Phase transitions with ultra-relativistc bubbles.

Aleksandr Azatov

SISSA and INFN Trieste

22/09/2021 Portoroz workshop

with M.Vanvlasselaer and W. Yin 2010.02590, 2101.05721, 2106.14913

Introduction

- False and true vacua are separated by the potential barrier
- Transition occurs by bubble nucleation (Coleman 77)

$$\Gamma(T) \sim \max\left[T^4 \left(\frac{S_3}{2\pi T}\right)^{3/2} e^{-S_3/T}, R_0^{-4} \left(\frac{S_4}{2\pi}\right)^2 e^{-S_4}\right]$$

Bubbles of true vacua are formed, which later expand

Relativistic bubbles

Forces acting on the bubble

- Driving force $\sim V_{true} V_{false}$ due to the energy difference between true and false vacuum
- Friction forces due the bubble wall collision with plasma particles. These forces must vanish in the limit of zero temperature $T \rightarrow 0$
- ► If $T \ll \Delta V^{1/4}$ the friction forces cannot prevent bubbles from reaching relativistic velocities
- \blacktriangleright in the regime of supercooling i.e. ${\cal T} \ll \Delta V^{1/4}$ bubble must be relativistic

Pressure on the wall

► We will assume that mean-free-path of the particles is much larger than the width of the wall ⇒ we can consider individual particle collisions with the wall

Pressure = Flux× (Probability of transition)×(Loss of momenta)

$$\mathcal{P}_{A\to X} = \int \frac{p_z d^3 p}{p_0 (2\pi)^3} f_A(p) \times \sum_X \int dP_{A\to X} (p_A^Z - \sum_X p_X^Z)$$

1
ightarrow 1 transition Bodeker-Moore 0903.4099(see also hep-ph/9203203)

Particle hits the wall and in the broken phase becomes massive

$$i\bar{\chi}\partial\chi + y\bar{\chi}\chi\phi + V(\phi)$$

Once the energy is sufficient to pass through the wall the probability of transition is = 1, then the pressure for the relativistic particles is equal to:

$$\mathcal{P}_{1
ightarrow 1} = \int rac{d^3p}{(2\pi)^3} f_{
ho}(p_s^z-p_h^z) \simeq \int rac{d^3p}{(2\pi)^3} f_{
ho} imes rac{\Delta m^2}{2
ho_0} heta(p_0-m_{
m broken})$$

$$\mathcal{P}_{1\to 1} \sim m^2 T^2 \exp[-m/(2\gamma T)]$$

pressure is independent of $\gamma \Rightarrow$ permanently accelerating bubbles are possible if $P_{1\to 1} < \Delta V$

Bubble motion @ NLO

LO pressure is independent of γ and the bubbles can reach arbitrarily high velocities. What can stop such a permanent acceleration?

Pressure effects at NLO in the presence of vector fields obtaining their mass during the phase transition leads to qualitatively different behaviour

(Bodeker-Moore , 1703.08215) $P_{NLO} \propto \gamma T^3 m$

Effect is dominated by soft vector emission, since in this case the momentum transfer is most efficient

$$\mathcal{P}_{1 \to 2}^{eq.\gamma} = \int \frac{d^3 \rho}{(2\pi)^3} f_p \int_{m_V/p}^{1} dx f_{\gamma}(x) \times \frac{m_V^2}{2px}$$

incident fermions

momentum transfer

$$= \int \frac{d^3\rho}{(2\pi)^3} f_p \times \left[\frac{e^2}{8\pi^2} m_V\right] \log \frac{m_V^2}{e^2 T^2} \propto \gamma T^3 m_V$$

EPA approximation (Fermi 24, Weizsacker 34, Williams 34, Landau Lifshitz 34)

there are claims $P_{NLO} \propto \gamma^2 T^4$ 2007.10343, ongoing discussion.

Ultrarelativistic bubbles: terminal velocity vs acceleration

Bubbles can reach relativistic velocities $v \rightarrow 1$, why it is important to differentiate between permanent acceleration or terminal velocity? **Phenomenological consequences**?

