

Insights on Particle Acceleration at Relativistic Shocks from GRB afterglows

Brian Reville

Max-Planck-Insitut für Kernphysik

XXVIII Cracow Epiphany Conference

Further details in:

Kirk & Reville, ApJL (2010)

Reville & Bell, MNRAS (2014)

Zhiqiu Huang, Kirk, Giacinti, Reville, to appear in ApJ (arXiv: 2112.00111)

Role of Ultra-relativistic shocks

Pulsars, winds and nebulae

Unique plasma laboratories e^\pm pair winds Local CR e^\pm sources Astrophysical background in DM searches

GRBs & their afterglows
GW / MMs
Sources of UHECRs?

Images credit: NASA

GRB afterglows in the TeV domain

4 GRB afterglows detected to date in TeV domain (See Moderski's & Sitarek's talks yesterday)

MAGIC collab. (2019)

The presence of TeV electrons highlights key question of maximum energy

GRB afterglow - shock physics

External shock is a "relatively" clean environment.

- Electron-ion plasma
- Low magnetisation $(B^2/4\pi \ll w \approx \rho c^2)$

 $\sigma = B^2/4\pi w$

Self-similar hydro-dynamic evolution

Particles are accelerated at the external shock via shock acceleration

$$\frac{dN_{\rm inj}}{dAdtdE} \propto E^{-p}$$

• Magnetic field and electrons take ϵ_e and ϵ_B of the internal energy resp.

GRB afterglow - shock physics

External shock is a "relatively" clean environment.

- Electron-ion plasma
- Low magnetisation $(B^2/4\pi \ll w \approx \rho c^2)$

 $\sigma = B^2/4\pi w$

Self-similar hydro-dynamic evolution

Are the observations consistent with shock acceleration theory?

- Theory & simulations generally find $p \gtrsim 2.2$
- Maximum energy often overlooked, despite analytic predictions.

We would like to use GRB afterglow observations to put our current understanding to the test....

Particle acceleration at Ultra-rel. shocks

In shock frame, avg magnetic field lies in the plane of the shock

Particle acceleration at Ultra-rel. shocks

In absence of scattering, particle is limited to ≤ 3 crossings (Begelman & Kirk '90)

Particle acceleration at Ultra-rel. shocks

As argued by Achterberg et al ('01), to outrun the shock back into upstream, particle must scatter with $\nu_{\rm sc} \geq \omega_g$ i.e. particle *unmagnetised*, or at the limit thereof

A wealth of literature using MC codes with assumed turbulence/scattering (e.g. Kirk, Schneider, Heavens, Niemiec, Ostrowski, Lemoine, Baring, etc.)

Insight from PIC simulations

2D simulations by Sironi, Spitkovsky & Arons 13, See also talk by M. Iwamato this morning.

$$m_i/m_e = 1$$

$$m_i/m_e = 25$$

Insight from PIC simulations

2D simulations by Sironi, Spitkovsky & Arons 13, See also talk by M. Iwamato this morning.

 $m_i/m_e = 1$

Taking parameters from PIC simulations

Characteristic strength $\epsilon_R \sim 0.1$

Characteristic scale $\sim 10~c/\omega_{\rm pp}$

$$\Delta\theta = \lambda/r_g$$

Useful quantity:

Electron strength parameter:

$$a = \frac{e\delta B\lambda}{m_e c^2} \approx \gamma_e \Delta \theta$$

$$= \Gamma_{\rm sh} \epsilon_B^{1/2} \frac{\lambda}{c/\omega_{pp}} \frac{m_i}{m_e} \sim 10^4 \frac{\Gamma_{\rm sh}}{10}$$

Taking parameters from PIC simulations

Characteristic strength $\epsilon_{B} \sim 0.1$

Characteristic scale $\sim 10~c/\omega_{\rm pp}$

Particle diffuses in angle

$$D_{\theta} = \left\langle \frac{\Delta \theta^2}{2\Delta t} \right\rangle \approx \frac{a^2}{\bar{\gamma}^2} \frac{c}{\langle \lambda \rangle}$$

