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Gauge-gravity duality: strongly coupled dynamics from holography

Gauge-gravity duality:
Duality between certain QFTs and gravitational theories
Most explicit examples from string theory/supergravities
Can be used to obtain strong coupling results in QFT by
performing calculations at weak coupling in gravity
Holographic: QFT in d dimensions is dual to gravity in d + 1
dimensions (+ extra compact ones)



Gauge-gravity duality: strongly coupled dynamics from holography

Bottom-up models:
Phenomenologically motivated 5d models, where the action and
field content is chosen by hand to get the desired dynamics
Flexible for model building, qualitatively captures strongly
coupled dynamics
Given a gravitational model in 5d, there does not necessarily
exist a corresponding dual 4d field theory

Top-down models:
Gravity side of the duality is described by a higher-dimensional
theory: 10d type-IIA/IIB supergravity, 11d supergravity/M-theory
More precise: in many cases, the exact form of the field theory
dual is known

Applications include both holographic models of QCD, as well as
strongly coupled physics beyond the Standard Model (composite
Higgs models, walking technicolor)



Gauge-gravity duality: strongly coupled dynamics from holography

Canonical example:
Duality between N = 4 super Yang-Mills with gauge group
SU(Nc) and Type IIB String Theory on AdS5 × S5:
(Maldacena, 1997; Gubser, Klebanov, Polyakov, 1998; Witten, 1998)

Global symmetries match:
Isometry group of S5 ←→ SO(6)R symmetry,
Isometry group of AdS5 ←→ conformal group SO(2, 4)



Gauge-gravity duality: strongly coupled dynamics from holography

Two limits:
Large Nc corresponds to the classical limit on the string theory
side (λ/Nc = 4πgs)
Large ’t Hooft coupling λ corresponds to the low energy limit of
string theory (λ = R4/l4s )
Strongly coupled field theory can be described by classical
supergravity

What is the meaning of the holographic radial direction?
The radial coordinate r is related to energy scale in the field
theory, and thus the bulk is in a sense a geometrical
representation of the RG flow of the dual theory
Example: AdS geometry with metric ds2 = dr2 + e2rdx2

1,3 is
invariant under scale transformations xµ → λxµ, r → r − logλ



Gauge-gravity duality: strongly coupled dynamics from holography

Many of the dynamics we know from strongly coupled field theories
can be captured using gauge-gravity duality:

N = 4 super Yang-Mills (CFT)
Witten model, Maldacena-Nunez, Klebanov-Strassler
(confinement)
Sakai-Sugimoto model (chiral symmetry breaking)
Baryonic branch of Klebanov-Strassler (moduli space)

Limitations:
Only specific QFTs are known to have dual gravity descriptions
Difficult to obtain results at finite number of colours Nc and/or
finite ’t Hooft coupling λ



Gauge-gravity duality: strongly coupled dynamics from holography

What is the dual description of confinement?
The geometry pinches off at some finite value of the radial
direction r = ro

ro

This leads to a dynamically generated IR scale ΛIR (like ΛQCD)
and linear confinement (quark-antiquark potential Vqq̄ ∼ L for
large separation L)
Advantage of top-down models (requires a cycle in the internal
part of the geometry to shrink)



Gauge-gravity duality: correlation functions and a toy example

Correlation functions:
There is a dictionary for translating between field theory and bulk
quantities. Fields in the bulk map to composite operators in the
field theory: φ←→ Tr(FµνFµν), gMN ←→ Tµν , AM ←→ Jµ, . . .
Correlators of an operator O dual to a bulk field σ can be
computed by using

〈e
∫

d4xσ0(xµ)O(xµ)〉QFT = Zbulk[σ(xµ, r)|r=∞ = σ0(xµ)]

WQFT[σ0] = S(bulk)
on−shell[σ0] (Nc � 1)

differentiating with respect to the boundary value of the bulk field
Mass spectra of composite states (glueballs, mesons, etc), can
be extracted from the poles of two-point functions



Gauge-gravity duality: correlation functions and a toy example

Toy example: scalar field in a fixed AdS background geometry:
Action for the scalar σ:

S =

∫ rUV

rIR

dr
∫

d4x
√−g

(
−1

2
gMN∂Mσ∂Nσ −

m2

2
σ2
)

Metric for AdS given by ds2 = dr2 + e2rdx2
1,3

Hard-wall in the IR: cut off the geometry at finite rIR = 0
(crude model of confinement, leads to a mass gap)
The scaling dimension of the operator O dual to σ is given by
[O] = 2 +

