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A Sketch of Physical Picture of GRBs
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Selected topics

Disclaimer: not a complete review, personal taste and involvement

e TeV afterglow emission
e Oddball GRBs with special progenitors

e GRB prompt emission: jet composition, energy
dissipation and radiation mechanisms



1. TeV afterglow emission from GRBs

GRB 190114C, GRB 180720B, GRB 190829A



High-Energy Afterglow:
Which component is more important?

Zhang & Meszaros (2001)
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e Three HE components:
e Electron synchrotron
e Electron SSC
e Proton synchrotron (and other
hadronic emission)

o All three components always exist,
it is a matter of which one o e
dominates IR

* The largest parameter space is the
SSC-dominated regime
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TeV breakthrough in 2019

Teraelectronvolt emission fromthe y-ray
burst GRB190114C
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Long-duration y-ray bursts (GRBs) are the most luminous sources of electromagnetic
radiation known in the Universe. They arise from outflows of plasma with velocities
near the speed of light that are ejected by newly formed neutron stars or black holes
(of stellar mass) at cosmological distances"?. Prompt flashes of megaelectronvolt-
energy y-rays are followed by alonger-lasting afterglow emission in awide range of
energies (from radio waves to gigaelectronvolt y-rays), which originates from
synchrotron radiation generated by energetic electrons in the accompanying shock
waves>*. Although emission of y-rays at even higher (teraelectronvolt) energies by
other radiation mechanisms hasbeen theoretically predicted® ®, it has not been
previously detected”. Here we report observations of teraelectronvolt emission from
the y-ray burst GRB190114C. y-rays were observed in the energy range 0.2-1
teraelectronvolt fromabout one minute after the burst (at more than 50 standard
deviationsin the first 20 minutes), revealing a distinct emission component of the
afterglow with power comparable to that of the synchrotron component. The
observed similarity in the radiated power and temporal behaviour of the
teraelectronvolt and X-ray bands points to processes such as inverse Compton
upscattering as the mechanism of the teraelectronvolt emission® ™. By contrast,
processes such as synchrotron emission by ultrahigh-energy protons'®>* are not
favoured because of their low radiative efficiency. These results are anticipated tobe a
step towards a deeper understanding of the physics of GRBs and relativistic shock
waves.

Observation of inverse Comptonemission
fromalongy-rayburst
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Long-duration y-ray bursts (GRBs) originate from ultra-relativistic jets launched from
the collapsing cores of dying massive stars. They are characterized by aninitial phase

of bright and highly variable radiation in the kiloelectronvolt-to-megaelectronvolt
band, which is probably produced within the jet and lasts from milliseconds to
minutes, known as the prompt emission'2 Subsequently, the interaction of the jet
with the surrounding medium generates shock waves that are responsible for the
afterglow emission, which lasts from days tomonths and occurs over a broad energy
range from the radio to the gigaelectronvolt bands' °. The afterglow emission is

generally well explained as synchrotron radiation emitted by electrons accelerated by

the external shock”’. Recently, intense long-lasting emission between 0.2and 1
teraelectronvolts was observed from GRB 190114C'°". Here we report multi-
frequency observations of GRB190114C, and study the evolution in time of the GRB
emission across 17 orders of magnitude in energy, from 5 x107° to 10”2 electronvolts.
We find that the broadband spectral energy distribution is double-peaked, with the
teraelectronvolt emission constituting adistinct spectral component with power
comparable to the synchrotron component. This component is associated with the
afterglow and is satisfactorily explained by inverse Compton up-scattering of
synchrotron photons by high-energy electrons. We find that the conditions required
toaccount for the observed teraelectronvolt component are typical for GRBs,
supporting the possibility thatinverse Compton emission iscommonly producedin
GRBs.
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A very-high-energy componentdeepinthe
y-ray burst afterglow
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Gamma-ray bursts (GRBs) are brief flashes of y-rays and are considered to be the most
energetic explosive phenomenain the Universe'. The emission from GRBs comprises
ashort (typically tens of seconds) and bright prompt emission, followed by amuch
longer afterglow phase. During the afterglow phase, the shocked outflow—produced
by the interaction between the ejected matter and the circumburst medium—slows
down, and agradual decrease in brightness is observed”. GRBs typically emit most of
their energy viay-rays with energiesin the kiloelectronvolt-to-megaelectronvolt
range, but afew photons with energies of tens of gigaelectronvolts have been
detected by space-based instruments®. However, the origins of such high-energy
(above one gigaelectronvolt) photons and the presence of very-high-energy (more
than 100 gigaelectronvolts) emission have remained elusive*. Here we report
observations of very-high-energy emission in the bright GRB 180720B deep in the GRB
afterglow—ten hours after the end of the prompt emission phase, when the X-ray flux
had already decayed by four orders of magnitude. Two possible explanations exist for
the observed radiation: inverse Compton emission and synchrotron emission of
ultrarelativistic electrons. Our observations show that the energy fluxes in the X-ray
andy-ray range and their photon indices remain comparable to each other
throughout the afterglow. This discovery places distinct constraints on the GRB
environment for both emission mechanisms, with the inverse Compton explanation
alleviating the particle energy requirements for the emission observed at late times.
The late timing of this detection has consequences for the future observations of
GRBs at the highest energies.