Note isotropisation time $\nu_{\rm sc} = t_{\rm sc}^{-1} \approx D_{\theta}$

Maximum Electron Energy - I

Electron emits synchrotron photons in each scattering event (not jitter, a >> 1)

Energy gain per cycle $(\Delta E/E)_{\rm gain} \sim 2$, electrons lose $(\Delta E/E)_{\rm loss} \sim \epsilon_B E$ per scattering, but needs $\sim \epsilon_B^{-1}$ scatterings

$$\gamma_{\text{max,ds}} \approx 1.4 \times 10^6 \left[\left(\frac{\lambda}{c/\omega_{pp}} \right)^2 \frac{m_i}{m_e} n_u^{-1} \right]^{1/6}$$

We call this the **cooling limit.**

Note it produces synchrotron photons $h\nu \ll \alpha_{\rm f}^{-1} m_e c^2$

(see Kirk & BR '10)

Maximum Electron Energy - II

$$t_{\rm sc} \propto E^2$$

$$t_{\rm sc} \propto E^2$$
 $t_{\rm gyro} \propto E$

(Measured in average field)

Eventually the continuous gradual deflection in large scale field dominates over the random small angle deflections

$$\gamma_{\rm max,ds} \approx \frac{\lambda}{c/\omega_{pp}} \frac{m_i}{m_e} \epsilon_B \sigma_u^{-1/2}$$

This is the magnetised limit, has important implication for UHECR acceleration (Achterberg et al. 01, Lemoine & Pelletier 10, BR & Bell 14)

Maximum Electron Energy - Ill

If particle penetrates far downstream: $ct_{\rm sc} > L_{\rm damp}$, it can not return to shock

setting
$$L_{\rm damp} = L_0 \sigma_{\rm us}^{-1/2} c/\omega_{\rm pp}$$

$$\gamma_{\rm max,ds} \approx \left(L_0 \frac{\lambda}{c/\omega_{pp}} \epsilon_B\right)^{1/2} \frac{m_i}{m_e} \bar{\gamma} \ \sigma_u^{-1/4}$$

We call this the damping limit.

For most circumstances it is the most restrictive (unless $L_0\gg 1$)

Max. energy in self-similar blast wave

Doppler boosted $\gamma_{\rm max}$, using Blandford & McKee solution

Both cases fixed to ambient Alfvén velocity $v_A \approx 50 \text{ km s}^{-1}$, $\epsilon_B = 0.01$

Many Single zone models of GRB afterglows assume $\epsilon_B \ll 0.01$. A potential challenge for the single zone shock models of GRBs?

Z. Huang et al. ApJ in press

Application to TeV detected Afterglows

PIC sims indicate $\ell_{\rm w} = 10 - 20$

Application to TeV detected Afterglows

Using $\mathcal{C}_{\rm w}=100$ we attempt to fit GRB 190829A

TeV spectrum too steep to account for the HESS data in VHE gamma-rays due to Klein-Nishina suppression.

Application to TeV detected Afterglows

HESS Collaboration 2020

Should we consider serious alternatives to external shock model?

The so-called synchrotron burn-off limit at $\approx 100\Gamma_{\rm sh}$ MeV is very much a single zone concept (for example the Crab flares)

By de-coupling acceleration zone and emission zone TeV synchrotron photons are possible, but requires multi-PeV electrons (e.g. Kirk, BR & Giacinti '21)

Conclusions

- Observations of relativistic shocks are testing our theories and providing new insight.
- TeV data provides crucial constraint on models
- Current observations reveal several gaps in our understanding
 - 1. To account for X-ray, we need λ much larger than PIC predictions
 - 2. Spectrum is generally steeper than implied by observations
 - 3. TeV gamma-ray spectrum is harder than theory can account for

• Larger
$$\lambda$$
, larger $E_{
m max}$ $E_{
m max} pprox \left(rac{\Gamma_{
m sh}}{100}
ight)^2 \left(rac{\lambda_{
m d}}{10c/\omega_{
m pp}}
ight) \left(rac{\sigma_{
m d}}{10^{-2}}
ight) \left(rac{\sigma_{
m u}}{10^{-8}}
ight)^{-1/2} {
m PeV}_{
m e}$

Should we be considering alternatives to the external shock model?

Dziękuję bardzo

