Flavor anomalies confront asymptotic safety

Kamila Kowalska

National Centre for Nuclear Research (NCBJ) Warsaw, Poland

in collaboration with Enrico Maria Sessolo and Yasuhiro Yamamoto

based on Eur. Phys. J. C 81 (2021) 4, 272 (arXiv: 2007.03567) Phys. Rev. D 103, 115032 (2021) (arXiv: 2012.15200)

Portorož 2021: Physics of the flavourful Universe

National Science Centre Poland 21.09.2021

Anomalies in b to s transitions

Kamila Kowalska

New Physics explanations

W.Altmannshofer, P.Stangl, arXiv: 2103.13370 ~140 observables with experimental + theoretical correlations GLOBAL FIT **EFT approach:** $\gamma^{\nu} \mathcal{O}^{\mu}_{10} \gamma_{\nu}$ $\sum_{\mu'} \sum_{\mu'} \longrightarrow C_9^{\mu}, C_{10}^{\mu'}$ \mathcal{O}_9^μ $\frac{\pi dash}{10} = 0.5$ SM 0.0pull of the best-fit point: **5.9** σ -0.5-2.0-1.5-1.0-0.50.0 0.5 New Physics in the muon sector? Cosu $C_9^{\mu} = -C_{10}^{\mu} \in (-0.6, -0.3)$ **NP models:** $C_9^{\mu} = -C_{10}^{\mu} = \frac{\pi v_h^2}{V_{33} V_{22}^* \alpha_{\ell}}$ $b_L Y_{32}$ leptoquarks Z' with VL fernions

Problem: we know only coupling/mass ratio \rightarrow no prediction for the NP scale

Question: how to get a prediction? → **asymptotic safety**

Kamila Kowalska

Asymptotic behaviours

- AS originally advocated by Weinberg to improve the UV behavior of G_N
- Advocated in QFT as solution to $U(1)_{\gamma}$ triviality problem

Fixed point properties

Relevant couplings are free parameters of the theory

Irrelevant couplings provide predictions

Asymptotic safety in QG

Quantum gravity and quantum gravity + matter might feature interactive UV fixed points

[Reuter '96, Reuter, Saueressig '01, Litim '04, Codello, Percacci, Rahmede '06, Benedetti, Machado, Saueressig '09, Narain, Percacci '09, Manrique, Rechenberger, Saueressig '11, Falls, Litim, Nikolakopoulos '13, Dona', Eichhorn, Percacci '13, Daum, Harst, Reuter '09, Folkerst, Litim, Pawlowski '11, Harst, Reuter '11, Christiansen, Eichhorn '17, Eichhorn, Versteegen '17, Zanusso *et al.* '09, Oda, Yamada '15, Eichhorn, Held, Pawlowski '16, Pawlowski *et al.* '18 ... many more]

Prototype example: Einstein-Hilbert gravity

$$S_{\rm EH} = \frac{1}{16\pi G_N} \int d^4x \sqrt{g} \left(-R(g) + 2\Lambda\right)$$

Functional renormalization group techniques (Wetterich Equation) lead to 2 fixed points

$$\beta_g \equiv \frac{dg}{d\ln k} = 0 \qquad \beta_\lambda \equiv \frac{d\lambda}{d\ln k} = 0$$

(gaussian)
$$g=0$$
 $\lambda=0$

(interactive)
$$g=g^*\,\lambda=\lambda^*$$
 (

Fixed point persists under the addition of new interactions

Asymptotic safety with matter

Gravity affects matter:

Gauge-Yukawa system coupled to gravity:

Quantum-gravitational contribution (in principle via FRG)

[Daum, Harst, Reuter '09, Folkerst, Litim, Pawlowski '11, Harst, Reuter '11, Christiansen, Eichhorn '17, Eichhorn, Versteegen '17, Zanusso *et al.* '09, Oda, Yamada '15, Eichhorn, Held, Pawlowski '16, ...]

In practice *fg*, *fy* are subject to large uncertainties (truncation in number of operators, cut-off scheme dependence, etc.)