Extreme emission seen
fromy-ray bursts

Bing Zhang

Cosmic explosions called y-ray bursts are the most energetic
bursting events in the Universe. Observations of extremely
high-energy emission from two y-ray bursts provide a new way
to study these gigantic explosions. See p.455, p.459 & p.464



GRB 190114C
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GRB 180720B

Abdallah et al., 2019, Nature, 575, 467
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GRB 190829A

Abdalla et al., 2021, Science, 6546, 1081-1085

RESEARCH

GAMMA-RAY BURSTS

Revealing x-ray and gamma ray temporal and
spectral similarities in the GRB 190829A afterglow
H.E.S.S. Collaborationt*

Gamma-ray bursts (GRBs), which are bright flashes of gamma rays from extragalactic

sources followed by fading afterglow emission, are associated with stellar core collapse events.
We report the detection of very-high-energy (VHE) gamma rays from the afterglow of

GRB 190829A, between 4 and 56 hours after the trigger, using the High Energy Stereoscopic
System (H.E.S.S.). The low luminosity and redshift of GRB 190829A reduce both internal

and external absorption, allowing determination of its intrinsic energy spectrum. Between
energies of 0.18 and 3.3 tera-electron volts, this spectrum is described by a power law with
photon index of 2.07 + 0.09, similar to the x-ray spectrum. The x-ray and VHE gamma-ray light

curves also show similar decay profiles. These similar characteristics in the x-ray and gamma-ray
bands challenge GRB afterglow emission scenarios.

e A nearby, low-luminosity GRB
(z=0.0785)

e Same decay law in TeV and X-rays

e (Consistent with one single spectral
component

e Simple one-zone SSC model fails

e Synchrotron model extends the
maximum energy by three orders of
magnitude
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GRB 190829A
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External Inverse-Compton Emission from Low-luminosity Gamma-Ray Bursts:

Application to GRB 190829A
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a long-lasting engine | Abstac

The detection of TeV gamma-ray bursts (GRBs) brought new opportunities for studying the physics of particle

acceleration at relativistic shocks. The High Energy Stereoscopic System (H.E.S.S.) telescopes recently observed

[ ] X_ y p d by very-high-energy (VHE) emission from a nearby low-luminosity GRB, GRB 190829A. Follow-up observations
ra S are u Scattere with, e.g., Swift-XRT, revealed unusual flare activities at ~10° s, which can be caused by a long-lasting central

engine. We show that the VHE emission during the H.E.S.S. observation time is naturally produced in the external

eleCt rons from external ShOC kS inverse-Compton (EIC) scenario, where seed photons supplied by the flares or other late-time dissipations are

upscattered to VHE energies by the nonthermal electrons accelerated at the external forward shock. Our

calculations show that the EIC flare nearly coincides with the late-prompt flare, but extends ~3—4 times longer than

o Reaso n ab | e b u rSt paral I Iete rS the duratlon of the late-prompt flare. The preferred kinetic energy and initial Lorentz factor used in our model are
~10°% erg and ~20, respectively. Understanding the mechanisms of the VHE emission from low-luminosity GRBs

will help us constrain the properties of the outflow and the central engine activities, as well as the particle
acceleration mechanism.
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2. Oddball GRB progenitors
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GRB classification schemes
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An elegant picture:

Long GRBs = massive star GRBs (Type II)
Short GRBs = compact star GRBs (Type I)

But is it that simple?
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Oddball GRB 060614: a long burst
with a compact star (Type |) origin
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Multi-wavelength ob

How to tell the physical category from the observations?
Multiple observational criteria needed!

TABLE 2

OBSERVATIONAL CRITERIA FOR PHYSICALLY CLASSIFYING GRBs.

Criterion Type 1 Type 11 Issues
Duration Usually short, but can Long without short/hard spike, No clear separation line.
have extended emission.  can be shorter than 1s in rest frame.
Spectrum Usually hard (soft tail) Usually soft Large dispersion
Spectral Lag Usually short Usually long, can be short. Related to variability time scale
E. iso Low (on average) High (on average) Wide dstribution in both
E,—E, s Usually off the track. Usually on the track. Some Type II off the track.
LY ...—lag Usually off the track. Usually on the track. Some Type II off the track.
SN association  No. Yes. Some Type II may have no association.
Medium type Low-n ISM. Wind or High-n [SM. Large scatter of n distribution.
Exiso Low (on average) High (on average) Large dispersion
Jet angle Wide (on average) Narrow (on average) Difficult to identify jet breaks
E., and Ef Low (on average) High (on average) Type I BZ model ~ Type II.
Host galaxy type Elliptical, early and late Late Deep spectroscopy needed.
SSFR Low or high High (exception GRB 070125)
Offset Outskirt or outside Well inside How to claim association if outside?
z-distribution Low average z High average z

