Exclusive Vub determination from QCD - solution to Vub puzzle?

Theoretical Physics Division Theoretical

Rudjer Boskovic Institute, Zagreb

The B to π form factors from QCD and their impact on Vub D.Leljak, BM (RBI, Zagreb), D. van Dyk (TUM), JHEP 07 (2021) 036, arXiv 2102.07233

Alexander von Humboldt

Stiftung/Foundation

Portorož 2021: Physics of the Flavourful Universe, Portorož 21-24.9.2021

V_{ub} STATUS

inclusive:

$$10^{3} \times |V_{ub}|_{\text{BLNP}} = 4.44 \,{}^{+0.13}_{-0.14}|_{\text{exp. }-0.22}|_{\text{theory}} \simeq 4.44 \,{}^{+0.25}_{-0.26},$$

$$10^{3} \times |V_{ub}|_{\text{GGOU}} = 4.32 \pm 0.12|_{\text{exp. }-0.13}|_{\text{theory}} \simeq 4.32 \,{}^{+0.17}_{-0.18}$$

Bosch,Lange,Neubert,Paz, arXiv [ph]: 0504071 Gambino,Giordano,Ossola,Uratsev, arXiv [ph]: 0707.2493

exclusive:

$$10^3 \times |V_{ub}|_{\text{LQCD+LCSR}}^{\bar{B} \to \pi} = 3.67 \pm 0.09|_{\text{exp.}} \pm 0.12|_{\text{theory}} \simeq 3.67 \pm 0.15$$

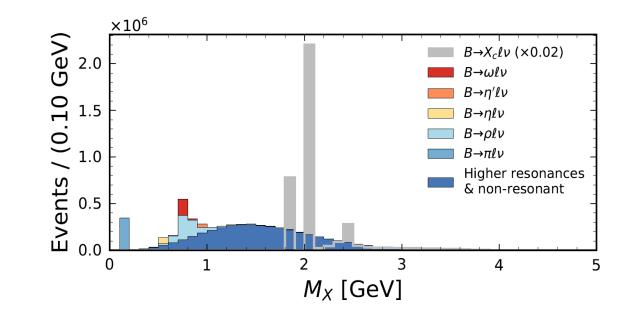
HFLAV, arXiv:1909.12524

exclusive vs inclusive Vub $\,pprox\,2.7\sigma$

! new inclusive Vub measurement:

 $10^3 \times |V_{ub}| = 4.10 \pm 0.09 \pm 0.22 \pm 0.15 = 4.10 \pm 0.28$

Belle , arXiv:2102.00020


IMPORTANT REMARKS ON VUB **EXTRACTION:**

INCLUSIVE MEASURMENTS include

- theoretical prediction for non-perturbative shape functions in $B \rightarrow X_u \ell^+ \nu_\ell$
- in the low invariant mass region sum of the exclusive decays (B ➤ π,η,η',ω,ρ) modeled by using LQCD and LCSR form factors
- huge background from $B \to X_c \,\ell^+ \,\nu_\ell$ if meaurement is extended to the B to Xc dominated phase space (like Belle2021)

$$|V_{ub}| = \sqrt{\frac{\Delta \mathcal{B}^{\exp}(B \to X_u \ell^+ \nu_l)}{\tau_B \, \Delta \Gamma^{\text{th}}(B \to X_u \ell^+ \nu_l)}}$$
 average of 4 different theoretical predictions

B	Value B^+	Value B^0
$B \to X_u \ell^+ \nu_\ell$		
$\left(B \to \pi \ell^+ \nu_\ell \right)$	$(7.8 \pm 0.3) \times 10^{-5}$	$(1.5 \pm 0.06) \times 10^{-4}$
$B o \eta \ell^+ u_\ell$	$(3.9 \pm 0.5) \times 10^{-5}$	-
$B o \eta' \ell^+ u_\ell$	$(2.3 \pm 0.8) \times 10^{-5}$	-
$B \to \omega \ell^+ \nu_\ell$	$(1.2 \pm 0.1) \times 10^{-4}$	-
$B o ho \ell^+ u_\ell$	$(1.6 \pm 0.1) \times 10^{-4}$	$(2.9 \pm 0.2) \times 10^{-4}$
$B \to X_u \ell^+ \nu_\ell$	$(2.2 \pm 0.3) \times 10^{-3}$	$(2.0 \pm 0.3) \times 10^{-3}$

EXCLUSIVE MEASUREMENTS include

- $|V_{ub}|^2 |f_+(q^2)|^2$
- theoretical predictions of B to π from factors modeled by using LQCD and LCSR
- correlations among form factors
- complementary theoretical input: Lattice QCD \Rightarrow FFs in the high q² region, LCSR \Rightarrow FFs in the low q² regions