[Lauscher, Reuter '02, Codello, Percacci, Rahmede '07-'08, Benedetti, Machado, Saueressig '09, Narain, Percacci '09, Dona', Eichhorn, Percacci '13, Falls, Litim, Schroeder '18, ...]

fg, fy free parameters determined by matching to the low-energy data

applied in SM and simple SM extensions

see *e.g.* Eichhorn, Held, 1707.01107, 1803.04027; Reichert, Smirnov, 1911.00012; Alkofer *et al.* 2003.08401

b-s anomalies: SM + S₃ LQ

see, ex: I. Doršner, S. Fajfer, A. Greljo, J. Kamenik, and N. Košnik, Phys. Rept. 641 (2016) 1–68 G. Hiller, D. Loose, and K. Schönwald, JHEP 12 (2016) 027 I. Doršner, S. Fajfer, D. A. Faroughy, and N. Košnik, JHEP 10 (2017) 188

S₃ leptoquark: $(ar{\mathbf{3}}, \mathbf{3}, 1/3)$

$$\mathcal{L} \supset (Y_L)_{ij} Q_i^T (i\sigma_2) S_3 L_j + \text{H.c.}$$

flavor basis

$$\hat{Y}^L = D_L^T Y_L$$
$$\tilde{Y}^L = U_L^T Y_L$$

quark mass basis

$$\mathcal{L} \supset \widehat{Y_{ij}^L} \sqrt{2} \phi_{4/3} d_{L,i} e_{L,j} + \widetilde{Y}_{ij}^L \phi_{1/3} u_{L,i} e_{L,j} + \text{H.c.}$$

down-origin scenario

$$\hat{Y}^{L} = \begin{pmatrix} d & s & b \end{pmatrix} \begin{pmatrix} 0 & 0 & 0 \\ 0 & \hat{Y}_{22}^{L} & 0 \\ 0 & \hat{Y}_{32}^{L} & 0 \end{pmatrix} \begin{pmatrix} e \\ \mu \\ \tau \end{pmatrix}$$

FEATURES

1) running of the CKM matrix

2) \hat{Y}_{12}^L generated through the running via CMK, can affect $BR(K_L^0 \to \mu^+ \mu^-)$ under control

Fixed-point analysis

System of beta functions to solve:

$g_Y, g_2, g_3, y_t, y_b, V_{33}, \hat{Y}_{22}^L, \hat{Y}_{32}^L$		
gauge	SM Yukawa	LQ Yukawa

- 2nd + 3rd generation approximation
- CKM described by V_{33}

UV fixed-point:

SM:
$$g_3^* = 0, \ g_2^* = 0$$

 $g_Y^* = 0.48$ fixes f_g
 $y_t^* = 0, \ y_b^* = 0.03$ fixes f_y
 $V_{33} = 0$

Prediction for the LQ mass

Kamila Kowalska

Muon g-2 anomaly

Measured value at BNL (2006):

Bennet et al, Phys. Rev. D 73 (2006) 072003 (hep-ex/0602035)

$$a_{\mu}^{\rm BNL} = (116592089 \pm 63) \times 10^{-11}$$

Measured value at FNAL (2021):

Muon g-2 Collaboration, Phys. Rev. Lett. 126 (2021) 141801

$$a_{\mu}^{\text{FNAL}} = (116592040 \pm 54) \times 10^{-11}$$

Fermilab
Fermilab

$$Fermilab$$

 $Fermilab$
 $Fermilab$

Brookhaven

$$\Delta a_{\mu} = (25.1 \pm 5.9) \times 10^{-10}$$

discrepancy at ~ 4.2 σ

g-2: new scalar and VL fermions

VL fermions (E, E') and (F, F') + scalar S

 $\mathcal{L}_{\rm NP} \supset \left(Y_R \, \mu_R E' S + Y_L \, F' S^{\dagger} l_{\mu} + \frac{Y_1 \, E \, h^{\dagger} F + Y_2 \, F' h \, E' + \text{H.c.} \right)$

National Centre for Nuclear Research, Warsaw

 Y_1, Y_2

Predictions for the masses

Fixed point fixes couplings:

different low-scale predictions – different phenomelogy?

$$Q_0 \simeq 2 \,\mathrm{TeV}$$

Consequence of asymptotic safety!

10.

0.1

0.1

 m_F (TeV)

 m_E (TeV)

National Centre for Nuclear Research, Warsaw

 m_F (GeV)

To take home

- EFT alone is not predictive enough → theoretical analysis of UV completions is needed
- Via fixed point, AS can enhance predictivity of the New Physics models
- Other applications possible, case-by-case study needed
- Overall, AS in UV can provide a new tool for phenomenology