

$$\pi^0 \rightarrow \gamma + \gamma$$

Also produced in the *leptonic* scenario via synchrotron emission + inverse

Compton scattering

 $\pi^- \to \mu^- + \bar{\nu}_{\mu} \to e^- + \bar{\nu}_e + \nu_{\mu} + \bar{\nu}_{\mu}$ $\nu_e: \nu_\mu: \nu_\tau = 1: 2: 0 \quad \text{at the source}$ $\nu_e: \nu_\mu: \nu_\tau = 1: 1: 1 \quad \text{at Earth}$

 $\pi^+ \rightarrow \mu^+ + \nu_\mu \rightarrow e^+ + \nu_e + \bar{\nu}_\mu + \bar{\nu}_\mu$

Neutrinos:

- Provide a strong indication of hadronic acceleration in astrophysical sources
- Smocking gun of the cosmic-ray sources

Neutrino fluxes

- Neutrino astronomy
- Detection Principle
- Neutrino Telescopes
 - o ANTARES

Searches and Results

- o **Diffuse Flux**
- Point-Sources
- o **Multi-messenger**
- o Dark Matter

A glance at KM3NeT

Summary and Outlook

Detection principle

Neutrinos are challenging to detect (large background contamination and low fluxes)

Introduction

- Neutrino astronomy
- o Detection Principle
- Neutrino Telescopes
 ANTARES
- Searches and Results
- o Diffuse Flux
- Point-Sources
- o Multi-messenger
- o Dark Matter

A glance at KM3NeT

Summary and Outlook

- Earth used as shield against up-going atmospheric muons
- Detector deployed in deep water/ice to reduce downgoing atmospheric muons
- Low v cross section requires large detector volumes

Either CC or NC interaction with a nucleus inside or nearby the detector volume

- Cherenkov radiation
 detected by arrays of PMTs
- Position, time and charge used to reconstruct direction and energy

5

Neutrino telescopes

Introduction

- Neutrino astronomy
- Detection Principle
- o Neutrino Telescopes
 - ANTARES

Searches and Results

- o Diffuse Flux
- Point-Sources
- o Multi-messenger
- o Dark Matter

A glance at KM3NeT

Summary and Outlook

o IceCube

Construction of the second

Neutrino telescopes

KM3NeT

Introduction

- Neutrino astronomy
- Detection Principle
- Neutrino Telescopes
 - ANTARES

Searches and Results

- o **Diffuse Flux**
- Point-Sources
- o Multi-messenger
- o Dark Matter

A glance at KM3NeT

Summary and Outlook Operating in full configuration: • ANTARES

o **lceCube**

P-ONE

Under construction:
KM3NeT
Baikal GVD

In planning phase: o IceCube-Gen2

• P-ONE

A

- Neutrino astronomy
- Detection Principle
- Neutrino Telescopes
 - ANTARES

Searches and Results

- o **Diffuse Flux**
- Point-Sources
- o Multi-messenger
- o Dark Matter

A glance at KM3NeT

Summary and Outlook

ANTARES

- First detection line installed in early 2006
- Completed in 2008
- 2475 m depth in the Mediterranean Sea
- 40 km offshore from Toulon

- Three-dimensional array of 885 PMTs
- 12 vertical lines, 25 storeys
- 3 PMTs per storey
- PMT facing 45° downwards
- Instrumented volume ~0.01 km³

Event Topologies: TRACKS and SHOWERS

Introduction

- Neutrino astronomy
- Detection Principle
- Neutrino Telescopes
 - ANTARES

Searches and Results

- o **Diffuse Flux**
- o Point-Sources
- o Multi-messenger
- o Dark Matter

A glance at KM3NeT

Summary and Outlook

Track-like events: v_{μ} (v_{τ}) neutrino CC interaction near the detector

Shower-like events: all neutrinos NC, v_e, v_τ CC interaction inside or very close to the detector

Results

0

0

0

0

Diffuse Flux

KM3NeT

Searches

All-sky Diffuse Flux

Introduction

- Neutrino astronomy
- **Detection Principle**
- Neutrino Telescopes
 - ANIARES

Searches and Results

- o Diffuse Flux
- Point-Sources
- Multi-messenger
- o Dark Matter

A glance at KM3NeT

Summary and Outlook

ANTARES 12 years track and shower analysis

data: 50 events (27 tracks + 23 showers) bkg MC: 36.1 ± 8.7 (19.9 tracks and 16.2 showers)