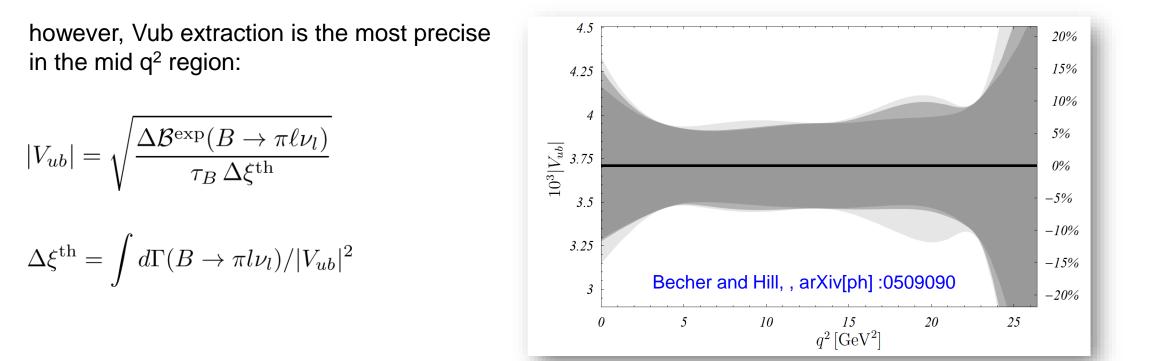
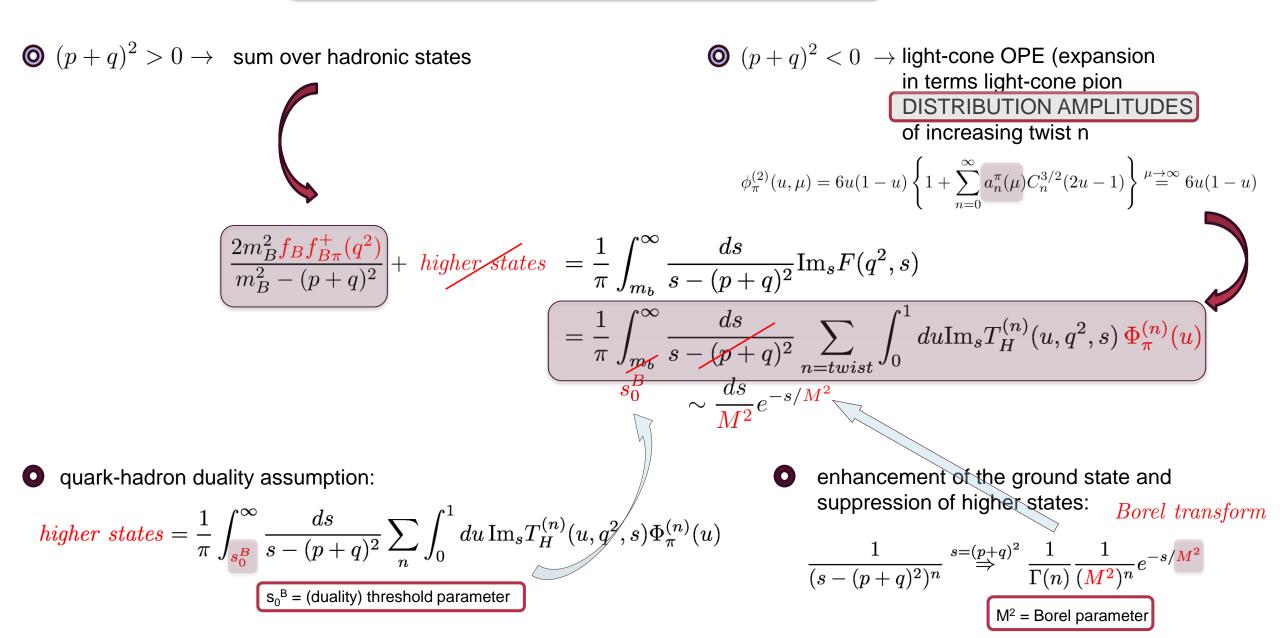


Figure 3: $\Delta \chi^2 = 1$ region for $|V_{ub}|$ for an infinitely precise form factor determination at a single q^2 -value. The plot assumes that the form factor yields the central value $|V_{ub}| = 3.7 \times 10^{-3}$.

To significantly reduce error of Vub one would need to reduce FF errors at $q^2 = 0$ to be less than 10%, while reduction if the error ar q^2_{max} has almost no impact \Rightarrow **IMPORTANCE OF THE LCSR CALCULATIONS !**


FORM FACTORS FROM LIGHT-CONE SUM RULES (LCSR)