If the bubbles are accelerating at the instance of collision, significant part of the energy is stored in the bubble shell

$$E_{shell} \sim 4\pi\sigma R^2, \ \sigma \propto \gamma \propto rac{R}{R_0}, E_{shell} \propto R^3 \Rightarrow rac{E_{shell}}{E_{total}} = \mathcal{O}(1)$$

► If the steady velocity is reached most of the energy is in the plasma

motion/sound waves
$$\gamma = const \Rightarrow E_{shell} \propto R^2 \Rightarrow rac{E_{shell}}{E_{total}} o 0$$

different predictions for the stochastic gravitational wave background

Ultrarelativistic bubbles : terminal velocity vs acceleration

Figure: solid- runaway, dashed fixed velocity

Bubble wall can reach ultra-relativistic velocities

Collision energy between the bubble wall and the plasma particle can be much larger than the transition scale

$$E \sim \sqrt{\gamma T v} \gg v$$
 if $\gamma \gg 1$

- Is it consistent to ignore all other degrees of freedom which are decoupled at the phase transition?
- What effect these heavy fields can have?

$1 \rightarrow 1$ transition, with mixing $_{\it 2010.02590}$

Consider the following lagrangian,

$$\mathcal{L}_{\text{fermion}} = i \bar{\chi} \partial \chi + i \bar{N} \partial N + M \bar{N} N + Y_{\text{mixing}} \phi \bar{\chi} N \\ M \gg \langle \phi \rangle$$

N-field is decoupled at PT and its density is suppressed by exp(-M/T)

$1 \rightarrow 1$ transition, with mixing $_{\it 2010.02590}$

Consider the following lagrangian,

$$\begin{aligned} \mathcal{L}_{\text{fermion}} &= i \bar{\chi} \partial \chi + i \bar{N} \partial N + M \bar{N} N + Y_{\text{mixing}} \phi \bar{\chi} N \\ M \gg \langle \phi \rangle \end{aligned}$$

N-field is decoupled at PT and its density is suppressed by $\exp(-M/T)$

Will N field during χ - wall scattering?

$$\begin{split} n_N &\sim \underbrace{\int \frac{d^3 p}{(2\pi)^3} f_p}_{\text{Incident } \psi \text{ density}} \underbrace{P(\chi \to N)}_{\text{Probability of transition}} \sim T^3 P(\chi \to N) \\ P(\psi \to N) \sim (\text{mixing angle})^2 \sim \frac{Y_{\text{mixing}}^2 \langle \phi \rangle^2}{M^2} \end{split}$$

$$T^{3} \frac{Y^{2}_{\text{mixing}} \langle \phi \rangle^{2}}{M^{2}} \gg (MT)^{3/2} e^{-M/T}$$
 This extra density will be much larger than the equilibrium value.

$1 \rightarrow 1$ transition, with mixing

Wall width is finite, $L \neq 0!$

momentum transfers with $\Delta p_z L \gg 1$ must be suppressed, since L^{-1} is a typical energy scale of the interaction with the wall.

Situation is similar to the neutrino oscillations in matter. If the $\Delta p_z L \gg 1$ is satisfied the evolution is "adiabatic", so the state remains in the lightest flavour:

$$\chi \to \chi_{\langle \phi \rangle \neq 0}$$

 $\psi_{\langle \phi \rangle \neq 0}$ is the lightest eigenstate in the broken phase (inside the bubble)

We need to be in the "anti-adiabatic" regime

$$\Delta p_z L \lesssim 1
ightarrow rac{M^2}{E} \lesssim L^{-1}$$

B-M transitions always satisfy $\Delta p \sim \frac{\Delta m^2}{E} \ll L^{-1}$ since $L \sim m^{-1}$, but for the transitions with light \rightarrow heavy this constraint is very important.

Finite wall with effects: brute force calculation

$$\mathcal{L}_{\text{fermion}} = i\bar{\chi}\partial\!\!\!/ \chi + i\bar{N}\partial\!\!\!/ N + M\bar{N}N + Y_{\text{mixing}}\phi\bar{\chi}N$$

- ▶ We need to calculate the probability of $\psi \rightarrow N$ transition in the presence of the wall
- ► Focus on the energies of the incident particles much larger than $E \gg \langle \phi \rangle$, use $\frac{\langle \phi \rangle}{E}$ as expansion parameter

$$egin{aligned} &\langle 0 | T\{ar{\chi}(x_1) \mathcal{N}(x_2)\} | 0
angle &= \int d^4 x Y \langle \phi(x)
angle S_\psi(x_1 - x) S_\mathcal{N}(x - x_2) + \mathcal{O}\left(rac{Y\langle \phi
angle}{M}
ight) \ & \downarrow \ & P_{\psi o \mathcal{N}} \simeq rac{Y^2 \langle \phi
angle^2}{M^2} \Theta(k_0 - M^2 L_w), \end{aligned}$$

Exact function, suppressing the transitions for momentum transfers larger than $\Delta p \sim \frac{M^2}{k_0} \gg L$ depends on the wall shape.