 \rightarrow I.8 σ excess

11

Next analysis update will count on **new event selection** (BDT) + **unbinned maximum likelihood** approach (PoS(ICRC2021)1126)

Galactic Diffuse Flux

2018 ApJL 868 L20

Introduction

- o Neutrino astronom
- o **Detection Principle**
- Neutrino Telescopes
 - ANTARES

Searches and Results

- o Diffuse Flux
- Point-Sources
- o Multi-messenger
- o Dark Matter

A glance at KM3NeT

Summary and Outlook

Expected neutrino flux from the Kra_{γ} model based on spatial distribution of diffuse γ -ray data

Sensitivities and Results of the Analysis on the KRA $_{\gamma}$ Models with the 5 and 50 PeV Cutoffs Sensitivity $[\Phi_{KRA\gamma}]$ Energy Cutoff Fitted Flux p-value Upper Limit (UL) at 90% CL Combined ANTARES IceCube $[\Phi_{KRA_{-}}]$ [%] $[\Phi_{KRA_{\sim}}]$ 5 PeV 1.21 0.47 29 0.81 1.14 1.19 50 PeV 0.90 0.57 0.94 0.82 0.37 26

Joint ANTARES+IceCube Constraints on Galactic Diffuse Neutrino Emission

Searches and

Diffuse Flux

Dark Matter

Point-Sources

Multi-messenger

Results

0

 \cap

Point-like sources

Full-sky search

ANTARES 13 years track and shower analysis **Upper limits** on v-flux from 121 astrophysical sources ANTARES 13 years 5o Discovery E⁻² ר_ 10⁻⁷ א ANTARES 13 years Sensitivity E⁻² PRELIMINARY -log_(p-value) ANTARES 13 years Limits E⁻² $d\Phi/dE_{v}$ [GeV cm⁻² J0242+110 TXS 0506+056 **Galactic Centre** Most significant spot in the sky 10-8 $(\hat{\alpha}, \hat{\delta}) = (39.6^{\circ}, ||.|^{\circ})$ Pre-trial: 4.3σ Ш Post-trial: 48% PRELIMINARY 10⁻⁹ -1 -0.8 -0.6 -0.4 -0.2 0.4 0.6 0.2 0.8 0 sinδ Most significant source Second most significant source Radio-bright blazar J0242+1101 TXS 0506+056 (2.8σ) Pre-trial: 3.80 13 Post-trial: 2.40

PoS(ICRC2021)1161

Stacking searches

ANTARES II years

Introduction

- Neutrino astronomy
- **Detection Principle**
- Neutrino Telescopes
 - o ANTARES

Searches and Results

- Diffuse Flux
- o Point-Sources
- o Multi-messenger
- o Dark Matter

A glance at KM3NeT

Summary and Outlook

CATALOG	PRE-TRIAL	POST-TRIAL	DOMINANT SOURCE
Fermi 3LAC All Blazars	0.19	0.83	
Fermi 3LAC FSRQ	0.57	0.97	
Fermi 3LAC BL Lacs	0.088	0.64	MG3J225517+2409
Radio-galaxies	4.8 x 10 ⁻³	0.10 <	3C403
Star Forming Galaxies	0.37	0.93	
Star Forming Galaxies Obscured AGN	0.37 0.73	0.93 0.98	

Radio galaxy 3C403

p-value: 3.7σ chance probability ($N_{sources} = 56$) = 2.5σ

BLLac MG3 J225517+2409

p-value: **3.8** σ chance probability ($N_{sources} = 1255$) = **1.4** σ

14

Neutrinos and Radio Blazars

Promising associations between IceCube neutrinos and radio galaxies

THE ASTROPHYSICAL JOURNAL, 894:101 (13pp), 2020 May 10 © 2020. The American Astronomical Society. All rights reserved. https://doi.org/10.3847/1538-4357/ab86bd

THE ASTROPHYSICAL JOURNAL, 908:157 (10pp), 2021 February 20 © 2021. The American Astronomical Society. All rights reserved.

