The Scalar Glueball in Lattice QCD

Mixing with Quarks and Mesons

Ruairí Brett (GWU) 2nd May 2021 Mini-workshop on glueball hunting Hadron Spectroscopy and Glueballs

HADRON SPECTROSCOPY

- many puzzles remain in hadron spectroscopy
 - e.g. tetra/pentaquarks, glueballs, hybrids, ...
- theoretical descriptions from QCD even more elusive
- glueballs on the lattice: early successes in pure Yang-Mills
 - next step to full QCD "challenging"
- can Lattice QCD complement experiment?
 - eg. $\pi\pi$ hard to (directly) probe experimentally

Historically: (QCD) stationary states in finite-volume

- stable hadron masses \rightarrow precision: isospin breaking relevant
- no decays \rightarrow no resonance information

Historically: (QCD) stationary states in finite-volume

Last 10 years/today: $2 \rightarrow 2$ scattering from finite-vol. energies

- meson-meson: $\pi\pi$, $K\pi$, $\pi\eta$, $D\pi$, . . .
- meson-baryon accessible: review: Bulava 1909.13097
- on the horizon: baryon-baryon at light m_π e.g. Green et. al. 2103.01054

Historically: (QCD) stationary states in finite-volume

Last 10 years/today: $2 \rightarrow 2$ scattering from finite-vol. energies

Today: $3 \rightarrow 3$ the frontier

- formalisms for 3-body scattering rapidly developing
- first applications so far to $3\pi^+$, $3K^-$ e.g. from GWU: Culver et. al. 1911.09047 Alexandru et. al. 2009.12358 RB et al. 2101.06144

Historically: (QCD) stationary states in finite-volume

Last 10 years/today: $2 \rightarrow 2$ scattering from finite-vol. energies

Today: $3 \rightarrow 3$ the frontier

Near future: what about scattering producing glueballs?

Extracting the finite-volume

spectrum

LATTICE QCD

- Euclidean space-time
- finite volume L
- lattice spacing a
- (often) unphysical light quark masses
- → amenable to numerical calculations:

$$\langle \pmb{A} \rangle = \frac{1}{Z} \int \mathcal{D}[U, \overline{\psi}, \psi] \, \pmb{A}[U, \overline{\psi}, \psi] \, e^{-\overline{\psi} M \psi - S_G[U]}$$
 - Monte Carlo for gluon integration
$$= \frac{1}{Z} \int \mathcal{D}[U] \, \pmb{A}[U, \pmb{M}^{-1}] \, \det M[U] \, e^{-S_G[U]} \quad \text{- Dirac inverse expensive:}$$

$$\dim M \sim 10^8 - 10^9$$

LATTICE QCD

- Euclidean space-time
- finite volume L
- lattice spacing a
- (often) unphysical light quark masses
- → correlation functions:

$$C_{ij}(t) = \langle \mathcal{O}_i(t)\bar{\mathcal{O}}_j(0)\rangle$$
$$= \sum_n \langle 0|\mathcal{O}_i|n\rangle\langle n|\bar{\mathcal{O}}_j|0\rangle e^{-E_n t}$$

- (n-)hadron interpolation operators
- discrete energies from2-pt. functions

EXTRACTING THE FINITE-VOL. SPECTRUM

- temporal correlation matrix:

$$C_{ij}(t) \equiv \langle 0|\mathcal{O}_i(t+t_0)\overline{\mathcal{O}}_j(t_0)|0\rangle$$
$$= \sum_n \langle 0|\mathcal{O}_i|n\rangle\langle n|\overline{\mathcal{O}}_j|0\rangle e^{-E_n t}$$

- solve generalized eigenvalue problem

$$C(\tau_0)^{-1/2} C(t) C(\tau_0)^{1/2} v_n(t, \tau_0)$$

= $\lambda_n(t, \tau_0) v_n(t, \tau_0)$

- eigenvalues tend to lowest N energies

$$\lim_{t \to \infty} \lambda_n(t) = b_n e^{-E_n t} [1 + \mathcal{O}(e^{\Delta_n t})]$$

$$\Rightarrow E_{\text{eff}}^{n}(t) = \frac{1}{\Delta t} \ln \left(\frac{\lambda_{n}(t)}{\lambda_{n}(t + \Delta t)} \right)$$