Heavy particle production, modification of the bubble expansion dynamics?

Production of these heavy particles will induce additional pressure on the wall

$$\left[\mathcal{P}_{ ext{mixing}} \sim rac{T^2}{48} Y_{ ext{mixing}}^2 \langle \phi
angle^2 \Theta(\gamma T - M^2 L)
ight]$$

which is not suppressed by the mass of the heavy fields and can potentially modify the motion of the bubbles

If we are in the regime

$$\mathcal{P}_{\rm No\ mixing} + \mathcal{P}_{\rm mixing} > \Delta V > \mathcal{P}_{\rm No\ mixing}$$

These new contribution to the friction can prevent accelerated motion of the bubbles \Rightarrow modifies stochastic GW signal .

Maximal mass which can be produced?

$$M_{\rm max} = \sqrt{\gamma_{\rm max} \frac{T_{\rm nuc}}{L}} \sim \sqrt{\gamma_{\rm max} T_{\rm nuc} \langle \phi \rangle}$$

▶ If there are no gauge fields, Lorentz expansion factor for runaway bubbles can reach $\gamma_{\max} \sim \frac{R_*}{R_0}$

$$R_0 \sim rac{1}{{\mathcal{T}_{
m nuc}}}, \ \ R_* \sim H^{-1} \sim rac{M_{
m pl}}{{
m scale}^2},$$

The maximal mass which can be probed is :

$$\left(M^{MAX} \sim \mathsf{Min}\left[rac{4\pi}{g_{gauge}^{3/2}}rac{\langle \phi
angle^2}{\mathcal{T}_{\mathrm{nuc}}}, rac{M_{
ho}^{1/2}\mathcal{T}_{\mathrm{nuc}}}{\langle \phi
angle^{1/2}}
ight]
ight)$$

Heavy scalar production

Similar effect happens also with bosons even without mixing

 $\lambda \phi^2 \Phi_{\rm heavy}^2 + M_{\rm heavy}^2 \Phi_{\rm heavy}^2$

there will be $\phi \rightarrow \Phi_{\rm heavy} \Phi_{\rm heavy}$ production during the transition through the wall. Since the trilinear vertex $\phi \Phi \Phi$ is position dependent and momentum is not conserved. Apart from some numerical pre-factor difference effect is very similar to the heavy fermion production.

Phenomenological relevance of heavy states production

- At FOPT states with the masses much larger than the typical scale can be produced with denisties much larger than the equilibrium ones. Can this be important?
- New mechanism for DM non-thermal production, very different different parameter dependence compared to the usual freeze-out scenarios 2101.05721
- Baryon asymmetry generation, the process of heavy particle production is out-of equilibrium so if accompanied with CP violation and baryon number violating interactions can lead to BAU 2106.14913

Baryon asymmetry generation 2106.14913

asymmetry generation by passage through the wall

- The process of the heavy N production is out of equilibrium
- ► In the presence of the CP violation $\Gamma(\chi \to N) \neq \Gamma(\chi^c \to N^c)$ asymmetry between N, N^c and χ, χ^c will be generated.

If we add some baryon number violating process all three Sakharov's conditions will be satisfied

see also 2106.15602 for similar ideas

Example model : Phase-transition induced leptogenesis

$$\underbrace{\sum_{I} \left(Y_{I}(\phi^{\dagger}\bar{\chi}) P_{L}N_{I} + Y_{I}^{*}\bar{N}_{I}P_{R}(\phi\chi) \right) - V(\phi) + \frac{1}{2}\lambda_{\chi}\phi\bar{\chi}^{c}\chi + \sum_{I}M_{I}\bar{N}_{I}N_{I}}_{\text{Toy model of Dark Sector}} + \underbrace{\sum_{\alpha I} y_{\alpha I}(h\bar{I}_{\alpha,SM})P_{R}N_{I} + h.c.,}_{\text{Connection to SM}}$$

 ϕ some field experiencing the phase transition, we will be agnostic about the origin and shape of the potential

Sakharov's conditions

- CP &C violation from complex couplings Y_I, y_{α_I}
- Lepton number is broken by the λ_χφχ^cχ interaction. Later lepton number asymmetry is converted to baryon number asymmetry at EW phase transition.
- $\chi \to N$ transition is out of equilibrium.

