Glueballs from the lattice

B. Lucini

Lattice setup

Extracting glueball masse from correlators

Confining theories

Glueball states i full QCD

Conclusions and outlook

Glueball masses from the lattice: a (partial) review of recent results

Biagio Lucini

Glueball Hunting, Virtual Dublin, 1st June 2021

▲ロ → ▲周 → ▲ 国 → ▲ 国 → の Q ()

Motivations

Glueballs from the lattice

B. Lucini

Lattice setup

Extracting glueball masses from correlators

Confining theories

Glueball states full QCD

Conclusions and outlook

- The existence of gauge-invariant bound states of gluons implied by confinement
- Glueballs are being investigated in current and future experiments
- The recent announcements about the odderon open new perspectives for understanding glueballs
- A calculation from first principles using lattice techniques can serve as a guidance to theoretical models and experimental searches

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Outline

Glueballs from the lattice

3

Quenched calculations for N = 3 and the large-N limit

▲ロ → ▲周 → ▲ 国 → ▲ 国 → の Q ()

Conclusions and outlook

Outline

Glueballs from the lattice

B. Lucini

Lattice setup

Extracting glueball masses from correlators

Confining theories

Glueball states in full QCD

Conclusions and outlook

Lattice setup

Extracting glueball masses from correlators

ons and

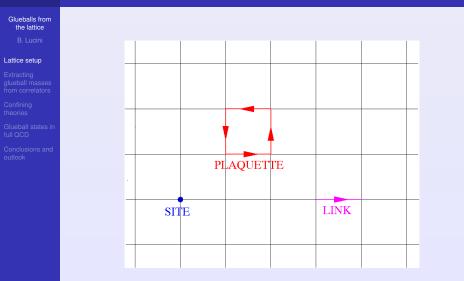
Quenched calculations for N = 3 and the large-N limit

・ロット (雪) (日) (日) (日)

Glueball states in full QCD

5 Conclusions and outlook

The Lattice



Lattice action for full QCD

Glueballs from the lattice

B. Lucini

Lattice setup

Extracting glueball masses from correlators

Confining theories

Glueball states i full QCD

Conclusions and outlook

Path integral

$$Z = \int \left(\mathcal{D}U_{\mu}(i) \right) \left(\det M(U_{\mu}) \right)^{N_f} e^{-S_g(U_{\mu\nu}(i))}$$

with

$$U_{\mu}(i) = Pexp\left(ig\int_{i}^{i+a\hat{\mu}}A_{\mu}(x)\mathsf{d}x\right)$$

and

$$U_{\mu
u}(i) = U_{\mu}(i)U_{
u}(i+\hat{\mu})U^{\dagger}_{\mu}(i+\hat{
u})U^{\dagger}_{
u}(i)$$

Gauge part

$$S_g = \beta \sum_{i,\mu} \left(1 - \frac{1}{N} \operatorname{\mathcal{R}e} \operatorname{Tr}(\mathbf{U}_{\mu\nu}(\mathbf{i})) \right) , \quad \text{with } \beta = 2N/g_0^2$$

(日)

Wilson fermions

Glueballs from the lattice

B. Lucini

Lattice setup

Extracting glueball masses from correlators

Confining theories

Glueball states i full QCD

Conclusions and outlook

Take the naive Dirac fermions and add an irrelevant term that goes like the Laplacian

$$\begin{split} M_{\alpha\beta}(ij) &= & (M+4r)\delta_{ij}\delta_{\alpha\beta} \\ &- & \frac{1}{2}\left[(r-\gamma_{\mu})_{\alpha\beta} \, U_{\mu}(i)\delta_{i,j+\mu} + (r+\gamma_{\mu})_{\alpha\beta} \, U_{\mu}^{\dagger}(j)\delta_{i,i-\mu} \right] \end{split}$$

This formulation breaks explicitly chiral symmetry

Define the hopping parameter

$$\kappa = \frac{1}{2(m+4r)}$$

Chiral symmetry recovered in the limit $\kappa \to \kappa_c$ (κ_c to be determined numerically)

