Particle Acceleration at Weak Shocks induced by Mergers of Galaxy Clusters Hyesung Kang XXVIII Cracow Epiphany Conference, Jan 10 – 14, 2021
 Particle Acceleration at Weak Shocks
 induced by Mergers of Galaxy Clusters

Outline

- Shocks driven by binary mergers of galaxy clusters
- Observed Properties of ICM Shocks: "Radio Relic Shocks"
- Shock criticality: subcritical vs. supercritical
- Proton acceleration at Q -par high- β shocks
- Electron acceleration at Q -perp high- β shocks
- Shock re-acceleration of Fossil electrons
- Summary

Binary mergers in LCDM cosmological simulations

Ha et al. 2018

light (a) During the pre-merger stage, equatorial shocks are lunched perpendicular to the merger axis. Ha et al. 2018

(a) During the pre-merger stage,
 equatorial shocks are lunched

perpendicular to the merger

axis.

(b) **Axial shocks** are lunched

along the merger axis.

(c) After DM core passage,

double shocks expan

(b) Axial shocks are lunched along the merger axis.

double shocks expand outward.

(d) Formation of double merger shocks (\rightarrow double radio relics)

mass ratio m_1 : m_2

typical merger shocks After DM core passage,

whele shocks expand outward.

Formation of double merger

ocks (\rightarrow double radio relics)

mass ratio m_1 : m_2

impact factor b

typical merger shocks

- M_s ~ 1.5 - 3

- V_s ~ 1.5 - 3 x10³ After DM core passage,

uble shocks expand outward.

Formation of double merger

ocks (\rightarrow double radio relics)

mass ratio $m_1 : m_2$

impact factor b

typical merger shocks

- M_s ~ 1.5 - 3

- V_s ~ 1.5 - 3 x10³ km/ $-V_s \sim 1.5 - 3 \times 10^3$ km/s

Shocks are induced by supersonic flows driven by mergers of galaxy clusters

Radio Relics: Electrons accelerated at Weak Q_1 ICM Shocks Hyesung Kang XXVIII Cracow Epiphany Conference, Jan 10 – 14, 2021
dio Relics: Electrons accelerated at Weak Q_{\perp} **ICM Shocks**
Isage Relic Merger geometry Merger of Galaxy Clusters

Merger geometry **Merger of Galaxy Clusters**

- shoek Merger-driven shocks on \sim 1-2 Mpc scales
	- Accelerate CR electrons via DSA
	- \rightarrow Diffuse synchrotron radiation

 $M_{\text{radio}}^2 = \frac{(3 + 2\alpha_{\text{sh}})}{(2\alpha_{\text{sh}} - 1)}$ 1-2 Mpc scales

i via DSA

iation
 $\frac{(3 + 2\alpha_{\rm sh})}{(2\alpha_{\rm sh} - 1)}$ (2)

(2) CM Shocks

⇒ Merger-driven shocks on ~1-2 Mpc scales

⇒ Accelerate CR electrons via DSA

⇒ Diffuse synchrotron radiation

Radio spectral index $M_{\text{radio}}^2 = \frac{(3 + 2\alpha_{\text{sh}})}{(2\alpha_{\text{sh}} - 1)}$

M_{radio} ~ 2 − 3.0

 $M_{\rm radio}$ ~2 – 3.0

DSA can explain the origin of Radio Relics in merging clusters.

X-ray shocks in merging clusters

Chandra 0.5–2.0 keV surface brightness

Edmiston & Kennel 1984

Shock criticality: subcritical vs. supercritical : ion reflection Hyesung Kang XXVIII Cracow Epiphany Conference, Jan 10 – 14, 2021
NOCK Criticality: subcritical vs. supercritical : ion reflection

1D hybrid simulations: Low M_A Q_{\parallel} shocks
 $Q_{\parallel} = 30^{\circ}$, $R = 0.5$ $\frac{10-14, 2021}{\text{10}}$
 Omidi et el. 1994
 1D hybrid simulations: Low $M_A Q_{\parallel}$ shocks
 $\theta_{Bn} = 30^\circ, \ \ \beta_i = 0.5$

$$
\theta_{Bn}=30^\circ, \ \beta_i=0.5
$$

Subcritical shocks: shock transition is smooth without overshoot/undershoot oscillations.

Supercritical shocks: M_A > 2.8 Incoming ions are reflected at shock. \rightarrow Shock is unsteady & undergoes selfreformation. \rightarrow efficient ion reflection

 $\frac{1}{\sqrt{2}}$ supercritical $\frac{1}{\sqrt{2}}$ and to "injection" to DSA

Dynamics of reflected ions determine the shock structures.