Transferring asymmetry to SM

- ► χ has Majorana mass inside bubble $\lambda_{\chi}\phi\bar{\chi}^{c}\chi$ ⇒ any asymmetry in χ disappears. Total lepton number is generated.
- ▶ *N* decays to *N* → *hI* and *N* → $\chi\phi$, part of the asymmetry is transferred to SM

Decay rates $\Gamma(N \rightarrow hl) \neq \Gamma(N^c \rightarrow h^c l^c) \Rightarrow$ additional source of CP violation.

The mechanism at work

Baryon asymmetry

$$\begin{split} \frac{\Delta n_B}{s} &\equiv \frac{n_B - n_{\bar{B}}}{s} \simeq \qquad -\frac{28}{79} \times \frac{135\zeta(3)g_{\chi}}{8\pi^4 g_*} \times \sum_l \theta_l^2 \sum_{\alpha,J} \operatorname{Im}(Y_l Y_J^* y_{\alpha J} y_{\alpha l}^*) \operatorname{Im} f_{lJ}^{(hl)} \\ &\times \left(\frac{2}{|Y_l|^2} - \frac{1}{\sum_{\alpha} |y_{\alpha l}|^2}\right) \left(\frac{T_{nuc}}{T_{reh}}\right)^3 \frac{\sum_{\alpha} |y_{\alpha l}|^2}{\sum_{\alpha} |y_{\alpha l}|^2 + |Y_l|^2} \end{split}$$

- ► $\frac{2}{|Y_l|^2}$ from CP violation in production and $\frac{1}{\sum_{\alpha} |y_{\alpha l}|^2}$ CP violation in decay.

$${
m Max}[heta^2y^2]igg(rac{T_{\it nuc}}{T_{\it reh}}igg)^3\sim 10^{-6}$$

Upper bound on the scale

The model leads to the generation of the neutrino masses

$$\sum_{I,\alpha,\beta} \theta_I^2 \frac{y_{\alpha I} y_{\beta I}^* (\bar{l}_{\alpha}^c h) (l_{\beta} h)}{m_{\chi}}$$

which induces a mass for the active neutrinos (for the heaviest light neutrino)

$$\mathsf{Max}[m_
u] \sim \mathsf{Max}igg[\sum_I |y_{lpha I}|^2 heta_I^2igg] rac{v_{EW}^2}{m_\chi}$$

BAU requires ${\sf Max}[heta_I^2]\gtrsim 10^{-5}, y\sim {\cal O}(1)$ combining with neutrino masses leads to

$$m_\chi \gtrsim 5 imes 10^9 {
m GeV} \qquad \Rightarrow \qquad \langle \phi
angle \gtrsim 10^9 {
m GeV}$$

Avoiding wash out

We need to make sure that the processes washing out asymmetry are slow

• Weinberg's operator $\left| \frac{(\bar{l}^c h)(lh)}{\Lambda} \right|$

$$T_{reh} < 10^{12} \,\, {
m GeV}$$

• *Ih*
$$\rightarrow \chi$$
 will be suppressed if $rac{m_{\chi}}{T_{reh}}\gtrsim 15$

need mild hierarchy between m_{χ} and $\mathcal{T}_{\textit{reh}}$

Summary

- First order phase transitions with ultra relativistic bubbles in the early universe lead to very interesting scenarios.
- Particles seemingly decoupled are playing an important role and can be produced abundantly. Important phenomenological consequences.
 - Modification of the bubble expansion velocity.
 - DM production
 - Models of baryogenesis
- all of these must be accompanied with strong stochastic GW signal observable at current/future experiments.