√
4 + m2

Equation of motion for the scalar σ(q, r):

∂2
r σ + 4∂rσ − m2σ − q2e−2rσ = 0

Impose IR boundary condition: σ(q, rIR) = 0



Gauge-gravity duality: correlation functions and a toy example

In order to compute the two-point function 〈O(q)O(−q)〉, we need the
on-shell action:

Son−shell =
1
2

∫
d4x
√
−g̃σ∂rσ

∣∣∣∣
rIR︸ ︷︷ ︸

=0 (IR boundary condition)

− 1
2

∫
dr
∫

d4x
√−g (e.o.m.)σ︸ ︷︷ ︸

=0 (equation of motion)

− 1
2

∫
d4x
√
−g̃σ∂rσ

∣∣∣∣
rUV

=− 1
2

∫
d4q
√
−g̃σ(−q, r)

(
∂rσ(q, r)

σ(q, r)

)
︸ ︷︷ ︸
∼〈O(q)O(−q)〉

σ(q, r)

∣∣∣∣
rUV

The poles can be extracted by imposing the UV BC: σ(q, rUV) = 0
Spectrum is obtained after removing the UV regulator: rUV →∞

(Caveat: the full calculation using holographic renormalization requires introducing counter-terms to

cancel divergences. This does not affect the position of the poles.)



Gauge-gravity duality: correlation functions and a toy example

Summary of toy model:
1. Solve the equation of motion for the bulk scalar field σ,
2. Impose the appropriate boundary conditions on σ at rIR and rUV,
3. Find the four-momenta qµ for which solutions exist
4. The mass spectrum is given by M2 = −q2 in the limit rUV →∞

Spectrum and wavefunctions for the case [O] = 3:
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Gauge-gravity duality: gauge-invariant formalism for calculating spectra

In general, there is operator mixing:
There may be many scalars Φa ←→ Oa (a = 1, · · · , n)
Mixing between Oa and the stress-energy tensor Tµν

=⇒ bulk scalars Φa couple to gravity gMN

Coupled system:
Background geometry is determined by the backreaction of the
scalars on the metric
Scalar and metric fluctuations around a given background mix
with each other
Treating bulk fields as perturbations on top of a frozen
background can only be justified in certain situations
(e.g. mesons when Nf � Nc, quenched approximation)



Gauge-gravity duality: gauge-invariant formalism for calculating spectra

Gauge-invariant formalism for the spin-0 and spin-2 sectors:

Often, there exists a consistent truncation from 10d/11d to a
sigma-model consisting of a number of scalars Φa coupled to gravity
in 5d:

S =

∫
d4xdr

√−g
[

R
4
− 1

2
Gab(Φc)∂MΦa∂MΦb − V(Φa)

]

In top-down models, the scalar potential V and the sigma-model
metric Gab are determined by the particular higher-dimensional
system under study
The formalism we will describe also works for bottom-up models
when V and Gab are chosen by hand



Gauge-gravity duality: gauge-invariant formalism for calculating spectra

Background solutions:
4d Poincaré invariance implies ds2 = dr2 + e2A(r)dx2

1,3 with
warp factor A(r)

Solve coupled equations of motion for Φa(r) and A(r)

Algorithm for computing spectra:
Study fluctuations of the metric and scalar fields around the
background solutions
For two-point functions, it is sufficient to consider the action to
quadratic order in the fluctuations =⇒ linearized equations of
motion for the fluctuations
Impose appropriate BCs on fluctuations in the IR and UV
The values of four-momenta q2 = −M2 for which solutions exist
give us the spectrum



Gauge-gravity duality: gauge-invariant formalism for calculating spectra

Fluctuating around a background solution:
ADM-formalism: write the metric as (lapse function n and shift
vector nµ)

ds2 = (nµnµ + n2)dr2 + 2nµdxµdr + gµνdxµdxν

Expand to linear order in fluctuations {ϕa, ν, νµ, hTTµ
ν , h,H, ε

µ}
around the background:

Φa = Φ̄a + ϕa,

n = 1 + ν,

nµ = νµ,

gµν = e2A(ηµν + hµν),

with

hµν = hTTµ
ν + ∂µεν + ∂νε

µ +
∂µ∂ν
�

H +
1
3
δµνh



Gauge-gravity duality: gauge-invariant formalism for calculating spectra

In order to decouple the equations, we form the gauge invariant
variables (invariant under diffeomorphisms):
(Berg, Haack, Mück, 2005)

aa = ϕa − Φ̄′ a

6A′
h,

b = ν − ∂r(h/A′)
6

,

c = e−2A∂µν
µ − e−2A�h

6A′
− 1

2
∂rH,

dµ = e−2AΠµ
νν
ν − ∂rε

µ,

eµν = hTTµ
ν



Gauge-gravity duality: gauge-invariant formalism for calculating spectra

Linearized equations of motion (spin-0 sector):

from the equations of motion for the scalars:[
D2

r + 4A′Dr + e−2A�
]
aa − (Va

|c −Ra
bcdΦ̄′bΦ̄′d)ac−

Φ̄′a(c + ∂rb)− 2Vab =0

(Drϕ
a ≡ ∂r + Ga

bcΦ̄
′bϕc, Va ≡ ∂V

∂Φa , Va
|b ≡ ∂bVa + Ga

bcVc)

from Einstein’s equations:

6A′c + 4Φ̄′a(Dra
a)− 4Vaa

a − 8Vb = 0,

−1
2
�dµ + 3A′∂µb− 2Φ̄′a∂µa

a = 0

We can solve algebraically for b and c in terms of aa = ϕa − Φ̄′ a

6A′ h



Gauge-gravity duality: gauge-invariant formalism for calculating spectra

Plugging back into the linearized equations of motion for the
scalars leads to:[

D2
r + 4A′Dr + e−2AM2

]
aa−[

Va
|c −Ra

bcdΦ̄′bΦ̄′d +
4(Φ̄′aVc + VaΦ̄′c)

3A′
+

16VΦ̄′aΦ̄′c
9A′2

]
ac = 0

Computing the mass spectrum is hence reduced to the problem
of finding solutions to a second order linear differential equation
for n scalar fluctuations aa, for different values of M2, while
imposing correct boundary conditions in the IR and UV



Gauge-gravity duality: gauge-invariant formalism for calculating spectra

What boundary conditions should we impose?
We put ϕa = 0 in the IR and UV, which corresponds to

2Φ′aΦ′b
3A′

Dra
b
∣∣∣
rIR,UV

=

[
e−2AM2 − A′

2
∂r

(
A′′

A′2

)]
aa
∣∣∣
rIR,UV

This automatically picks the regular modes in the IR and
normalizable modes in the UV (usual prescription)

The spin-2 sector is simpler:[
∂2

r + 4A′∂r + e−2AM2
]
eµν = 0 , ∂re

µ
ν |rIR,UV = 0

In more general models, spectra for pseudo-scalar and vector states
can be obtained along similar lines
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Applications: confining theories dual to Romans supergravity

Romans supergravity in 6d can be truncated to a single scalar field φ
coupled to gravity with action:

S6 =

∫
d6x
√−g

(
R
4
− (∂Mφ)2 − V6(φ)

)
V6(φ) =

1
9
(
e−6φ − 9e2φ − 12e−2φ)
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-3.0
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Applications: confining theories dual to Romans supergravity

Compactify on a circle:

S5 =

∫
d5x
√−g

(
R
4
− (∂Mφ)

2 − 3(∂Mχ)
2 − 1

16
e8χ(FMN)

2 − e−2χV6(φ)

)
Scalar χ parametrizes the size of the circle, FMN is the field
strength for the gravi-photon VM

Solutions exist for which the circle shrinks to zero size smoothly
in the IR =⇒ dual to 4d confining field theories
One-parameter family of such confining solutions, corresponding
to the size of a relevant deformation (dim-2 operator O dual to φ)



Applications: confining theories dual to Romans supergravity

Spin-0 (blue/orange), spin-1 (green), and spin-2 (red) glueball spectra
as a function of the size of the relevant deformation corresponding to
O:
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Tachyonic instability, hidden away by a first-order phase transition
Universality for some of the towers of states in the physical region



Applications: confining theories dual to Romans supergravity

Comparison of universal results to lattice simulations:
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Shaded gray rectangles:
B. Lucini, A. Rago and E. Rinaldi, “Glueball masses in the large N limit,” JHEP 1008, 119 (2010)

