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Muon Anomalies  
Footprints of a next layer?

The Muon g-2, Fermilab, 2104.03281LHCb, CERN, 2103.11769

3.1 σ

+ other  observablesb → s μμ

*combined
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Leptoquark
Admir Greljo | Muonic force behind flavor anomalies

[Phys.Rept. 641 (2016) 1-68] 
Doršner, Fajfer, AG, Kamenik, Košnik

qi lα
α = e, μ, τ

•Portorož 2021’s favourite game

•TeV-scale LQs were not exactly a 
popular game before the anomalies  
=> [next slide]
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So why do people object abog.at
TeV seat Leptoquarks

L4t y list QiQi St
13151 13 BCS 2
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a Abrupt violation of the SM
accidental symmetries

Proton decay II y
probesseatesuptoto Tell

µ e f it j probesseatesupto105Tell

Electron EDM Amy probesseatesuptotoTell

LFUV, …

Leptoquark

U(3)L × U(3)E

CP

U(1)e × U(1)μ × U(1)τ

U(1)B

Admir Greljo | Muonic force behind flavor anomalies

R(K ) probes up to 102 TeV

(exact and approximate)



• Accidental symmetries emerge from: 
1. Spacetime + Gauge symmetry and Field content. 
2. Lagrangian(x) = infinite polynomial in fields and derivatives, 
but only a finite number of IR relevant operators  

• In the SM, all IR relevant operators respect: 

dim[ℒ] ≤ 4

U(1)B × U(1)e × U(1)μ × U(1)τ
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Accidental symmetries

5



Leptoquark

+

Gauged lepton 
flavor U(1)X

Ref Joe Julien us

Lepton flavor

Leptoquark gauged Vith

Maoquark La with the
moonie charge
underUllx
V9MS
g es ges

ygg s gates

ggds
accidental selection rules
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Ref Joe Julien us

Lepton flavor

Leptoquark gauged Vith

Maoquark La with the
moonie charge
underUllx
V9MS
g es ges

ygg s gates

ggds
accidental selection rules

Muoquark
= LQ with the  charge:U(1)X

qμS

qeS, qτS, qqS†

qqS†H, qqS†ϕ
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• The accidental symmetry is 
 and 

the LQ charge is 
U(1)B × U(1)e × U(1)μ × U(1)τ

(−1/3, 0, −1, 0)

Davighi, Kirk, Nardecchia, 2007.15016
AG, Stangl, Thomsen, 2103.13991

Hambye, Heeck; 1712.04871

AG, Soreq, Stangl, Thomsen, Zupan; 2107.07518
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• Without loss of generality XH = 0

The  atlasU(1)X
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• The symmetry breaking scalar fields:

Gravity2
⇥ U(1)X :

3X

i=1

(6XQi + 2XLi � 3XUi � 3XDi � XEi � XNi) = 0 , (2.5)

U(1)Y ⇥ U(1)
2
X :

3X

i=1

(X
2
Qi

� X
2
Li

� 2X
2
Ui

+ X
2
Di

+ X
2
Ei

) = 0 , (2.6)

U(1)
3
X :

3X

i=1

(6X
3
Qi

+ 2X
3
Li

� 3X
3
Ui

� 3X
3
Di

� X
3
Ei

� X
3
Ni

) = 0 . (2.7)

We consider only rational solutions motivated by the unification scenario, i.e., embedding the
U(1)X into a simple Lie group at high-energies. We can work with integer charges without
loss of generality, since for any set of rational charges {pFi/qFi}, there is an equivalent
set of integer charges obtained by rescaling the gauge coupling gX with the least common
denominator. Any set of integer charges {XFi} satisfying the anomaly conditions (2.2)–(2.7)
can be used to generate up to (3!)

6 inequivalent solutions (and a correspondingly smaller set,
if some of the charges for different families coincide), by permuting the flavor specific charges
within each species. Below, we list the solutions to the Diophantine equations (2.2)–(2.7)
up to this freedom of family permutations.