PoS(ICRC2021)1164

Directional Association of TeV to PeV Astrophysical Neutrinos with Radio Blazars

A. V. Plavin^{1,2}, Y. Y. Kovalev^{1,2,3}, Yu. A. Kovalev¹, and S. V. Troitsky⁴, Astro Space Center of Lebedev Physical Institute, Profsoyuznaya 84/32, 117997 Moscow, Russia; alexander@plav.in ²Moscow Institute of Physics and Technology, Institutsky per-9, Dolgoprudny 141700, Russia ³Max-Planck-Institut für Radioastronomic, Auf dem Hügel 69, D-53121 Bonn, Germany ⁴Institute for Nuclear Research of the Russian Academy of Sciences, 60th October Amiversary Prospect 7a, Moscow 117312, Russia *Received 2020 September 18; revised 2020 November 17; accepted 2020 November 26; published 2021 February 19*

Introduction

- Neutrino astronom
- Detection Principle
- Neutrino Telescopes
 - ANIARES

Searches and Results

- o Diffuse Flux
- Point-Sources
- Multi-messenger
- o Dark Matter

A glance at KM3NeT

Summary and Outlook

ANTARES **positional correlation** analysis with radio blazars

Observational Evidence for the Origin of High-energy Neutrinos in Parsec-scale Nuclei of

Radio-bright Active Galaxies

Alexander Plavin^{1,2}, Yuri Y. Kovalev^{1,2,3}, Yuri A. Kovalev¹, and Sergey Troitsky⁴

Moscow Institute of Physics and Technology, Institutsky per. 9, Dolgoprudny 141700, Russia

³ Max-Planck-Institut für Radioastronomie, Auf dem Hügel 69, D-53121 Bonn, Germany

⁴ Institute for Nuclear Research of the Russian Academy of Sciences, 60th October Anniversary Prospect 7a, Moscow 117312, Russia Received 2020 January 3; revised 2020 March 16; accepted 2020 April 2; published 2020 May 12

0.5 expected chance coincidences, 4 neutrinoblazar pairs observed:

- J0609-1542
- JI743-0350
- J0538-4405

15

Neutrinos and Radio Blazars

PoS(ICRC2021)972

Introduction

- o Neutrino astronomy
- o **Detection Principle**
- Neutrino Telescopes
 - ANTARE

J1418-3509

J0242+1101

J0732-0150

J0641-3554

-35.2

11.0

1.8

-35.9

214.7

40.6

113.1

100.3

58119

56634

55794

58084

12 3.6 3.3

318 5.3 2.0

82 4.9 3.5

16 3.0 3.2

Searches and Results

- o Diffuse Flux
- o Point-Sources
- o Multi-messenger
- o Dark Matter

A glance at KM3NeT

Summary and Outlook

Results Source Name Gaussian-shaped time profile Box-shaped time profile δ α \hat{T}_0 \hat{T}_0 $\hat{\mu}_{sig}$ $\hat{\gamma}$ p-value p-value $\hat{\sigma}_t$ $\hat{\sigma}_t$ $\hat{\mu}_{sig}$ Ŷ [MJD] [days] [MJD] [days] [deg] [deg] J1500-2358 -24.0 225.2 55846 3.7 2.2 0.00041 55846 6 3.7 2.2 0.00031 4 J1517-4424 -44.4 229.4 57761 361 7.2 3.5 0.00084 57366 529 5.3 3.5 0.0099 J1606+2717 27.3 241.7 58793 1 1.0 1.1 0.00089 58267 538 1.2 1.3 0.0017

0.00095

0.0011

0.0012

0.0017

58119

56635

55813

58080

14 3.8 3.3

413 5.6 2.1

117 5.2 3.5

18

3.0

3.2

ANTARES search for neutrino flares from 2774 radio blazars

Chance probability of the multi-

J0242+1101(PKS 0239+108)

ANTARES best-fit flare for this source

IceCube tracks from 10-years point-source sample - Tracks within 90% angular error from source - angular error < 10deg²

OVRO radio light-curve

Adaptive binned gammaray light-curve obtained from Fermi LAT data

- Neutrino astronom
- **Detection Principle**
- o **Neutrino Telescopes**
 - o ANTARES

Searches and Results

- o Diffuse Flux
- Point-Sources
- o Multi-messenger
- o Dark Matter

A glance at KM3NeT

Summary and Outlook

Multi-messenger

Offline analyses

Time correlation and Multi-messenger searches

- Neutrinos from IceCube and Baikal-GVD
- GW events
- GRBs
- TDEs
- ...