▲口 → ▲圖 → ▲国 → ▲国 → ▲日 →

Quenched approximation

Glueballs from the lattice

B. Lucini

Lattice setup

Extracting glueball masses from correlators

Confining theories

Glueball states full QCD

Conclusions and outlook

For an observable $\ensuremath{\mathcal{O}}$

$$\langle \mathcal{O}
angle = rac{\int \left(\mathcal{D}U_{\mu}(i)
ight) \left(\det M(U_{\mu})
ight)^{N_{f}} f(M) e^{-S_{g}\left(U_{\mu
u}(i)
ight)}}{\int \left(\mathcal{D}U_{\mu}(i)
ight) \left(\det M(U_{\mu})
ight)^{N_{f}} e^{-S_{g}\left(U_{\mu
u}(i)
ight)}}$$

Assume $\det M(U_{\mu})\simeq 1$ i.e. fermions loops are removed from the action

The approximation is exact in the $m \to \infty$ and $N \to \infty$ limit (g^2N is fixed)

 \hookrightarrow the large *N* spectrum is quenched for $m \neq 0$

As *N* increases, unquenching effects are expected for smaller quark masses

Outline

Glueballs from the lattice

Extracting glueball masses from correlators

2 Extracting glueball masses from correlators

Masses of states from correlators

Glueballs from the lattice

B. Lucini

Lattice setup

Extracting glueball masses from correlators

Confining theories

Glueball states i full QCD

Conclusions and outlook

Masses of states extracted from two-point functions (*correlators*) of operators with the right quantum numbers Starting from links, we can built those operators via

Blocking

Fast increase of the size of the operators

Smearing

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Finer resolution

More modern approach: Wilson flow

Correlation matrix

Glueballs from the lattice

B. Lucini

Lattice setup

Extracting glueball masses from correlators

Confining theories

Glueball states i full QCD

Conclusions an outlook

Numerical signal improves considerably using the full correlation matrix

$$\begin{aligned} \langle t \rangle &= \langle 0 | (\Phi_i(0))^{\dagger} \Phi_j(t) | 0 \rangle = \langle 0 | (\Phi_i(0))^{\dagger} e^{-Ht} \Phi_j(0) e^{Ht} | 0 \rangle \\ &= \sum_n \langle 0 | (\Phi_i(0))^{\dagger} | n \rangle \langle n | e^{-Ht} \Phi_j(0) e^{Ht} | 0 \rangle \\ &= \sum_n e^{-\Delta E_n t} \langle 0 | (\Phi_i(0))^{\dagger} | n \rangle \langle n | \Phi_j(0) | 0 \rangle \\ &= \sum_n c_{in}^* c_{jn} e^{-\Delta E_n t} \end{aligned}$$

▲ロ → ▲周 → ▲ 国 → ▲ 国 → の Q ()

After diagonalisation

 C_{ij}

$$C_{ij}(t) = \delta_{ij} \sum_{n} |c_{in}|^2 e^{-am_n t} \underset{t \to \infty}{\to} \delta_{ij} |c_{i1}|^2 e^{-am_1 t}$$

Variational principle

Glueballs from the lattice

B. Lucini

Lattice setup

Extracting glueball masses from correlators

Confining theories

Glueball states full QCD

Conclusions and outlook

Find the eigenvector v that minimises

$$am_1(t_d) = -\frac{1}{t_d} \log \frac{v_i^* C_{ij}(t_d) v_j}{v_i^* C_{ij}(0) v_j}$$

for some t_d

- **2** Fit v(t) with the law Ae^{-m_1t} to extract m_1
- Find the complement to the space generated by v(t)
- Repeat 1-3 to extract m_2, \ldots, m_n

Sources of systematics

- Need a good overlap of the eigenvectors with the state of interest
- Need a large variational basis including all possible states overlapping with the required one
- Need to keep under control finite size and lattice artefacts
- Care should be taken in assigning the spin

Lattice symmetries and spin

Glueballs from the lattice

B. Lucini

Lattice setup

Extracting glueball masses from correlators

Confining theories

Glueball states i full QCD

Conclusions and outlook

- On the lattice, continuous rotational symmetry broken to the symmetry of the octahedral group
- Irreducible representations are A₁, A₂, E, T₁, T₂
- Operators in irreps of the octahedral group
- Near the continuum limit, full rotational symmetry recovered
- Continuous spin obtained from the subduced representations of the rotation group SO(3) restricted to the octahedral irreps

J	A_1	A ₂ 0 0 0 1 0	Ε	T_1	T_2		
0	1	0	0	0	0		
1	0	0	0	1	0		
2	0	0	1	0	1		
3	0	1	0	1	1		
4	1	0	1	1	1		
				< □ >	< 🗗 >	< ≥ > <	3