Still, this leaves us with infinitely many integer solutions of the anomaly cancellation
conditions. For concreteness, we limit the maximal ratio of the largest and the smallest
nonzero charge magnitudes to be  10.2 In the following we then give an exhaustive set of
inequivalent integer solutions of Eqs. (2.2)–(2.7) with

� 10  XFi  10 for every Fi in Eq. (2.1), (2.8)

building on the work of Ref. [82], while imposing further constraints to produce viable
muoquark models.

2.2 Quark flavor universal U(1)X

The symmetry-breaking scalar fields are

H = (1,2,
1

2
, XH) , � = (1,1, 0, X�) , (2.9)

where H is the SM Higgs (with U(1)X charge XH) and � is the SM singlet responsible
for the breaking of U(1)X . Shifting the U(1)X charge assignments for all fields f by a
universal multiple of the hypercharge, Xf ! Xf � aYf , gives a physically equivalent theory,
cf. Appendix A.1. In particular, after a linear invertible field transformation qf = (Yf , Xf )

|

becomes

q̃f = L
|
qf where L =

 
1 �a

0 1

!
. (2.10)

The ambiguity in charge assignments is a direct consequence of the freedom in defining the
U(1) subgroups for a symmetry group with several Abelian factors. A familiar example is
the QCD, which, ignoring the anomalies, has a global U(1)V ⇥ U(1)A or, equivalently, a
U(1)L ⇥ U(1)R symmetry.

2As a point of reference, this ratio is 6 for the SM hypercharge.
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* By field redefinitions, shifting  
for all fields,  gives an equivalent theory.

Xf → Xf − aYf
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and the generators of U(1)X embeddings in SU(5) (Appendix C).

2 Model classification

We start by classifying the anomaly free models that, in addition to the SM, contain a
new gauge group U(1)X and a muoquark, that is, a leptoquark that only couples to muon
flavored fermions (muons and muon neutrinos). We assume that all the couplings allowed
by the gauge symmetry are nonzero. As such the fact that muoquark only couples to muons
is imposed by the choice of charge assignments under U(1)X , Eq. (2.12). Similarly, the
charge assignments, Eq. (2.13), forbid the proton decay, while quark Yukawas are allowed,
Eq. (2.11). In the rest of the section we discuss these requirements in detail.

2.1 General gauged flavor U(1)X

Throughout the manuscript we assume that the SM is extended by three right-handed
neutrinos. The chiral fermions of the theory thus carry the following charges under the
SU(3)C ⇥ SU(2)L ⇥ U(1)Y ⇥ U(1)X gauge group,

Qi ⇠ (3,2,
1
6 , XQi), Ui ⇠ (3,1,

2
3 , XUi), Di ⇠ (3,1, �

1
3 , XDi),

Li ⇠ (1,2, �
1
2 , XLi), Ei ⇠ (1,1, �1, XEi), Ni ⇠ (1,1, 0, XNi),

(2.1)

with i = 1, 2, 3 the flavor index. The SU(2)L doublets (singlets) are left (right) Weyl spinors
under Lorentz symmetry.

A consistent ultraviolet (UV) gauge theory has to be free of chiral anomalies. In this
work we require that the U(1)X charge assignments for the field content in Eq. (2.1) are
already anomaly free.1 This results in six conditions corresponding to the cancellation of
(mixed) triangle anomalies between U(1)X , SM gauge groups, and gravity [80],

SU(3)
2
C ⇥ U(1)X :

3X

i=1

(2XQi � XUi � XDi) = 0 , (2.2)

SU(2)
2
L ⇥ U(1)X :

3X

i=1

(3XQi + XLi) = 0 , (2.3)

U(1)
2
Y ⇥ U(1)X :

3X

i=1

(XQi + 3XLi � 8XUi � 2XDi � 6XEi) = 0 , (2.4)

Gravity2
⇥ U(1)X :

3X

i=1

(6XQi + 2XLi � 3XUi � 3XDi � XEi � XNi) = 0 , (2.5)

U(1)Y ⇥ U(1)
2
X :

3X

i=1

(X
2
Qi

� X
2
Li

� 2X
2
Ui

+ X
2
Di

+ X
2
Ei

) = 0 , (2.6)

1Our construction could be viewed as a low-energy effective theory in which anomalies could alternatively
be canceled by a higher-dimension Wess-Zumino-Witten operator [78]. The WZW operator is generated
by integrating out heavy chiral fermions in the UV. In general, it is not always clear how to make these
fermions heavy enough to satisfy the self-consistency of the effective theory assumptions. For an example
see, e.g., Ref. [79].
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• Chiral fermions:

and the generators of U(1)X embeddings in SU(5) (Appendix C).