Real-time analyses ANTARES neutrino **alerts**

	Radio	Optical	X-ray	GeV ɣ- rays	TeV ɣ- rays	
lescopes ARES	MWA	TAROT ZADKO MASTER GWAC	Swift INTEGRAL	Fermi	HESS HAVVC	
and		MASTER GWAC	INTEGRAL		HAWC	

What triggers an alert:

- Doublet of neutrinos (~0.04 events/yr)
- Single neutrino with direction close to local galaxies (~I TeV, ~I0 events/ yr)
- Single HE neutrinos:
 - ✤ HE (~5 TeV, 20 events/ yr)
 - ✤ VHE (~30 TeV, ~3-4 events/ yr)

Performances:

- Time to send an alert: ~5 s
- Median angular resolution: ~ 0.4°

>> 300 ANTARES alerts sent since 2009

18

Searches and Results

- Diffuse Flux
- Point-Sources
- o Multi-messenger
- o Dark Matter

A glance at KM3NeT

Summary and Outlook

- Neutrino astronom
- **Detection Principle**
- Neutrino Telescopes
 - o ANTARES

Searches and Results

- o Diffuse Flux
- Point-Sources
- o Multi-messenger
- Dark Matter

A glance at KM3NeT

Summary and Outlook

Offline multi-messenger follow-up GravitationalWaves Eur. Phys. J. C. volume 80 (2020) 487

Search for cosmic neutrino candidates reconstructed inside the **90% CL GW area** (error box) detected during ±500 s around the GW trigger time

[deg]

Upper limits on the neutrino spectral fluence as a function of

the position in the sky in equatorial coordinates

150 200

RA [deg]

325 330 335 340 345 350 35

RA [dea]

~60 GW triggers from the three LIGO-Virgo observing runs analyzed online by ANTARES
 No neutrino found in time and space coincidence

Dedicated offline search from GW events detected during the second observation run (O2)

90% CL upper limits on the total isotropic energy emitted in neutrinos as a function of the estimated redshift

19

- Neutrino astronomy
- **Detection Principle**
- o **Neutrino Telescopes**
 - ANTARES

Searches and Results

- o Diffuse Flux
- Point-Sources
- o Multi-messenger
- o Dark Matter

A glance at KM3NeT

Summary and Outlook

Offline multi-messenger follow-up Gamma-ray Bursts

Search for cosmic neutrino candidates in coincidence with GRBs

ANTARES v integrated UL [7 TeV - 20 PeV], (-350,2454)s IceCube v integrated UL [100 TeV - 20 PeV], (-150,3600)s MAGIC photon time integrated flux (68,110)s MAGIC photon time integrated flux (62,2400)s ANTARES v differential UL (-350,2454)s 10^{4} 10³ 102 [GeV cm⁻²] 101 E2 dk 10⁻¹ 10-2 10^{-3} 7 8 Log10(E/[GeV])

ANTARES 90% differential (black arrows) and integrated (pink line) spectral fluence upper limits as a function of the neutrino energy for GRB 190114C

- ~1000 GRB triggers detected by Swift and Fermi analyzed online by ANTARES
- No neutrino found in time and space coincidence

Dedicated offline search from the first O(TeV) JCAP03(2021)092 **GRBs detected by MAGIC and H.E.S.S.**

Stacking search from a catalogue of 784 GRBs occurred from 2007 to 2017 MNRAS 500, 5614–5628 (2021)

10-ANTARES stacking (2007-2017): 784 GRBs – ANTARES 90% CL upper limit (2007-2017) -1) Sr. 10-7 S-1 10^{-8} cm⁻² 10^{-9} (GeV 10-10 $\phi_{\nu_{\mu}}$ 10^{−11} تو ہ — IceCube v,, tracks 10 yr — IceCube HESE 7.5 yr 10^{-12} 105 10^{4} 106 107 108 $E_{\nu_{\rm e}}$ (GeV)

Independent constrain on the contribution of GRBs to the astrophysical neutrino flux to less than 10% at energies around 100 TeV.

- o Neutrino astronom
- Detection Principle
- Neutrino Telescopes
 - o ANTARE

Searches and Results

- o Diffuse Flux
- Point-Sources
- o Multi-messenger
- o Dark Matter

A glance at KM3NeT

Summary and Outlook

Offline multi-messenger follow-up

18

DECL J2000 [°]

10

318

316

314

RA [2000 [°]

ICI91001A and AT2019dsg

IC200530A and AT2019fdr

AT2019dsq

312

310

Artist's illustration of a tidal disruption event. Image credit: NASA / CXC / M. Weiss.