Outline

Glueballs from the lattice

B. Lucini

Lattice setup

Extracting glueball masses from correlators

Confining theories

Glueball states in full QCD

Conclusions and outlook

Lattice setup

Extracting glueball masses from correlators

3

Quenched calculations for N = 3 and the large-N limit

Glueball states in full QCD

Conclusions and outlook

Glueballs in the quenched approximation

B. Lucini

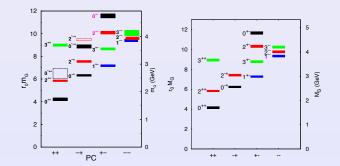
Lattice setup

Extracting glueball masses from correlators

Confining theories

Glueball states full QCD

Conclusions an outlook



Left: C. J. Morningstar and M. J. Peardon, Phys. Rev. D60 (1999) 034509, [hep-lat/9901004] Right: Y. Chen et al., Phys. Rev. D73 (2006) 014516, [hep-lat/0510074]

QCD at large N

Glueballs from the lattice

B. Lucini

Lattice setup

Extracting glueball masses from correlators

Confining theories

Glueball states full QCD

Conclusions and outlook Generalisation of QCD: SU(N) gauge theory (possibly enlarged with N_f fermions in the fundamental representation)

Taking the limit $g^2 \rightarrow 0$, $N \rightarrow \infty$, $\lambda = g^2 N$ fixed simplifies the theory and one can see that:

- Quark loop effects $\propto 1/N \Rightarrow$ The $N = \infty$ limit is quenched
- Mixing glueballs-mesons $\propto 1/\sqrt{N} \Rightarrow$ No mixing between glueballs and mesons at $N = \infty$
- Meson decay widths $\propto 1/N \Rightarrow$ mesons do not decay at $N=\infty$
- OZI rule $\propto 1/N \Rightarrow$ OZI rule exact at $N = \infty$

 \hookrightarrow The simpler large *N* phenomenology can explain features of QCD phenomenology in a *quenched* setup that removes most of the practical computational difficulties for QCD (and SU(3))

Large N limit on the lattice

Glueballs from the lattice

B. Lucini

Lattice setup

Extracting glueball masses from correlators

Confining theories

Glueball states in full QCD

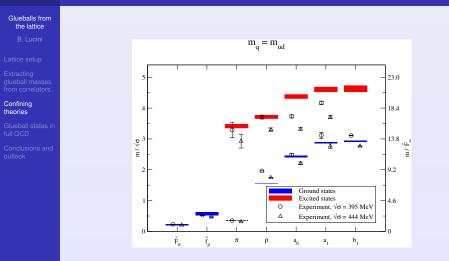
Conclusions and outlook

The lattice approach allows us to go beyond perturbative and diagrammatic arguments. For a given observable

- Continuum extrapolation
 - Determine its value at fixed a and N
 - Extrapolate to the continuum limit
 - Extrapolate to $N \rightarrow \infty$ using a power series in $1/N^2$
- Fixed lattice spacing
 - Choose *a* in such a way that its value in physical units is common to the various *N*
 - Determine the value of the observable for that a at any N
 - Extrapolate to $N \rightarrow \infty$ using a power series in $1/N^2$

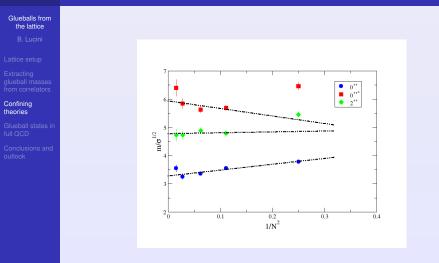
Study performed for various observables both at zero and finite temperature for $2 \leq N \leq 8$

Large *N* vs. experiments



[Bali et al., JHEP 06 (2013) 071]

Glueball masses at large N



[BL, Teper and Wenger, JHEP 0406 (2004) 012]