 \rightarrow govern the injection process

Proton injection to DSA: 1D PIC simulations for Q_{\parallel} ICM shocks Hyesung Kang XXVIII Cracow Epiphany Conference, Jan 10 – 14, 2021
 Coton injection to DSA: 1D PIC simulations for Q_{\parallel} ICM shocks

Hyesulig Nalig			λ λ vill Cracow Epiphally Conicience, Jan 10 $-$ 14, 2021						
						Proton injection to DSA: 1D PIC simulations for Q_{\parallel} ICM shocks			
Table 1. Model Parameters for the Simulations								Ha, Ryu, Kang + 2018	
Model Name ^a	$M_{\rm s} \approx M_{\rm f}$	$M_{\rm A}$	v_0/c	$\theta_{\rm Bn}$	β	$T_e = T_i [K(keV)]$	$\frac{m_i}{m_e}$	Particle in Cell Both $p + e$ are kinetic.	
$ M3.2^d $	3.2	29.2	0.052	13°	100	$10^8(8.6)$	100		
M2.0	2.0	18.2	0.027	13°	100	$10^8(8.6)$	100	Weak Q_{\parallel} shocks	
M2.15	2.15	19.6	0.0297	13°	100	$10^8(8.6)$	100		
M2.25	2.25	20.5	0.0315	13°	100	$10^8(8.6)$	100	in $\beta = 100$ ICM	
M2.5	2.5	22.9	0.035	13°	100	$10^8(8.6)$	100		
M2.85	2.85	26.0	0.0395	13°	100	10^{8} (8.6)	100	$M_s = 2.0 - 4.0$	
M3.5	3.5	31.9	0.057	13°	100	$10^8(8.6)$	100		
M ₄	4.0	36.5	0.066	13°	100	$10^{8}(8.6)$	100		
downstream - 120	$z_{\rm A}$	upstream				Q_{\parallel} shocks		shock parameters	

Table 1. Model Parameters for the Simulations

$\begin{array}{c} \n\overline{\text{3}} \\
\text{9 } / 23\n\end{array}$ $s = 2.0 - 4.0$ $M_s = U_s/c_s$ $M_A = U_s/V_A$

$$
M_A \approx \beta_p^{1/2} M_s
$$

\n
$$
\beta_p = P_{gas}/P_B
$$

\n
$$
= nkT/(B^2/8\pi)
$$

\n
$$
\theta_{Bn}: \text{ obliquity angle}
$$

Ha, Ryu, Kang + 2018 Particle in Cell

Electron preacceleration in weak high- β Q₁ ICM shocks

3. backstreaming electrons generates T anisotropy ($T_{e_{\parallel}} > T_{e\perp}$)

4. Electron Firehose Instability (EFI) excites obliques waves

5. undergo Fermi-like accel Hyesung Kang XXVIII Cracow Epiphany Conference, Jan 10 – 14, 2021
 Electron preacceleration in weak high- β **Q**₁ **ICM shocks**

1. reflection by magnetic deflection (mirror) at the shock ramp $\beta = \frac{P_{gas}}{P_B} \sim 20$

2 Hyesung Kang XXVIII Cracow Epiphany Conference, Jan 10 – 14, 2021
 Ectron preacceleration in weak high- β **Q**₁ **ICM shocks**

reflection by magnetic deflection (mirror) at the shock ramp $\beta = \frac{P_{gas}}{P_B} \sim 20$

- 1. reflection by magnetic deflection (mirror) at the shock ramp
- 2. Shock Drift Acceleration (SDA) along the shock surface
-
- 4. Electron Firehose Instability (EFI) excites obliques waves
- 5. undergo Fermi-like acceleration in the upstream region

Guo et al. 2014a,b

$$
\beta = \frac{F_{gas}}{P_B} \sim 20
$$

(6-200)

$$
M_{s}=3.0
$$

 $\theta_{Bn} = 13 - 80^{\circ}$

2D PIC simulations for Q_1 ICM shocks for electron pre-acceleration

Similarly as in \bm{Q}_\parallel shocks, dynamics of reflected ions determines the shock structure of \bm{Q}_{\perp} shocks.

Kang + 2019

Shock Criticality: dynamics of reflected ions \rightarrow electron reflection

 $_{\rm{EFI}}$ \sim 2.3. Critical i $\frac{1}{16}$ \sim 2.3: critical Mach number for the EFI excitation

Kang + 2019

 $M_s = 2.0 - 3.0$

2D PIC simulations for Q_1 shocks : electron pre-acceleration

-Subcritical shocks: only single SDA cycle (no Fermi-I)

-**Supercritical shocks:** multiple cycles of SDA due to scattering off upstream waves

-But pre-acceleration is saturated due to lack of powers in longer λ waves in these simulations \rightarrow Much larger simulation box (in y-direction) is necessary to capture ion-scale waves due to shock surface rippling is necessary.