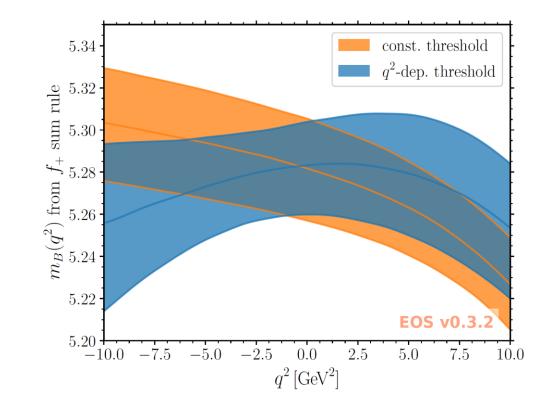
$$\frac{\mathrm{d}\Gamma}{\mathrm{d}q^2} \left(\bar{B} \to \pi \ell^- \bar{\nu}_\ell \right) = \frac{G_F^2 |V_{ub}|^2}{24\pi^3 m_B^2 q^4} \left(q^2 - m_\ell^2 \right)^2 |\vec{p}_\pi| \times \left[\left(1 + \frac{m_\ell^2}{2q^2} \right) m_B^2 |\vec{p}_\pi|^2 \left[f_+(q^2) \right]^2 + \frac{3m_\ell^2}{8q^2} \left(m_B^2 - m_\pi^2 \right)^2 \left[f_0(q^2) \right]^2 \right]$$

$$\langle \pi(p_{\pi}) | \bar{u} \gamma^{\mu} b | B(p_B) \rangle = f_{+}(q^{2}) \left[(p_{B} + p_{\pi})^{\mu} - \frac{m_{B}^{2} - m_{\pi}^{2}}{q^{2}} q^{\mu} \right] + f_{0}(q^{2}) \frac{m_{B}^{2} - m_{\pi}^{2}}{q^{2}} q^{\mu} ,$$

$$\langle \pi(p_{\pi}) | \bar{u} \sigma_{\mu\nu} q^{\nu} b | B(p_{B}) \rangle = \frac{i f_{T}(q^{2})}{m_{B} + m_{\pi}} \left[q^{2} (p_{B} + p_{\pi})_{\mu} - \left(m_{B}^{2} - m_{\pi}^{2} \right) q_{\mu} \right]$$

 $F_{\mu} = i \int d^4x e^{iqx} \langle \pi(p) | T\{\overline{u}\gamma_{\mu}b(x), m_b\overline{b}i\gamma_5d(0)\} | \mathbf{0} \rangle$

Important LCSR parameters:


$$[m_B^2(q^2;F)]_{\text{LCSR}} = \frac{\int_0^{s_0} ds \, s \, \text{Im} T_H^F(s,q^2) \, e^{-s/M^2}}{\int_0^{s_0} ds \, \text{Im} T_H^F(s,q^2) \, e^{-s/M^2}}$$

$$s_0^F \quad s_0^F(q^2) \equiv s_0^F + q^2 \, s_0'^F$$

continuum threshold for each FF !

Borel parameter dependence is weak:

 $12\,\mathrm{GeV}^2 \le M^2 \le 20\,\mathrm{GeV}^2$

PION DISTRIBUTION AMPLITUDE:		$a_{2\pi}(1 { m GeV}) = 0.157 \pm 0.027$ lattice - RQCD, arXiv: 1903.08038				
RESULTS:	q^2	$-10\mathrm{GeV}^2$	$-5\mathrm{GeV}^2$	$0{ m GeV}^2$	$+5\mathrm{GeV}^2$	$+10\mathrm{GeV}^2$
	$f_{+}(q^{2})$	0.170 ± 0.022	0.224 ± 0.022	0.297 ± 0.030	0.404 ± 0.044	0.574 ± 0.062
$f_0(0) = f_+(0)$	$f_0(q^2)$	0.211 ± 0.029	0.251 ± 0.024		0.356 ± 0.040	0.441 ± 0.052
	$f_T(q^2)$	0.170 ± 0.021	0.222 ± 0.020	0.293 ± 0.028	0.396 ± 0.039	0.560 ± 0.053

EXTRAPOLATION TO HIGH Q²

validity of LCSR $q^2 < m_b^2 - 2m_b\bar{\Lambda} \sim 15\,{\rm GeV}^2$

BCL PARAMETRIZATION – SL phase space $0 \le q^2 \le t_- \equiv (m_B - m_\pi)^2$ is mapped onto the real z-axes:

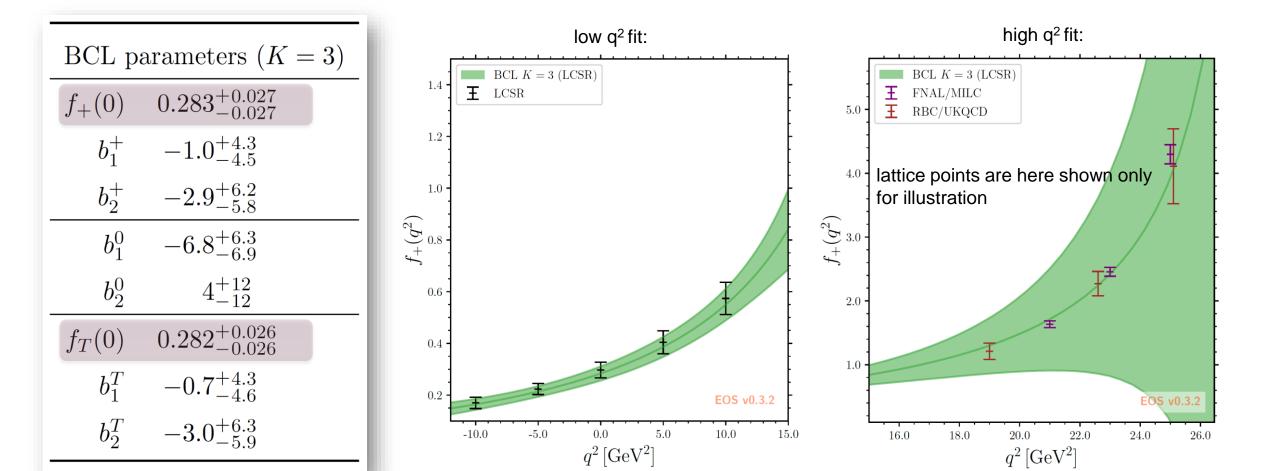
$$z(q^2; t_+, t_0) = \frac{\sqrt{t_+ - q^2} - \sqrt{t_+ - t_0}}{\sqrt{t_+ - q^2} + \sqrt{t_+ - t_0}}$$

$$t_{+} \equiv (m_{B} + m_{\pi})^{2}$$
$$t_{0} = t_{0,\text{opt}} = (m_{B} + m_{\pi})(\sqrt{m_{B}} - \sqrt{m_{\pi}})^{2}$$

Bourrely, Caprini, Lellouch, arXiv:0807.2722

 $\bar{z}_n \equiv z^n - z_0^n, \ z_0 = z(0; t_+, t_0)$

$$f_{+}(q^{2}) = \frac{f_{+}(q^{2}=0)}{1-q^{2}/m_{B^{*}}^{2}} \left[1 + \sum_{n=1}^{K-1} b_{n}^{+} \left(\bar{z}_{n} - (-1)^{n-K} \frac{n}{K} \bar{z}_{K} \right) \right],$$


$$f_{0}(q^{2}) = f_{+}(q^{2}=0) \left[1 + \sum_{n=1}^{K-1} b_{n}^{0} \bar{z}_{n} \right],$$

$$f_{T}(q^{2}) = \frac{f_{T}(q^{2}=0)}{1-q^{2}/m_{B^{*}}^{2}} \left[1 + \sum_{n=1}^{K-1} b_{n}^{T} \left(\bar{z}_{n} - (-1)^{n-K} \frac{n}{K} \bar{z}_{K} \right) \right],$$

subthreshold pole

LCSR FIT AND RESULTS

$$\chi^{2}_{\text{LCSR}} = \sum_{a,b=\{+,0,T\},i,j} \delta f_{a}^{\text{LCSR}}(q_{i}^{2},\vec{b}_{a}) \left(C^{\text{LCSR}}\right)_{abij}^{-1} \delta f_{b}^{\text{LCSR}}(q_{j}^{2},\vec{b}_{b}) \overset{\text{a}}{\mathsf{W}} \delta f_{a}^{\text{LCSR}}(q_{i}^{2},\vec{b}_{a}) = f_{a}^{\text{LCSR}}(q_{i}^{2}) - f_{a}(q_{i}^{2},\vec{b}_{a})$$

all form factors are fitted simultanously, with correlations among them included !

INTERPOLATION BETWEEN LCSR AND LATTICE QCD RESULTS

LCSR:
$$q^2 < m_b^2 - 2m_b\bar{\Lambda} \sim 15 \,{\rm GeV}^2$$

LATTICE QCD: $19 \,\mathrm{GeV}^2 \lesssim q^2 \lesssim 25 \,\mathrm{GeV}^2$

FNAL/MILC coll: Nf = 2 + 1 gauge ensambles and staggered-quark action (staggering gets rid of some of degenerate fermions (doublers) in the fermion action by redistributing the fermionic degrees of freedom across different lattice sites) **RBC/UKQCD coll**: Nf = 2 + 1 gauge ensambles and domain-wall fermions (by introducing an extra dimension the chirality of quarks is separted and controlle)