Masses at $N = \infty$

0-

 0^{+}

Glueballs from the lattice

B. Lucini

Lattice setup

Extracting glueball masses from correlators

Confining theories

Glueball states full QCD

Conclusions an outlook

$$\frac{m}{\sqrt{\sigma}} = 3.28(8) + \frac{2.1(1.1)}{N^2}$$

+*
$$\frac{m}{\sqrt{\sigma}} = 5.93(17) - \frac{2.7(2.0)}{N^2}$$

2⁺⁺
$$\frac{m}{\sqrt{\sigma}} = 4.78(14) + \frac{0.3(1.7)}{N^2}$$

Accurate $N = \infty$ value, normal $\mathcal{O}(1/N^2)$ correction

0⁺⁺ excitations

B. Lucini

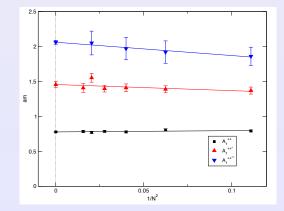
Lattice setup

Extracting glueball masses from correlators

Confining theories

Glueball states full QCD

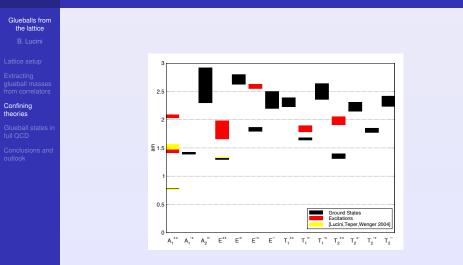
Conclusions an outlook



・ロット (雪) (日) (日) (日)

Lattice spacing fixed by requiring $aT_c = 1/6$ (BL, Rago and Rinaldi, JHEP 1008 (2010) 119)

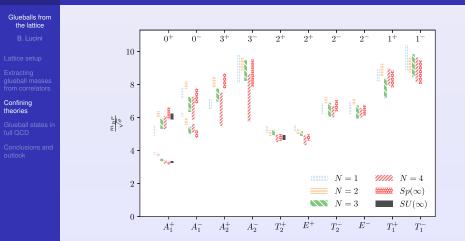
Large-*N* glueball spectrum at $aT_c = 1/6$



[BL, Rago and Rinaldi, JHEP 1008 (2010) 119]

▲ロ → ▲周 → ▲ 国 → ▲ 国 → の Q ()

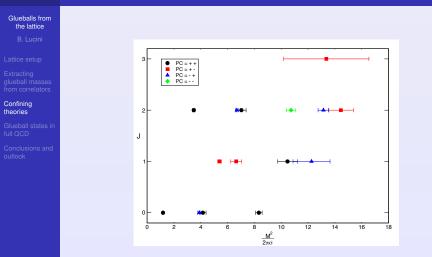
Large-N spectrum in the continuum



[E. Bennett *et al.*, Phys.Rev.D 103 (2021) 5, 054509, arXiv:2010.15781] [A. Athenodorou and M. Teper, to appear tomorrow]

÷

Regge trajectories



[B. Lucini, A. Rago and E. Rinaldi, JHEP 1008 (2010) 119]

▲□ ▶ ▲□ ▶ ▲□ ▶ ▲□ ▶ ■ のので

Outline

Glueballs from the lattice

B. Lucini

Lattice setup

Extracting glueball masses from correlators

Confining theories

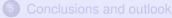
Glueball states in full QCD

Conclusions and outlook

Lattice setup

Extracting glueball masses from correlators

④ Glueball states in full QCD



Construction of operators

Glueballs from the lattice

B. Lucini

Lattice setup

Extracting glueball masses from correlators

Confining theories

Glueball states in full QCD

Conclusions and outlook For single states, start with a zero-momentum operator

$$\phi(x,t) = \operatorname{Tr} \prod_{(i;\hat{\mu})\in\mathcal{C}} U_{\mu}(i) \qquad \mathcal{O}(t) = \phi(t) = \frac{1}{N_L^3} \sum_{x\in\Lambda_s} \phi(x,t)$$

We then build the irreducible representation

$$\Phi^{(R)}(t) = \sum_{i} c_{i}^{(R)} \mathcal{R}_{i}(\phi(t)) - \sum_{i} c_{i}^{(R)} \mathcal{R}_{i}(\langle \phi(t) \rangle)$$
$$= \sum_{i} c_{i}^{(R)} \mathcal{R}_{i}(\phi(t)) - \langle \phi(t) \rangle \sum_{i} c_{i}^{(R)}$$

For the scattering states, we square the operator

$$\Phi^{(R)}(t) = \sum_{i} c_{i}^{(R)} \mathcal{R}_{i} \left(\left(\phi(t) - \langle \phi(t) \rangle \right)^{2} \right) - \left(\left\langle \phi^{2}(t) \right\rangle - \left\langle \phi(t) \right\rangle^{2} \right) \sum_{i} c_{i}^{(R)}$$

Torelons are built in a similar way to glueballs, but as operators we use Polyakov loops