Electron Acceleration at Rippled Low-Mac-Number Shocks in High-Beta Collisionless Cosmic Plasmas

16/23

Hyesung Kang XXVIII Cracow Epiphany Conference, Jan 10 – 14, 2021
 Extron Preacceleration at Weak Q L **ICM Shocks: Effects of Shock Surface Rippling**

C simulations in Kang + 2019 $B = 100$: $\theta_{\text{Pn}} = 63^{\circ}$: $M_c = 2.0$

PIC simulations in Kang + 2019 $\beta = 100$; $\theta_{Bn} = 63^{\circ}$; $M_s = 2.0 - 3.0$; $\frac{m_i}{m_s}$ m_i \sim 100 $\frac{m_e}{m_e} = 100$ Electron Preacceleration at Weak Q_{\perp} ICM Shocks: Effects of Shock Surface Rippling

PIC simulations in Kang + 2019 $\beta = 100$; $\theta_{Bn} = 63^{\circ}$; $M_s = 2.0 - 3.0$; $\frac{m_i}{m_e} = 100$
 \rightarrow 2D simulation domain is increased

2D simulation domain is increased 5 times in y-direction to include ion-scale instability.

- \rightarrow shock surface rippling \rightarrow multi-scale waves longer than electron-scales
- → extended SDA (so-called Stochastic SDA, Katou & Amano 2019)

But electron injection/acceleration at subcritical shocks ($M_{\rm s} <~2.3$) remains unknown.

Mach Number M_s of Radio Relic Shocks Hyesung Kang XXVIII Cracow Epiphany Conference, Jan 10 – 14, 2021
Mach Number M_s of Radio Relic Shocks

Some puzzles in DSA model with in situ injection only Hyesung Kang XXVIII Cracow Epiphany Conference, Jan 10 – 14, 2021
OME puzzles in DSA model with in situ **injection only**

(1) Injection & DSA may be inefficient at subcritical shocks (M_s < 2.3). .

- (2) For some radio relics, $M_{radio} > M_X$ i.e., radio spectral index is flatter than expected.
- (3) Some X-ray shocks do not have associated radio relics (Q_{\parallel} shocks?).
- (4) Only ~10 % of merging clusters host radio relics, while numerous shocks are expected to

form in ICM (Q_{\parallel} : Q_{\perp} = 1: 3 for turbulent B fields).

Possible solution is Re-acceleration model:

a radio relic forms when a weak shock encounters the ICM plasma with pre-existing fossil electrons.

Ha et al. 2022

Hyesung Kang XXVIII Cracow Epiphany Conference, Jan 10 – 14, 2021
Electron Preacceleration at subcritical Q_{\perp} ICM Shocks: Ha et al. 2022

"Electron Preacceleration at subcritical \bm{Q}_{\perp} ICM Shocks: Effects of Pre-existing Suprathermal Electrons"

Summary: Take Home Messages Hyesung Kang XXVIII Cracow Epiphany Conference, Jan 10 – 14, 2021

Summary: Take Home Messages

1. In high β ICM, only supercritical Q_\parallel shocks with $M_{\tiny S} > 2.3$ may inject suprathermal protons to DSA and produce CR protons (Ha + 2018, Ryu + 2019).

2. Ion-scale shock surface rippling at supercritical Q_1 shocks with $M_s > 2.3$ may generate multi-scale waves, leading to the electron injection all the way to DSA in Hyesung Kang **Example Amano 2019** (An 10-14, 2021
 Summary: Take Home Messages
 1. In high β ICM, only supercritical Q_{\parallel} shocks with $M_s > 2.3$ may inject

suprathermal protons to DSA and produce CR protons (Ha + Kobzar+2021). **Summary: Take Home Messages**
 1. In high β ICM, only supercritical Q_{\parallel} shocks with $M_s > 2.3$ may inject

suprathermal protons to DSA and produce CR protons (Ha + 2018, Ryu + 2019).
 2. Ion-scale shock surface

of the EFI & WI, but not the AIC instability.

 \rightarrow So ion scale waves are not generated and electron pre-acceleration remains ineffective at subcritical shocks. (Ha + 2022)

4. Outstanding question: Can subcritical shocks $(M_s< 2.3)$ (re)-accelerate electrons $(Q₁$ shocks) in the presence of pre-existing turbulence on kinetic scales in the high β shocks. (e.g. Katou & Amano 2019, Trotta & Burgess 2019, Niemiec + 2019, Ha + 2021,
Kobzar+2021).
3. Pre-existing nonthermal electrons at weak Q_{\perp} shocks can enhance the excitation
of the EFI & WI, but not

Observed Radio relics have $M_s \sim 1.5 - 3.0$