L-function 7

Broken power law, 2-component

servational criteria

?

v

No Zhang et al. (2009)

Kann et al. (2011)

Multi-wavelength GRB Classifier

No

This Multi-wavelength GRB Classifier physically classify Gamma Ray Bursts (GRBs) as Type II (massive star core collapse) and Type I GRB (compact
star merger) based on multi-wavelength criteria, with Naive Bayes method ultilized. Both the prompt emission information and host galaxy information
are taken into consideration. This method is based on Li, Zhang & Yuan, 2020, The Astrophysical Journal, Volume 897, page 154, also available at

Input parameter
(keep the unknown parameters blank)

arXiv:2005.13663.
name (not required): GRB 1306038
log E_iso (erg): 51.305
log E_p (keV): 2.820
log sSFR (GyrA-1): 0.456
[X/H]: -0.240

log r_off (=R_off/R_50): 0.021

submit

log T_90 (s):
alpha:

log (f_eff-1):
log M (M_sun):
log R_50 (kpc):
F_light:

-0.745

-0.730

9.230

0.702

0.35

Zhang et al. 2009; Kann et al. 2011; Li, Zhang & Yuan 2020;
https://www.physics.unlv.edu/~liye/GRB/grb_cls.html



Oddball GRB 200826A: a short burst
with a massive star (Type Il) origin

nature
ElStI' Onomy https://doi.org/10.1038/541550-021-01395-z

'.) Check for updates

LETTERS

A peculiarly short-duration gamma-ray burst from
massive star core collapse

B.-B. Zhang ®"2313X 7 K, Liu"?"3, Z.-K. Peng'?%, Y. Li*5, H.-J. Lii%, J. Yang'?, Y.-S. Yang'?, Y.-H. Yang ©®'2,
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'.) Check for updates
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Discovery and confirmation of the shortest
gamma-ray burst from a collapsar

Tomas Ahumada®'232 Leo P. Singer ©®?#, Shreya Anand ©5, Michael W. Coughlin®5,

Mansi M. Kasliwal®, Geoffrey Ryan®'2, Igor Andreoni®, S. Bradley Cenko ®?2#, Christoffer Fremling ©5,
Harsh Kumar’, Peter T. H. Pang®®, Eric Burns'®, Virginia Cunningham'?, Simone Dichiara'?,
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Eleonora Troja"?, Anastasia Tsvetkova®, Richard Walters* and Azamat F. Valeev ©®3738
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GRB 200826A: a short burst with a
massive star (Type ll) origin
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3. GRB Prompt Emission: Jet Composition,
dissipation and emission mechanisms

Prompt GRB Emission:
a Mystery

' \\\/’ .
)% HRE

1 —
I 111 111
—
”
central photosphere internal external shocks
engine (reverse) (forward)

What is the jet composition (baryonic vs. Poynting flux)?
Where 1s (are) the dissipation radius (radii)?
How is the radiation generated (synchrotron, thermal Comptonization)?



GRB Jet Composition
& Energy Dissipation Processes

. . Gravitational Spin (Kinetic)
GRB central engine defined by (n, o,) [
* Energy per baryon >>1 l l
* Energy in three forms Magnetic dissipati )
_ Thermal: n, © Thermal e o on | LPoyntlng flux
— Magnetic: o N
— Kinetic: I

_ Eioto  Ewmot Epo

=2 = e - n(1 + oo).

Kinetic }

Shock
dissipation

Neglect radiation loss, one has
po =n(l+09) =TO(1+ o).

n, oo<<l1;
r = Ly >
max — HO { o9, n~1o90>1.

Radiation }

/Zhang, 2018, The Physics of Gamma-Ray Bursts



Various prompt emission

Energy Flow in GRBs

Energy Flow in GRBs
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Diverse composition in GRBs
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The ICMART Model

(Internal Collision-induced MAgnetic Reconnection & Turbulence)

Lhang & Yan (2011)
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ICM lightcurves and spectra
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Summary

e TeV afterglows
* High-energy photons have been detected from GRBs

* The detected TeV emission likely originates from the external shock, and emitted by certain
Compton scattering processes (SSC or EIC). No evidence of hadronic emission or extreme

electron acceleration process yet.
e Oddball progenitors
* Both long Type | and short Type Il exist. Multi-wavelength data are needed for classification
* There might be more diverse progenitor types
* Prompt emission

* Diverse jet composition in GRBs. A good fraction carries a large Poynting flux.

 The ICMART model invokes turbulent reconnection of a moderate outflow, produce highly
polarized synchrotron radiation from jets in the jet. Can interpret many observations well.