Contours for operators

Glueballs from the lattice

B. Lucini

Lattice setup

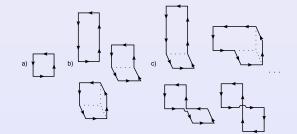
Extracting glueball masses from correlators

Confining theories

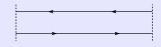
Glueball states in full QCD

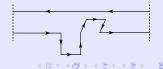
Conclusions and outlook

Glueballs and scattering states



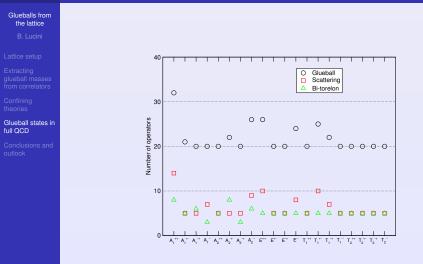
Torelons





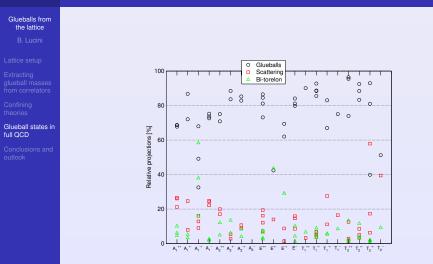
900

Operators used in calculation



◆□▶ ◆□▶ ◆豆▶ ◆豆▶ □豆 - のへで

Identification of lattice artefacts



Comparison with quenched results

B. Lucini

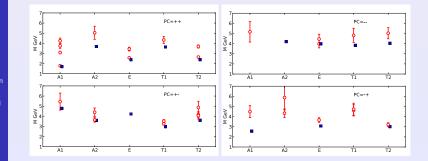
Lattice setup

Extracting glueball masse from correlator

Confining theories

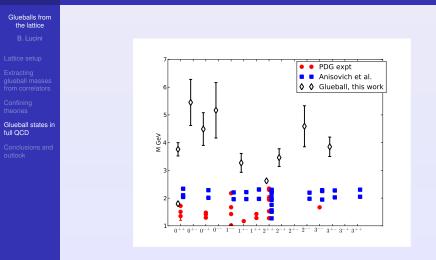
Glueball states in full QCD

Conclusions and outlook



Quenched results (blue points) from Y. Chen et al., Glueball spectrum and matrix elements on anisotropic lattices, Phys. Rev. D73 (2006) 014516, [hep-lat/0510074].

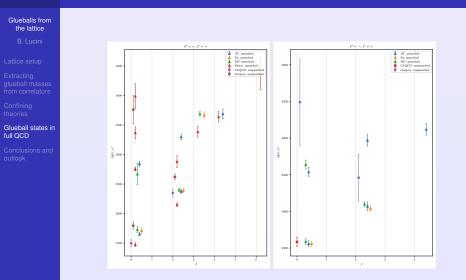
Glueball and lowest-lying hadrons



[Gregory et al., JHEP 1210 (2012) 170]

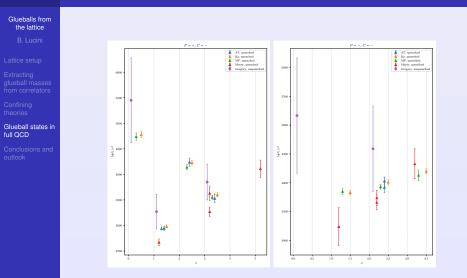
▲□ ▶ ▲□ ▶ ▲□ ▶ ▲□ ▶ ■ のので

Comparison of glueball calculations - C=+



◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Comparison of glueball calculations - C=-



▲□ > ▲圖 > ▲画 > ▲画 > ▲画 > ④ < @

Outline

Glueballs from the lattice

Conclusions and outlook

イロン 不得 とくほ とくほ とうほ

Conclusions and outlook

Conclusions and outlook

Glueballs from the lattice

B. Lucini

Lattice setup

Extracting glueball masses from correlators

Confining theories

Glueball states i full QCD

Conclusions and outlook

- Lattice calculations are an (increasingly more) useful tool to understand the fate of glueballs in QCD
- Valuable information can be provided by lattice calculations in the large *N* limit
- Results of various calculations in broad agreement
- No evidence for noticeable mass shifts between quenched and dynamical calculations
- Need to control better mixing with scattering and meson states

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Need to fully evaluate mixing with fermionic states