

An Air-Shower Imaging Instrument to Detect Ultrahigh-Energy Neutrinos down to PeV Energies

Phys. Rev. D 99, 083012 (2019) Astro2020 white paper arXiv:1907.08727 ICRC 2019 arXiv:1907.08732

Georgia Tech University of Utah Durham University, UK University of Padova, IT University of Bari, IT University of Perugia, IT

Dave Kieda (University of Utah) for the Trinity Collaboration

The Ultra-High Energy Neutrino Window

- What are the sources of the astrophysical neutrinos?
- What is the composition of UHECRs and how do their sources evolve?
- Are GRBs UHE neutrino sources?
- Are there steady sources we are missing?
- Probing BSM physics.

Optical Neutrino Detection Technique

• The emerging UHE tauons can generate e.m. atmospheric (sub)showers

Decay	Secondaries	Probability	Air-shower
$\tau \to \mu^- \bar{\nu}_\mu \nu_\tau$	μ-	17.4%	weak showers
$\tau \rightarrow e^- \bar{\nu}_e \nu_{\tau}$	e^-	17.8%	1 Electromagnetic
$ au ightarrow \pi^- u_{ au}$	π^-	11.8%	1 Hadronic
$ au ightarrow \pi^- \pi^0 u_ au$	$\pi^-, \pi^0 \rightarrow 2\gamma$	25.8%	1 Hadronic, 2 Electromagnetic
$ au ightarrow \pi^- 2 \pi^0 u_{ au}$	$\pi^-, 2\pi^0 \rightarrow 4\gamma$	10.79%	1 Hadronic, 4 Electromagnetic
$\tau \rightarrow \pi^- 3 \pi^0 \nu_{\tau}$	$\pi^-, 3\pi^0 \rightarrow 6\gamma$	1.23%	1 Hadronic, 6 Electromagnetic
$ au ightarrow \pi^- \pi^- \pi^+ u_{ au}$	$2\pi^{-},\pi^{+}$	10%	3 Hadronic
$\tau \to \pi^- \pi^+ \pi^- \pi^0 \nu_\tau$	$2\pi^-,\pi^+,\pi^0 o 2\gamma$	5.18%	3 Hadronic, 2 Electromagnetic

10⁶-10¹⁰ GeV UHE nu-tau, when crossing 1-100 km of rock have significant **probability of emerge as tau-lepton**

UHE-Neutrino Searches with MAGIC

MAGIC telescopes

The Trinity Telescope Design

Based on J. Cortina et al., Astrop. Physics 72 (2016) 46

• FoV 5° X 60°.

- 5.6 m focal length.
- 68 m² mirror area \rightarrow **16 m²** in any direction.
- 0.3° optical PSF.
- 3,300 pixel camera.
- 20 mm Winston cones coupled to 9 mm SiPMs.
- Thin-glass replica mirror technology ~\$2k/m².
- Implementation based on MAGIC structure.
- Rotates in elevation.
- \$170k for one telescope.
- \$330k for one camera.
- Full Trinity Observatory employs arrays of multiple telescopes/multiple sites

Suitable sites for Trinity with existing infrastructure:

Frisco Peak, UT; Hawaii; Canary Islands La Palma and Tenerife

Astro 2020 APC White Paper arXiv:1907.08727

Instantaneous Sky Coverage (One Site)

Sky Coverage (One Year, One Site)

Trinity has much of the same sky coverage as all major EM and GW multi-messenger instruments.

Trinity observes 50% of the sky every night.

GeV

Expected Performance

Astrophysical-Neutrinos with Trinity

Trinity Prototype Telescopes @ Frisco Peak, Utah, USA

Take-Away Points and Remarks

- Trinity is the lowest threshold UHE-instrument in the market.
- Trinity and radio UHE-detectors complement each other.
- The technique is thoroughly tried and tested → WYSIWYG.
- Overlap with astrophysical-neutrino flux
- \rightarrow guaranteed signal.
- Highest sensitivity where peak of cosmogenic-neutrino flux is expected
- Pure tau-neutrino sample from 5×10^5 GeV to 10^{10} GeV \rightarrow fundamental physics.
- The source density in the non-thermal universe decreases rapidly with energy → a low energy threshold yields more science.

<u>Status</u>

- Frisco Peak Site: BLM permit in process
- Prototype Trinity Optics: in fabrication
- Site preparation & installation 2022-2023 (?)

Backup

Proton injected at the top of the atmosphere (~800 km to the detector for 87°)

Deep tau-induced shower (~50 km to the detector)

Slide from Dariusz Gora (MAGIC)

Trinity: An Optimized PeV Threshold UHE-Neutrino Detector

Phys. Rev. D 99, 083012 (2019)

Frisco Peak, UT; Hawaii; Canary Islands La Palma and Tenerife

Site

Frisco Peak

- Needs to oversee a remote area.
- Modest light contamination is ok.
 - Images happen on <100ns timescales.
- Ashra Site; BEACON Test site; Frisco Peak, UT, La Palma, ...

Trinity Demonstrator @ Frisco Peak

- Validate Trinity's telescope configuration
- Long-term stability of technologies
- Study background sources

1 m² prototype

Concept has been shown to work for UHE-neutrino observationsia (2018), Astropart.Phys.102,77-88.

Ashra-1 PoS(ICRC2019)970

Compact Field-of-View dE [GeV cm⁻² s⁻¹ sr⁻¹] $_{-0}$ D1 $_{-2}$ S1 sr⁻¹] FoV above horizon — · 0° 10 2° ----- 10° E² dN/dE [GeV cm⁻² s⁻¹ sr⁻¹])1)1 FoV below horizon 0⁻⁸ • 0° **1**º - - -3° ----- 10° 0⁻⁹ **10**¹⁰ 10⁸ 10⁹ 89° 10^{7} 10¹¹ energy [GeV] 10^{-8} 10^{-9} **10**¹⁰ 10⁸ 10⁹ 10¹¹ 10^{7} energy [GeV]

Keeping out of the Haze

Compact Telescopes

Trinity: An Optimized PeV Threshold UHE-Neutrino Detector

side view Stop view (S

- 2 km above ground
- 360° azimuthal acceptance (six 60° FoV telescopes)
- Three sites (18 telescopes)
- 10 m² effective mirror area
- 3° FoV above horizon, 2° FoV below horizon
- 0.3° angular resolution
- Silicon photomultipliers instead of bialkali photomultipliers
- \$15 M (telescopes + infrastructure)

Suitable sites for Trinity with existing infrastructure: Frisco Peak, UT; Hawaii; Canary Islands La Palma and Tenerife

Trinity: Single-Telescope Sensitivity

A single telescope will detect astrophysical neutrinos provided the spectrum does not cut off.

Earth-Skimming Technique

Science with UHE Neutrinos

- What are the sources of the astrophysical neutrinos?
- What is the composition of UHECRs and how do their sources evolve?
- Are GRBs UHE neutrino sources?
- Are there steady sources we are missing?
- Probing BSM physics.

Require: All sky survey, > 10 PeV sensitivity, large field of view, sensitivity to neutrino flavors