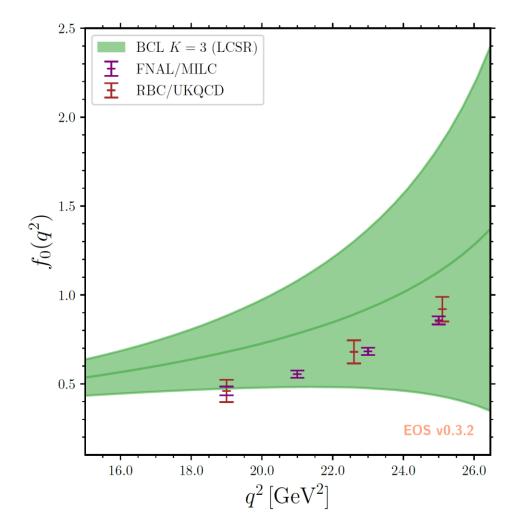
HPQCD – not considered (share the same ensambles with FNAL/MILC; no correlations between form factors)

$$\chi^2_{\rm theory} = \chi^2_{\rm LCSR} + \chi^2_{\rm LQCD}$$

$$\chi_{\rm LX}^2 = \sum_{a,b=\{+,0,T\},i,j} \delta f_a^{\rm LX}(q_i^2,\vec{b}_a) \begin{pmatrix} C^{\rm LX} \end{pmatrix}_{abij}^{-1} \delta f_b^{\rm LX}(q_j^2,\vec{b}_b)$$

$$covariance matrix accounts for correlations between different FFs and different q^2 points$$

$$\delta f_a^{\rm LX}(q_i^2,\vec{b}_a) = f_a^{\rm LX}(q_i^2) - f_a(q_i^2,\vec{b}_a)$$


Problems with $f_0(q^2)$ at high q^2 – incompatibility with the lattice – very bad fit:

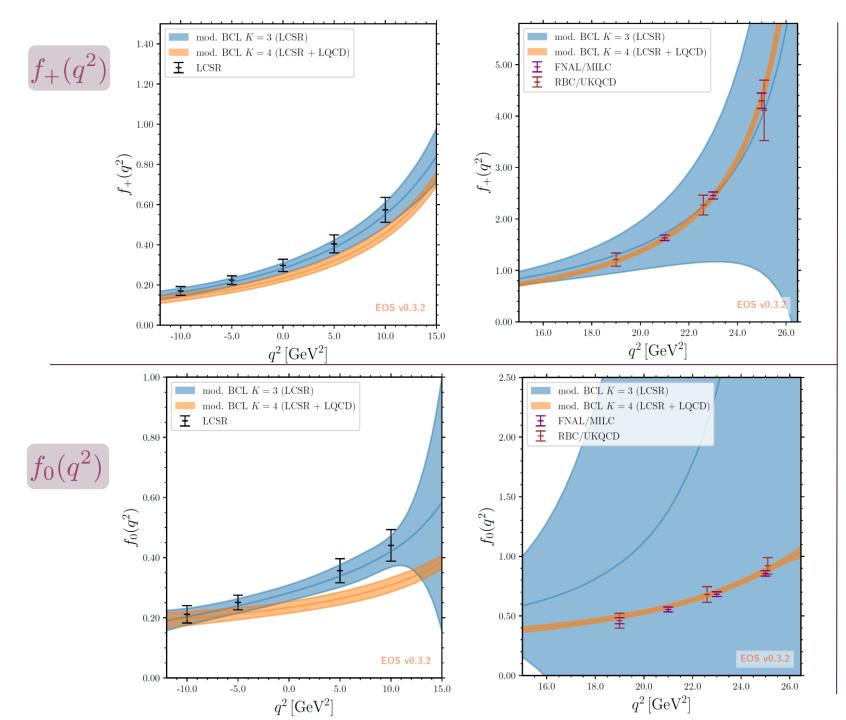
modification of the BCL parametrization

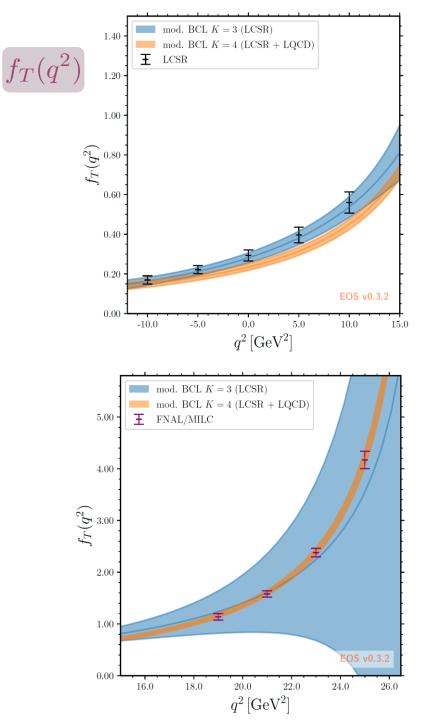
– introduction of the scalar pole above $B\pi$ production threshold

$$f_0(q^2) = \frac{f_+(z_0)}{1 - q(z)^2 / m_{B_0}^2} \left[1 + \sum_{n=1}^K b_n^0 \bar{z}_n \right]$$

models: $m_{B_0} \in [5.526, 5.756] \, \text{GeV}$

scalar pole - modifies the shape parameters and allows for more flexibility of the fit:

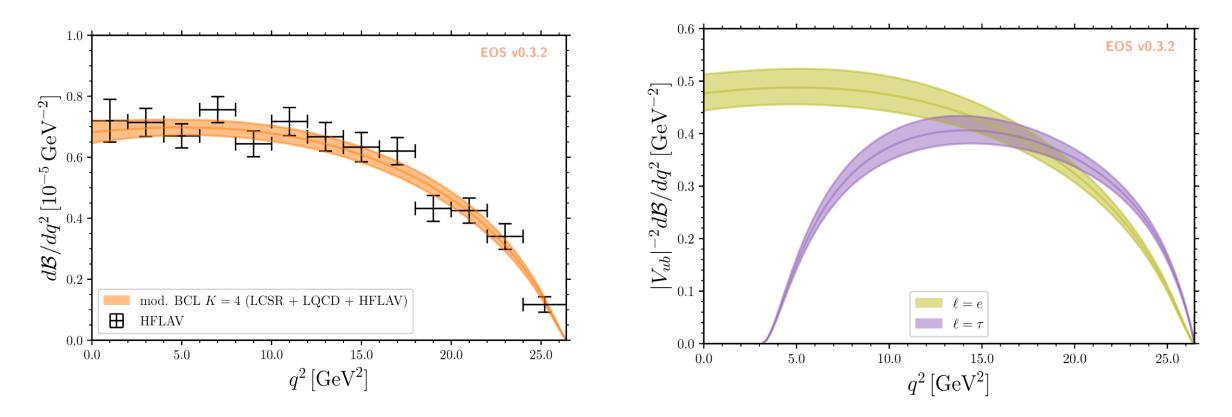

$$\frac{1}{1 - q(z)^2 / m_{B_0}^2} \approx \frac{1}{1 - \frac{t_0}{m_{B_0}^2}} + 4 \frac{m_{B_0}^2 (t_0 - t_+)}{(m_{B_0}^2 - t_0)^2} z + \mathcal{O}\left(z^2\right)$$


input

RESULTS

scenario	LCSR-	LCSR	
param.	K = 3	K = 4	K = 3
$f_{+}(0)$	$0.237\substack{+0.017\\-0.017}$	$0.235\substack{+0.019\\-0.019}$	$0.283^{+0.027}_{-0.027}$
b_1^+	$-2.38^{+0.33}_{-0.38}$	$-2.45_{-0.54}^{+0.49}$	$-1.0^{+3.5}_{-3.6}$
b_2^+	$-0.82\substack{+0.76\\-0.81}$	$-0.2^{+1.1}_{-1.2}$	$-2.8^{+4.9}_{-4.7}$
b_3^+		$-0.9^{+4.2}_{-4.0}$	_
b_1^0	$0.48^{+0.07}_{-0.07}$	$0.40^{+0.18}_{-0.20}$	-5^{+52}_{-51}
b_2^0	$0.14\substack{+0.39\\-0.44}$	$0.1^{+1.1}_{-1.2}$	22^{+200}_{-200}
b_3^0	$2.79_{-0.77}^{+0.71}$	$3.7^{+1.6}_{-1.6}$	-32^{+240}_{-240}
b_4^0		1^{+14}_{-13}	_
$f_T(0)$	$0.240\substack{+0.016\\-0.016}$	$0.235\substack{+0.017\\-0.017}$	$0.281\substack{+0.025\\-0.025}$
b_1^T	$-2.05\substack{+0.32\\-0.36}$	$-2.45^{+0.45}_{-0.50}$	$-0.6^{+4.2}_{-4.4}$
b_2^T	$-1.45_{-0.66}^{+0.63}$	$-1.08^{+0.68}_{-0.71}$	$-3.2^{+5.9}_{-5.8}$
b_3^T		$2.6^{+2.1}_{-2.0}$	—
p value	$\sim 52\%$	$\sim 54\%$	$\sim 100\%$
$\chi^2/d.o.f$	$\sim 21.01/22$	$\sim 17.75/19$	$\sim 0.0278/5$

form factor	# of points	q^2 values (in GeV^2)	type	source	
	5	-10.0, -5.0, 0.0, 5.0, 10.0	LCSR	this work	
f_+	3	21.0, 23.0, 25.0	LQCD	FNAL/MILC $[33]$	
	3	19.0, 22.6, 25.1	LQCD	RBC/UKQCD [35]	
	4	-10.0, -5.0, 5.0, 10.0	LCSR	this work	
f_0	4	19.0, 21.0, 23.0, 25.0	LQCD	FNAL/MILC $[33]$	
	3	19.0, 22.6, 25.1	LQCD	RBC/UKQCD [35]	
	5	-10.0, -5.0, 0.0, 5.0, 10.0	LCSR	this work	
f_T	4	19.0,21.0,23.0,25.0	LQCD	FNAL/MILC $[34]$	