2 Model classification

We start by classifying the anomaly free models that, in addition to the SM, contain a
new gauge group U(1)X and a muoquark, that is, a leptoquark that only couples to muon
flavored fermions (muons and muon neutrinos). We assume that all the couplings allowed
by the gauge symmetry are nonzero. As such the fact that muoquark only couples to muons
is imposed by the choice of charge assignments under U(1)X , Eq. (2.12). Similarly, the
charge assignments, Eq. (2.13), forbid the proton decay, while quark Yukawas are allowed,
Eq. (2.11). In the rest of the section we discuss these requirements in detail.

2.1 General gauged flavor U(1)X

Throughout the manuscript we assume that the SM is extended by three right-handed
neutrinos. The chiral fermions of the theory thus carry the following charges under the
SU(3)C ⇥ SU(2)L ⇥ U(1)Y ⇥ U(1)X gauge group,

Qi ⇠ (3,2,
1
6 , XQi), Ui ⇠ (3,1,

2
3 , XUi), Di ⇠ (3,1, �

1
3 , XDi),

Li ⇠ (1,2, �
1
2 , XLi), Ei ⇠ (1,1, �1, XEi), Ni ⇠ (1,1, 0, XNi),

(2.1)

with i = 1, 2, 3 the flavor index. The SU(2)L doublets (singlets) are left (right) Weyl spinors
under Lorentz symmetry.

A consistent ultraviolet (UV) gauge theory has to be free of chiral anomalies. In this
work we require that the U(1)X charge assignments for the field content in Eq. (2.1) are
already anomaly free.1 This results in six conditions corresponding to the cancellation of
(mixed) triangle anomalies between U(1)X , SM gauge groups, and gravity [80],

SU(3)
2
C ⇥ U(1)X :

3X

i=1

(2XQi � XUi � XDi) = 0 , (2.2)

SU(2)
2
L ⇥ U(1)X :

3X

i=1

(3XQi + XLi) = 0 , (2.3)

U(1)
2
Y ⇥ U(1)X :

3X

i=1

(XQi + 3XLi � 8XUi � 2XDi � 6XEi) = 0 , (2.4)

Gravity2
⇥ U(1)X :

3X

i=1

(6XQi + 2XLi � 3XUi � 3XDi � XEi � XNi) = 0 , (2.5)

U(1)Y ⇥ U(1)
2
X :

3X

i=1

(X
2
Qi

� X
2
Li

� 2X
2
Ui

+ X
2
Di

+ X
2
Ei

) = 0 , (2.6)

1Our construction could be viewed as a low-energy effective theory in which anomalies could alternatively
be canceled by a higher-dimension Wess-Zumino-Witten operator [78]. The WZW operator is generated
by integrating out heavy chiral fermions in the UV. In general, it is not always clear how to make these
fermions heavy enough to satisfy the self-consistency of the effective theory assumptions. For an example
see, e.g., Ref. [79].
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The  atlasU(1)X

and the generators of U(1)X embeddings in SU(5) (Appendix C).

2 Model classification

We start by classifying the anomaly free models that, in addition to the SM, contain a
new gauge group U(1)X and a muoquark, that is, a leptoquark that only couples to muon
flavored fermions (muons and muon neutrinos). We assume that all the couplings allowed
by the gauge symmetry are nonzero. As such the fact that muoquark only couples to muons
is imposed by the choice of charge assignments under U(1)X , Eq. (2.12). Similarly, the
charge assignments, Eq. (2.13), forbid the proton decay, while quark Yukawas are allowed,
Eq. (2.11). In the rest of the section we discuss these requirements in detail.