CP violation in passage through the wall

- ▶ We need to calculate at least one loop corrections to $\langle 0|\bar{\chi}N|0\rangle$ in the presence of the wall
- ▶ If the energy of the incident particle is much larger than the $\langle \phi \rangle$ we can expand in $\frac{\langle \phi \rangle}{E}$, even at one loop.
- The only diagram contributing will be

$$\begin{array}{c} h \\ N_{1} \\ I_{\alpha} \\ I_{$$

$$\epsilon_{I} = \frac{2\sum_{\alpha,J,i} \operatorname{Im}(Y_{iJ}Y_{iJ}^{*}y_{\alpha J}y_{\alpha I}^{*}) \operatorname{Im} f_{IJ}^{(hI)}}{\sum_{i} |Y_{ii}|^{2}}, \ \operatorname{Im}[f_{IJ}^{(hI)}(x)] = \frac{1}{16\pi} \frac{\sqrt{x}}{1-x}, \ x = \frac{M_{J}^{2}}{M_{I}^{2}}$$

Can such a scenario be realized during the EW phase transition?

We need to have strong first order EW phase transition with relativistic bubbles.

Prototype model

$$\mathcal{L} = \mathcal{L}_{SM} + m_{\eta}^{2} |\eta|^{2} + \sum_{I=1,2} M_{I} \bar{B}_{I} B_{I}$$

$$+ \left(\sum_{I=1,2} Y_{I}(\bar{B}_{I}H) P_{L}Q + y_{I} \eta^{*} \bar{B}_{I} P_{R} \chi + \kappa \eta^{c} du + \frac{1}{2} m_{\chi} \bar{\chi}^{c} \chi + h.c. \right)$$

We will not specify the origin of Higgs potential, need some additional sources which can lead to FOPT.

Prototype model

$$\mathcal{L} = \mathcal{L}_{SM} + m_{\eta}^{2} |\eta|^{2} + \sum_{I=1,2} M_{I} \bar{B}_{I} B_{I}$$

$$+ \left(\sum_{I=1,2} Y_{I}(\bar{B}_{I}H) P_{L}Q + y_{I} \eta^{*} \bar{B}_{I} P_{R} \chi + \kappa \eta^{c} du + \frac{1}{2} m_{\chi} \bar{\chi^{c}} \chi + h.c. \right)$$

• η scalar with $Q(\eta) = 1/3$, χ - Majorana fermion

•
$$B(\eta) = 2/3, \quad B(\chi) = 1$$

- Baryon number violation is coming from χ mass and it
- **b** Baryon number violated by 2, proton will be stable, but $n \bar{n}$ oscillations will be present.

Model at work

• $B_I \rightarrow \chi d^c u^c \rightarrow (bdud^c u^c)$ conserves B number

• $B_I \rightarrow \chi^c d^c u^c \rightarrow (b^c d^c u^c d^c u^c)$ violates by factor of 2

Baryon asymmetry

$$\begin{aligned} \frac{\Delta n_{Baryon}}{s} &\approx \qquad \frac{135\zeta(3)}{8\pi^4} \sum_{I,J} \theta_I^2 \frac{|y_I|^2}{|y_I|^2 + |Y_I|^2} \times \frac{g_b}{g_\star} \left(\frac{T_{\rm nuc}}{T_{reh}}\right)^3 \\ &\times \mathrm{Im}(Y_I Y_J^* y_I^* y_J) \left(-\frac{2\mathrm{Im}[f_B^{IJ}]}{|Y_I|^2} + \frac{4\mathrm{Im}[f_B^{IJ}]|_{m_{\chi,\eta} \to 0}}{|y_I|^2}\right). \end{aligned}$$

assuming order phases and requiring $\frac{\Delta \textit{n}_{\textit{Baryon}}}{s} \sim 8.8 \times 10^{-11}$

$$\theta_I^2 \left(\frac{T_{\rm nuc}}{T_{reh}}\right)^3 \sim 10^{-(6-7)}$$

 $\theta_{\rm I} \sim \frac{Y\nu}{M}$ cannot be too small, need new physics in the 1-100 TeV range

Constraints/signatures

avoiding wash out: need to suppress <u>baryon number</u> violating

interactions after the phase transition

$$\frac{M_{B,T,\chi}}{T_{reh}}\gtrsim 30$$

neutron EDM: the operator will be

$$\frac{(\sum \kappa \theta_I y_I)^2}{M_\eta^4 m_\chi} \overline{u^c d^c d^c} u dd$$

generated, for $\theta \sim 10^{-(1-2)}$ we will get $M_{\eta,m_{\chi}} \gtrsim 10^5$ GeV. If new physics couples only to the third generation the bound relaxes.

flavour violation: diaquark η leads to the flavour violation, but these can be suppressed if new physics couples only to the third generation.