LCSR + LQCD FORM FACTORS RESULTS vs OTHERS

Source	$f_+(0) = f_0(0)$	$f_T(0)$		
Latti	ce QCD			
Fermilab/MILC [33, 34]	0.2 ± 0.2	0.2 ± 0.2		
RBC/UKQCD [35]	0.24 ± 0.08	_		
combination w/ Pade approx. $[51]$	$0.265 \pm 0.010 \pm 0.002$			
Light-cone sum rules				
Duplancic et al. [16]	$0.26\substack{+0.04\\-0.03}$	0.255 ± 0.035		
Imsong et al. [21]	0.31 ± 0.02			
Bharucha [17]	$0.261\substack{+0.020\\-0.023}$			
Khodjamirian/Rusov $[30]$	0.301 ± 0.023	0.273 ± 0.021		
Gubernari et al. (B LCDA) [22]	0.21 ± 0.07	0.19 ± 0.06		
this work	0.283 ± 0.027	0.282 ± 0.026		
Light-cone sum rules + Lattice QCD combination				
this work	0.235 ± 0.019	0.235 ± 0.017		

BRANCHING RATIOS

Our predictions:

$$\mathcal{B}(\bar{B} \to \pi \mu^- \bar{\nu}_{\mu}) = (9.6^{+1.0}_{-1.0}) \times |V_{ub}|^2$$
$$\mathcal{B}(\bar{B} \to \pi \tau^- \bar{\nu}_{\tau}) = (6.7^{+0.6}_{-0.5}) \times |V_{ub}|^2$$

PRECISE PREDICTIONS FOR THE SM OBSERVABLES:

LEPTON-FLAVOUR UNIVERSALITY

$$R_{\pi} = \frac{\Gamma(\bar{B} \to \pi\tau^- \bar{\nu}_{\tau})}{\Gamma(\bar{B} \to \pi\ell^- \bar{\nu}_{\ell})} = \frac{\int_{m_{\pi^+}^2}^{q_{\max}^2} d\Gamma(\bar{B} \to \pi\tau^- \bar{\nu}_{\tau})/dq^2}{\int_{m_{\ell}^2}^{q_{\max}^2} d\Gamma(\bar{B} \to \pi\ell^- \bar{\nu}_{\ell})/dq^2}, \qquad (\ell = e, \mu).$$

$$R_{\pi}|_{\text{LCSR+LQCD}} = 0.699^{+0.022}_{-0.020} \qquad R_{\pi}|_{\text{Belle}} = 1.05 \pm 0.51|_{\text{upper limit}}$$

$$\text{Belle, arXiv:1509.06521}$$

$$R_{\pi}(f_{+})|_{\text{LCSR+LQCD}} = 0.476^{+0.014}_{-0.013} \qquad R_{\pi}(f_{0})|_{\text{LCSR+LQCD}} = 0.224^{+0.014}_{-0.013}$$

$$Th \cdot \text{Exp prefers somewhat}$$

$$\frac{\text{Th. only}}{\text{Int. + Exp.}} | \begin{array}{c} \text{source} & \text{RBC/UKQCD(2015)} & \text{Bečirević et al.(2020)} \\ R_{\pi} & 0.69\pm 0.19 \\ R_{\pi} & 0.69\pm 0.19 \\ R_{\pi} & 0.66\pm 0.02 \\ \end{array}$$

$$\frac{\text{Th. + Exp.}}{\text{Int. + Exp.}} | \begin{array}{c} \text{source} & \text{Bernlochner (2015)} & \text{Bečirević et al.(2020)} \\ R_{\pi} & 0.68\pm 0.014 \\ \end{array}$$

FORWARD-BACKWARD ASYMMETRY

$$A_{\rm FB}^{\ell} = \frac{1}{\Gamma(\bar{B} \to \pi \ell^- \bar{\nu}_{\ell})} \int_{m_{\ell}^2}^{q_{\rm max}^2} dq^2 \left[\int_{-1}^0 - \int_0^{-1} \right] d\cos\theta_{\ell} \frac{d\Gamma^2(\bar{B} \to \pi \ell^- \bar{\nu}_{\ell})}{dq^2 d\cos\theta_{\ell}}$$
$$A_{\rm FB}^{\mu} = -0.0048 \pm 0.0003$$
$$A_{\rm FB}^{\tau} = -0.259 \pm 0.004$$

FLAT TERM

$$F_{H}^{\ell} = 1 + \frac{2}{3} \frac{1}{\Gamma(\bar{B} \to \pi \ell^- \bar{\nu}_{\ell})} \frac{d^2}{d(\cos \theta)^2} \left[\frac{d\Gamma(\bar{B} \to \pi \ell^- \bar{\nu}_{\ell})}{d\cos \theta} \right] = 1 + \frac{2}{3} C_{F}^{\ell}$$
$$F_{H}^{\mu} = 0.0024 \pm 0.0001; \qquad F_{H}^{\tau} = 0.134 \pm 0.003$$