EXTRACTING THE FINITE-VOLUME SPECTRUM

- correlation matrix:

$$C_{ij}(t) = \sum_{n} \langle 0|\mathcal{O}_{i}|n\rangle\langle n|\overline{\mathcal{O}}_{j}|0\rangle e^{-E_{n}t}$$
$$= \sum_{n} Z_{i}^{(n)} Z_{j}^{(n)*} e^{-E_{n}t}$$

- level ID inferred from *Z* overlaps with *probe* operators:

$$|\Phi_j\rangle \equiv \mathcal{O}_j|0\rangle \quad \Rightarrow \quad Z_j^{(n)} = \langle \Phi_j|n\rangle$$

ightarrow overlaps give **qualitative** measure of mixing between states

EXTRACTING THE FINITE-VOLUME SPECTRUM

- correlation matrix:

$$C_{ij}(t) = \sum_{n} \langle 0|\mathcal{O}_{i}|n\rangle\langle n|\overline{\mathcal{O}}_{j}|0\rangle e^{-E_{n}t}$$
$$= \sum_{n} Z_{i}^{(n)} Z_{j}^{(n)*} e^{-E_{n}t}$$

 level ID inferred from Z overlaps with probe operators:

$$|\Phi_j\rangle \equiv \mathcal{O}_j|0\rangle \quad \Rightarrow \quad Z_j^{(n)} = \langle \Phi_j|n\rangle$$

- ightarrow overlaps give **qualitative** measure of mixing between states
- ightarrow large operator bases crucial for reliably probing the spectrum

From Pure Glue to QCD

THE SCALAR GLUEBALL

- Glueball: bound state of gluons
- experimental evidence elusive, light scalar candidates:
 - $f_0(1370)$, $f_0(1500)$, $f_0(1710)$
- lattice studies to date:
 - only glueball operators
 - light scalar $\approx 1.7~\text{GeV}$
 - most in pure $SU_c(3)$ /quenched QCD

THE SCALAR GLUEBALL

- Glueball: bound state of gluons
- experimental evidence elusive, light scalar candidates:
 - $f_0(1370)$, $f_0(1500)$, $f_0(1710)$
- lattice studies to date:
 - only glueball operators
 - light scalar $\approx 1.7~\text{GeV}$
 - most in pure $SU_c(3)$ /quenched QCD

here: low-lying A_{1q}^+ ($J^{PG}=0^{++}$) spectrum up to ~ 2 GeV

- **first study** including glueball, $\overline{q}q$, and two-hadron operators
- stepping stone to scattering studies

(MULTI) MESON OPERATORS

0

single-site

singly-displaced

doubly-displaced-L

triply-displaced-U

triply-displaced-O

q's = smeared, displaced quark fields

$$\overline{\Phi}^{AB}_{\alpha\beta;ij}(\boldsymbol{p},t) = \sum_{\boldsymbol{x}} e^{i\boldsymbol{p}\cdot(\boldsymbol{x}+\frac{1}{2}(d_{\alpha}+d_{\beta}))} \delta_{ab} \, \overline{q}^{B}_{b\beta j}(\boldsymbol{x},t) \, q^{A}_{a\alpha i}(\boldsymbol{x},t)$$

group-theoretic projections for definite "spin", parity, etc.

$$\overline{M}_{l}(\boldsymbol{p},t) = c_{\alpha\beta}^{(l)*} \overline{\Phi}_{\alpha\beta}^{AB}(\boldsymbol{p},t)$$

multi-hadron operators from single-hadron building blocks i.e.

$${\mathcal O}_{\pi(p_1)\pi(p_2)} \sim \sum_{i,j} c_{ij} \pi(p_i) \pi(p_j)$$

Morningstar et. al. 1303.6816

A DIFFERENT GLUEBALL OPERATOR

any gauge invariant, purely gluonic object with the correct transformation properties is valid as a glueball operator¹

scalar ${\rm Tr}\,{\rm LapH}$ operator:

$$G_\Delta=-\operatorname{Tr}[\Theta(\sigma_s^2+ ilde\Delta) ilde\Delta],$$
 $ilde\Delta\equiv$ covariant laplacian (function of gauge links/gluons)

Morningstar et. al. 1303.6816

A_{1g}^+ spectrum - $\overline{q}\,q$ only

 $N_f=2+1$ Wilson-clover, anisotropic lattice, $m_\pi pprox 390$ MeV, $m_K pprox 550$ MeV:

- first: $\overline{q}q$ operators only
- only 2 states below $\sim 2~\text{GeV}$
- σ and $f_0(980)$
- no sign of $\overline{q}q$ -dominated states $\sim 1.5-1.8~{\rm GeV^*}$

$$m_{\rm ref} = 1.82 m_K \approx 1 \text{ GeV}$$

A_{1g}^{+} SPECTRUM

 $N_f=2+1$ Wilson-clover, anisotropic lattice, $m_\pi pprox 390$ MeV, $m_K pprox 550$ MeV:

w/o glueball operator

Hatched boxes: significant overlap $(|\langle n|\overline{\mathcal{O}}_{\alpha}|0\rangle|^2)$ with multiple operators $m_{ref}=1.82m_K\approx 1~{\rm GeV}$

A_{1g}^+ SPECTRUM

 $N_f=2+1$ Wilson-clover, anisotropic lattice, $m_\pi\approx 390$ MeV, $m_K\approx 550$ MeV:

with glueball operator

Hatched boxes: significant overlap $(|\langle n|\overline{\mathcal{O}}_{\alpha}|0\rangle|^2)$ with multiple operators $m_{\rm ref} = 1.82 m_K \approx 1 \text{ GeV}$

$A_{1g}^{+}\; {\rm SPECTRUM}$

 $N_f=2+1$ Wilson-clover, anisotropic lattice, $m_\pi pprox 390$ MeV, $m_K pprox 550$ MeV:

with glueball operator

Hatched boxes: significant overlap $\left(|\langle n|\overline{\mathcal{O}}_{\alpha}|0\rangle|^2\right)$ with multiple operators $m_{\mathrm{ref}}=1.82m_K\approx 1~\mathrm{GeV}$

Looking Forward

INTERPRETING THESE RESULTS

we find only two " $\bar{q}q$ dominated", and no new "glueball dominated" states below 2 GeV

- does this tell us there isn't a "pure glueball" state below 2 GeV? (at $m_\pi \approx 390$ MeV, etc.)
- suggestion that the f_0 's below 2 GeV might not be $\bar{q}q$ either?
 - → molecular states?
- more importantly, "is it even in principle possible to know?"
- either way, getting a handle on the glueball-meson mixing will be crucial
- what matrix elements will be most insightful (and calculable)?
- 4π looms overhead, but experience with 3π makes it less intimidating

CONCLUSIONS

- first study in full QCD to include the mixing between glueball, $\bar{q}q$, and meson-meson operators
 - relative dearth of new lattice studies (compared to other hadron scattering) indicates large hurdles that glueballs present
- including/excluding a scalar glueball operator introduces no new states
 - $\,\,
 ightarrow\,$ but plenty of noise!
- conservatively: a precursor to full blown scattering studies
 - ightarrow not so far away
- more speculative: no scalar "pure glueball" state below 2 GeV when quark dynamics fully factored in

ANGULAR MOMENTUM ON THE LATTICE

- periodic B.C. in cubic box:
 - $\Rightarrow J$ no longer a good quantum number
- label states with irreps of cubic group ${\cal O}_{\hbar}^{D}$

- continuum spin ID:

J	A_1	A_2	E	T_1	T_2	J	G_1	G_2	Н
0	1	0	0	0	0	$\frac{1}{2}$	1	0	0
1	0	0	0	1	0	$\frac{3}{2}$	0	0	1
2	0	0	1	0	1	$\frac{5}{2}$	0	1	1
3	0	1	0	1	1	$\frac{7}{2}$	1	1	1
4	1	0	1	1	1	$\frac{9}{2}$	1	0	2

boosted frames introduce further mixing (but allow more sampling of scattering region)

FINITE VOLUME SPECTRA

 \rightarrow how to access $\infty\text{-vol.}$ physics?

TWO-BODY QUANTIZATION CONDITION

- quantisation condition (Lüscher formula):

$$\det[\widetilde{K}^{-1}(\underline{E}_{cm}) - B(E_{cm}, L)] = 0$$

TWO-BODY QUANTIZATION CONDITION

- quantisation condition (Lüscher formula):

$$\widetilde{K}_{\ell}^{-1} \sim \cot \delta_{l} \xrightarrow{\det \left[\widetilde{K}^{-1}(E_{\rm cm}) - B(E_{\rm cm}, L)\right] = 0} \uparrow$$
known, mixes partial waves

- determinant over decay channel, partial waves (truncation!)

implementation with group theory for cubic box (& boosted frames):
 github.com/cjmorningstar10/TwoHadronsInBox

Morningstar et. al. 1707.05817