

Specific Acknowledgement of ERC StG "*PeV-Radio*": This project has received funding from the European Research Council (ERC) under the European Union's Horizon 2020 research and innovation programme (grant agreement No 802729).

Digital Radio Array for Ultra-High-Energy Cosmic Particles

Frank G. Schröder

Bartol Research Institute, Department of Physics and Astronomy, University of Delaware, Newark, DE, USA, and Karlsruhe Institute of Technology (KIT), Institute for Nuclear Physics, Karlsruhe, Germany

UD – University of Delaware KIT – The Research University in the Helmholtz Association www.udel.edu www.kit.edu

Content

Radio emission by cosmic-ray air showers

Energy and X_{max} measurement by radio

Selected radio experiments for cosmic-ray air showers (with personal bias)

LOPES, Tunka-Rex, AERA, SKA, IceCube

frank.schroeder@kit.edu

Radio: Emission Mechanisms

13 January 2022 28th Epiphany Conference

4

Digital Radio Array for Cosmic Particles

28th Epiphany Conference

Digital Radio Array for Cosmic Particles

Radio emission beamed in forward cone

13 January 2022 28th Epiphany Conference

6

Digital Radio Array for Cosmic Particles

LOPES – Digital radio detection of air-showers

- Operation: 2003 2013
 - 30 antennas, 40 80 MHz
 - Trigger by KASCADE particle detectors

13 January 2022 28th Epiphany Conference

7

Digital Radio Array for Cosmic Particles

Interferometric beamforming at LOPES

Cross-correlation of traces after time shift according to arrival direction
Direction precision < 0.5° (by comparing LOPES to KASCADE)

8 13 January 2022 28th Epiphany Conference

Digital Radio Array for Cosmic Particles

Tunka Radio Extension (Tunka-Rex) in Siberia, 2012 – 2018

28th Epiphany Conference

frank.schroeder@kit.edu

Example of Tunka-Rex event

10 13 January 2022 28th Epiphany Conference

Digital Radio Array for Cosmic Particles

Simple standard method for reconstruction

energy by amplitude (after asymmetry correction); distance to X_{max} by slope of LDF

1113 January 202228th Epiphany Conference

Digital Radio Array for Cosmic Particles

Tunka Radio Extension (Tunka-Rex) in Siberia, 2012 – 2018

Direct proof of radio X_{max} sensitivity by comparison to Cherenkov-light detectors

12 13 January 2022 28th Epiphany Conference Digital Radio Array for Cosmic Particles

X_{max} reconstruction by Tunka-Rex (by LOFAR inspired method)

- Many CoREAS simulations per event \rightarrow select X_{max} of best fitting simulation
- Precision ~ 30 g/cm² by using pulse shape (< 20 g/cm² for dense LOFAR using maximum amplitude)

13 13 January 2022 28th Epiphany Conference Digital Radio Array for Cosmic Particles

Comparing energy scales of KASCADE and Tunka-133 via their radio arrays

- Relative comparison, absolute accuracy of both arrays is 20 %
- The energy scales of both experiments agree within 10%

Tunka-Rex + LOPES Colls., PLB 763 (2016) 179

1413 January 202228th Epiphany Conference

Digital Radio Array for Cosmic Particles

Auger Engineering Radio Array (AERA) at the Pierre Auger Observatory

- water-Cherenkov detectors (SD)
 - FD field of viewHEAT field of view

• AMIGA Unitary Cell (MD)

28th Epiphany Conference

AERA (RD)

- 153 autonomous radio stations on 17 km²
 - different antennas, electronics, triggers,...
- Coincident measurements with surface, underground and fluorescence detectors

Digital Radio Array for Cosmic Particles

Coherent Emission: Radio amplitude proportional to shower energy

Total energy in radio signal scales quadratically with electro-mag. shower energy

1613 January 202228th Epiphany Conference

Digital Radio Array for Cosmic Particles

Radio X_{max} uncertainties studied in detail for AERA

17 13 January 2022 28th Epiphany Conference

Digital Radio Array for Cosmic Particles

18 13 January 2022 28th Epiphany Conference

Digital Radio Array for Cosmic Particles

AugerPrime: Upgrade of the Pierre Auger Observatory

- Improved quality of surface detector:
 - scintillators + radio antennas
 - underground muon detectors
 - better electronics
- Enables per-event mass discrimination

Digital Radio Array for Cosmic Particles

Key for many science goals: Mass Separation power

- Radio enhances mass sensitivity for all zenith angles, in particular for inclined showers
- Plots show potential of the methods (no detector properties considered)
 - while km-spaced arrays are sufficient for inclined showers, antenna spacings of o(100m) are required for vertical showers.

Pierre Auger Coll., EPJ WoC 216 (2019) 02002 more details in E. Holt et al., EPJ C 79 (2019) 371

20 13 January 2022 28th Epiphany Conference

Digital Radio Array for Cosmic Particles

Digital Radio Array for Cosmic Particles

21 13 January 2022 28th Epiphany Conference

IceCube-Gen2 Surface Array

- Enhancement of IceTop surface array continued for IceCube-Gen2 surface array
- High accuracy for most energetic Galactic cosmic rays in the PeV to EeV region

scintillators antenna scintillators elevated fieldhub 串 antenna scintillators scintillators (not to scale)

Gen2 optical array

Baseline design of Gen2 Surface Array:

one station per optical string (120)

- 4 pairs of scintillators enabling low threshold for veto
- 3 radio antennas increasing accuracy at high energies

22 13 January 2022 28th Epiphany Conference Digital Radio Array for Cosmic Particles

Unique Combination of Air-Shower Detectors

- Low-energy particles + radio signal on ground, TeV muons in the ice
- Enables unprecedented accuracy for mass of cosmic rays
- Physics relevant for atm. neutrino backgrounds, e.g., prompt decays

23 13 January 2022 28th Epiphany Conference

Digital Radio Array for Cosmic Particles

Conclusion

Significant progress in radio technique for cosmic rays during last years

- high accuracy at almost 100% duty cycle
- competitive direction, energy, and X_{max} accuracy including the absolute scales
- ideal for inclined showers and in combination with muon detectors

Several running and planned antenna arrays for all types of cosmic particles, e.g.:

- Auger Radio Upgrade: mass-sensitivity for inclined showers of extragalactic cosmic rays
- Giant Radio Array for Neutrino Detection (GRAND): huge aperture for ultra-high energies
- Global Cosmic Ray Observatory (GCOS) may include radio antennas
- IceCube(-Gen2): surface radio for Galactic cosmic rays + in-ice radio for EeV neutrinos