TAU POLARIZATION

$$P^{\tau} = \frac{\Gamma(\bar{B} \to \pi \tau_{\uparrow}^{-} \bar{\nu}_{\tau}) - \Gamma(\bar{B} \to \pi \tau_{\downarrow}^{-} \bar{\nu}_{\tau})}{\Gamma(\bar{B} \to \pi \tau^{-} \bar{\nu}_{\tau})}$$

$$P^{\tau} = -0.21 \pm 0.02$$

V_{ub} DETERMINATION FROM EXTRACTED FORM FACTORS

$$\chi^2 = \chi^2_{\bar{B} \to \pi \ell^- \bar{\nu}_\ell} + \chi^2_{\text{LCSR}} + \chi^2_{\text{LQCD}}$$
$$\chi^2_{\bar{B} \to \pi \ell^- \bar{\nu}_\ell} = \sum_{i,j} \delta \mathcal{B}_i (C^{\text{EXP}})^{-1}_{ij} \delta \mathcal{B}_j \qquad \delta \mathcal{B}_i = \mathcal{B}_i^{\text{exp}} - \frac{\tau_B}{C_v} \int_{\Delta q_i^2} \frac{G_F^2}{24\pi^3} |V_{ub}|^2$$

$$\mathcal{B}_{i} = \mathcal{B}_{i}^{\exp} - \frac{\tau_{B}}{C_{v}} \int_{\Delta q_{i}^{2}} \frac{G_{F}^{2}}{24\pi^{3}} |V_{ub}|^{2} \left| f_{+}(q^{2}, \vec{b}) \right|^{2} |\vec{p}_{\pi}|^{3} \mathrm{d}q^{2}$$

param. method	LCSR+ $K = 3$	-LQCD $K = 4$	$\begin{array}{c} \text{LCSR only} \\ K = 3 \end{array}$
$10^{-3} \times V_{ub} $	$3.80^{+0.14}_{-0.14}$	$3.77^{+0.15}_{-0.15}$	$3.28^{+0.33}_{-0.28}$
$f_{+}(0)$	$0.248^{+0.009}_{-0.009}$	$0.246^{+0.009}_{-0.009}$	$0.284_{-0.025}^{+0.025}$
b_1^+	$-2.13^{+0.19}_{-0.19}$	$-2.10^{+0.22}_{-0.21}$	$-1.91\substack{+0.31\\-0.30}$
b_2^+	$-0.82\substack{+0.54\\-0.55}$	$0.23\substack{+0.87 \\ -0.87}$	$-1.42^{+0.85}_{-0.89}$
b_{3}^{+}		$-3.0^{+2.8}_{-2.8}$	
$\chi^2/{ m d.o.f}$	$\sim 32.33/34$	$\sim 29.30/31$	$\sim 10.72/17$
p value	$\sim 55\%$	$\sim 55\%$	$\sim 87\%$

$$|V_{ub}|_{\rm LCSR+LQCD}^{\bar{B}\to\pi} = (3.77\pm0.15)\cdot10^{-3}$$

V_{ub} EXTRACTED FROM LCSR + LQCD FORM FACTORS AND HFLAV DATA

Source	$10^{-3} \times V_{ub} $ EXCLU	JSIVE
LQCD		
Fermilab/MILC [33, 34]	3.72 ± 0.16	
RBC/UKQCD [35]	3.61 ± 0.32	
combination w/ Pade approx. $[51]$	$3.53\pm0.08_{\rm stat}\pm0.06_{\rm syst}$	
HFLAV [8]	$3.70\pm0.10_{\rm stat}\pm0.12_{\rm syst}$	
LCSR		
Duplancic et al. $[16]$	$3.5 \pm 0.4 \pm 0.2 \pm 0.1$	
Imsong et al. $[21]$	$3.32\substack{+0.26\\-0.22}$	
this work	$3.28\substack{+0.33 \\ -0.28}$	
LCSR + LQC	CD	
HFLAV [8]	$3.67 \pm 0.09_{\rm stat} \pm 0.12_{\rm syst}$	
this work	3.77 ± 0.15	

CONCLUSIONS

- □ we revisit LCSR prediction for the full set of $B \rightarrow \pi$ form factors by simultaneously fitting them, including correlations and focus on systematic uncertainties by using Bayesian fit and extrapolation in the full q² region
- □ we carry out combined fit with precise QCD lattice results and provide the most up-to-date theoretical (LCSR + LQCD) form factors in B → π decays
- □ using HFLAV average of experimental $B \rightarrow \pi$ measurements with correlations we perform the fit and extract IVubI_{excl}
- □ with obtained result we probe lepton-flavour universality, forward-backward asymmetry, flat parameter and polarization of the tau lepton in the SM

the extracted exclusive |Vub|

$$|V_{ub}|_{\rm LCSR+LQCD}^{\bar{B}\to\pi} = (3.77\pm0.15)\cdot10^{-3}$$

differs from the most recent Belle result on inclusive |Vub| determination

$$|V_{ub}|_{\text{Belle2021}}^{B \to X_u} = (4.10 \pm 0.28) \cdot 10^{-3}$$

by just lσ!