Black dots:
E. Bennett, D. K. Hong, J. W. Lee, C.-J. D. Lin, B. Lucini, M. Piai and D. Vadacchino, “Sp(4) gauge
theory on the lattice: towards SU(4)/Sp(4) composite Higgs (and beyond),” JHEP 1803, 185 (2018)



Applications: confining theories dual to Romans supergravity

Free energy as a function of the size of the relevant deformation
shows a first order phase transition:
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Stable, metastable, and unstable phases. Confining solutions in black
and orange (tachyonic), while green indicates another branch of
(singular) solutions



Applications: confining theories dual to Romans supergravity

Spectrum of spin-0 glueballs (blue/orange dots), compared to results
in the probe approximation (black/orange triangles):
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Probe approximation neglects mixing with gravity, and hence misses
states that overlap significantly with the dilatation operator (related to
the trace of the bulk metric)
=⇒ light scalar is an approximate dilaton (Goldstone boson of
spontaneously broken scale invariance, relevant for BSM physics)



Applications: baryonic branch of Klebanov-Strassler and a light dilaton

Klebanov-Strassler field theory:
(Klebanov, Strassler, 2000)

4d theory with SU(N + M)× SU(N) gauge group, N = 1 SUSY,
bifundamental matter Ai and Bi (i = 1, 2) in representations
(N + M,N) and (N + M,N), superpotential W ∼ Tr(AiBjAkBl)ε

ikεjl

Gravity dual is known
Rich dynamics:

UV duality cascade (of Seiberg dualities):
SU(N + M)× SU(N)→ SU(N)× SU(N −M)→ · · ·
The theory is confining
Non-trivial moduli space – there is a baryonic branch
parametrized by the VEV of a dim-2 operator
For large dim-2 VEV, the theory effectively becomes
six-dimensional over a range of energies (deconstruction)



Applications: baryonic branch of Klebanov-Strassler and a light dilaton

To compute the spectrum, we use the 5d sigma model defined by
(Φa = {g̃, p, x, φ, a, b, h1, h2}):

Gab∂MΦ
a
∂NΦ

b
=

1
2
∂M g̃∂N g̃ + ∂Mx∂N x + 6∂Mp∂N p

+
1
4
∂Mφ∂Nφ+

1
2

e−2̃g
∂Ma∂N a +

1
2

N2eφ−2x
∂Mb∂N b

+
e−φ−2x

e2̃g + 2a2 + e−2̃g(1− a2)2

[
1
2

(e2̃g
+ 2a2

+ e−2̃g
(1 + a2

)
2
)∂Mh2∂N h2

+(1 + 2e−2̃ga2
)∂Mh1∂N h1 + 2a(e−2̃g

(a2
+ 1) + 1)∂Mh1∂N h2

]
,

V(Φ
a
) = − 1

2
e2p−2x

(eg̃
+ (1 + a2

)e−g
) +

1
8

e−4p−4x
(e2̃g

+ (a2 − 1)
2e−2̃g

+ 2a2
)

+
1
4

a2e−2̃g+8p
+

1
8

N2eφ−2x+8p
[

e2̃g
+ e−2̃g

(a2 − 2ab + 1)
2

+ 2(a− b)
2
]

+
1
4

e−φ−2x+8ph2
2 +

1
8

e8p−4x
(M + 2N(h1 + bh2))

2

(Caveat: a rigorous treatment needs to consider a more general truncation that includes also

vectors (Cassani, Faedo, 2010) – this is important at the level of the fluctuations. We expect the

physics to be qualitatively the same.)



Applications: baryonic branch of Klebanov-Strassler and a light dilaton

Spectrum of spin-0 glueballs on the
baryonic branch of Klebanov-Strassler
(Elander, Piai, 2017)

Far from the origin of the moduli space,
there is a light dilaton

Scale invariance is broken:
spontaneous breaking� explicit breaking

Densely packed states approaching
continua (evidence of deconstruction)
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Summary

Summary:
Gauge-gravity duality offers an approach to strongly coupled
theories that complements others such as lattice gauge theory
Applications include holographic models of QCD and strongly
coupled physics beyond the Standard Model
There exists a powerful and general formalism for the
computation of glueball spectra
We provided two illustrations of this formalism:
1. Romans supergravity dual to confining 4d field theories
2. Baryonic branch of Klebanov-Strassler dual to confining 4d
theories with a moduli space
In both examples, we found evidence of a light (approximate)
dilaton in regions of the parameter space, related to either an
instability in the theory or the presence of a moduli space