No significant cluster close to the TDEs found in ANTARES data

Upper limits on v-flux

- Neutrino astronom
- **Detection Principle**
- Neutrino Telescopes
 - o ANTARES

Searches and Results

- o Diffuse Flux
- Point-Sources
- o Multi-messenger
- o Dark Matter

A glance at KM3NeT

Summary and Outlook

Dark Matter

- WIMPs tend to accumulate in massive celestial objects (Sun, Galactic Centre, ...)
- Neutrinos could be produced in WIMP-WIMP annihilation
- Clean signal and low expected background

Ingredients:

 Signal energy spectra for each considered WIMP mass and annihilation channel:

 $WIMP + WIMP \rightarrow b\bar{b}, W^+W^-, \tau^+\tau^-, \mu^+\mu^-, \nu_\mu\bar{\nu}_\mu$

- \circ Spatial distribution of dark matter in the source:
 - Point-like (Sun)
 - Three halo models used: NFW, Burkert, McMillan (GC)

Dark Matter

Dark Matter from the Galactic Centre

____ 10^{__20} $m_v = 1 \text{ TeV/c}^2$ ANTARES Galactic Centre NFW τ⁺τ (s) (cm³/s) (> [cm³ IceCube Galactic Centre NFW T⁺T⁻ 10⁻²¹ VERITAS dwarf spheroidals $\tau^+\tau^-$ Fermi-LAT + MAGIC dwarf spheroidals $\tau^+\tau^-$ > HESS Galactic Centre Einasto τ⁺τ⁻ 6 10 v -22 10⁻²³ **Searches and** 10⁻²³ $V \rightarrow b \overline{b}$ Results 10^{-24} NFW profile $V \rightarrow \tau^+ \tau^-$ **Diffuse Flux** $V \rightarrow \mu^+ \mu^-$ 10⁻²⁵ **Point-Sources** 10-2 $V \rightarrow \nu_{\mu} \overline{\nu}_{\mu}$ $V \rightarrow q \bar{q}$ Multi-messenger 10^{-26} WIMP WIMP $\rightarrow \tau^+ \tau^ V \rightarrow W^+ W$ Dark Matter 10^{-27} 10-2 10⁵ 10^{3} 10^{2} 10⁴ ANTARES-II years 10 M [GeV/c²] WIMP Mass [GeV/c²] **ANTARES-9** years

0

0

0

Upper limits on thermally averaged annihilation cross-section as a function of the WIMP mass

First sensitivities on effective cross-section for DM pair annihilation into a mediator pair, assuming secluded dark matter

KM3NeT

KM3NeT/ORCA

- Under construction
- 2450 m depth in the Mediterranean Sea
- 40 km offshore from Toulon
- I dense building block
- GeV energies

ORCA

ARCA

36 m

00000

00000

9 m

- Oscillations, mass hierarchy
- o 10 strings deployed

Results

- o Diffuse Flux
- o **Point-Sources**
- o Multi-messenger
- o Dark Matter

A glance at KM3NeT

Summary and Outlook

ss hierarchy yed Building block 115 strings per building block

18 optical modules per string 31 PMTs per OM

10 m ORCA

~I km ARCA

ince succession succession

KM3NeT/ARCA

- Under construction
- \circ 3500 m depth in the Mediterranean Sea
- I 00 km offshore from Sicily
- 2 sparse building blocks
- I-I0 TeV energy threshold
- High-energy neutrino astronomy
- o 8 strings deployed

KM3NeT

A glance at KM3NeT

90%CL sensitivity at the level of the expected neutrino fluxes reached in few years of operation for several Galactic neutrino source candidates

Significance of diffuse flux detection

KM3NeT/ARCA with

- o Neutrino astronom
- Detection Principle
- o Neutrino Telescopes
 - o **ANTARES**

Searches and Results

- o Diffuse Flux
- o **Point-Sources**
- Multi-messenger
- o Dark Matter

A glance at KM3NeT

Summary and Outlook

Summary and Outlook

- Almost 15 years of continuous data taking with high duty cycle (~95%)
- Solid results from various searches for neutrino emission (point-like, diffuse, dark matter, ...)
- Rich multi-messenger program with follow-ups and alert sending program
- Several combined analyses with IceCube

□ KM3NeT

- Under construction: currently running with 8 DUs (ARCA) and 10 DUs (ORCA)
- Same view of the Galactic Centre as ANTARES
- \circ Better median angular resolution (~0.1°) and x100 ANTARES instrumented volume
- o Sensitivity at the level of the expected Galactic neutrino fluxes reached in few years of operation
- Observation of IceCube diffuse neutrino flux expected in less than I year of operation