2.1 General gauged flavor U(1)X

Throughout the manuscript we assume that the SM is extended by three right-handed
neutrinos. The chiral fermions of the theory thus carry the following charges under the
SU(3)C ⇥ SU(2)L ⇥ U(1)Y ⇥ U(1)X gauge group,

Qi ⇠ (3,2,
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3 , XDi),
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1
2 , XLi), Ei ⇠ (1,1, �1, XEi), Ni ⇠ (1,1, 0, XNi),

(2.1)

with i = 1, 2, 3 the flavor index. The SU(2)L doublets (singlets) are left (right) Weyl spinors
under Lorentz symmetry.

A consistent ultraviolet (UV) gauge theory has to be free of chiral anomalies. In this
work we require that the U(1)X charge assignments for the field content in Eq. (2.1) are
already anomaly free.1 This results in six conditions corresponding to the cancellation of
(mixed) triangle anomalies between U(1)X , SM gauge groups, and gravity [80],

SU(3)
2
C ⇥ U(1)X :

3X

i=1

(2XQi � XUi � XDi) = 0 , (2.2)

SU(2)
2
L ⇥ U(1)X :

3X

i=1

(3XQi + XLi) = 0 , (2.3)

U(1)
2
Y ⇥ U(1)X :

3X

i=1

(XQi + 3XLi � 8XUi � 2XDi � 6XEi) = 0 , (2.4)

Gravity2
⇥ U(1)X :

3X

i=1

(6XQi + 2XLi � 3XUi � 3XDi � XEi � XNi) = 0 , (2.5)

U(1)Y ⇥ U(1)
2
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3X

i=1

(X
2
Qi

� X
2
Li

� 2X
2
Ui

+ X
2
Di

+ X
2
Ei

) = 0 , (2.6)

1Our construction could be viewed as a low-energy effective theory in which anomalies could alternatively
be canceled by a higher-dimension Wess-Zumino-Witten operator [78]. The WZW operator is generated
by integrating out heavy chiral fermions in the UV. In general, it is not always clear how to make these
fermions heavy enough to satisfy the self-consistency of the effective theory assumptions. For an example
see, e.g., Ref. [79].
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and the generators of U(1)X embeddings in SU(5) (Appendix C).

2 Model classification

We start by classifying the anomaly free models that, in addition to the SM, contain a
new gauge group U(1)X and a muoquark, that is, a leptoquark that only couples to muon
flavored fermions (muons and muon neutrinos). We assume that all the couplings allowed
by the gauge symmetry are nonzero. As such the fact that muoquark only couples to muons
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under Lorentz symmetry.

A consistent ultraviolet (UV) gauge theory has to be free of chiral anomalies. In this
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already anomaly free.1 This results in six conditions corresponding to the cancellation of
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1Our construction could be viewed as a low-energy effective theory in which anomalies could alternatively
be canceled by a higher-dimension Wess-Zumino-Witten operator [78]. The WZW operator is generated
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U(1)
3
X :

3X

i=1

(6X
3
Qi

+ 2X
3
Li

� 3X
3
Ui

� 3X
3
Di

� X
3
Ei

� X
3
Ni

) = 0 . (2.7)

We consider only rational solutions motivated by the unification scenario, i.e., embedding the
U(1)X into a simple Lie group at high-energies. We can work with integer charges without
loss of generality, since for any set of rational charges {pFi/qFi}, there is an equivalent
set of integer charges obtained by rescaling the gauge coupling gX with the least common
denominator. Any set of integer charges {XFi} satisfying the anomaly conditions (2.2)–(2.7)
can be used to generate up to (3!)

6 inequivalent solutions (and a correspondingly smaller set,
if some of the charges for different families coincide), by permuting the flavor specific charges
within each species. Below, we list the solutions to the Diophantine equations (2.2)–(2.7)
up to this freedom of family permutations.

Still, this leaves us with infinitely many integer solutions of the anomaly cancellation
conditions. For concreteness, we limit the maximal ratio of the largest and the smallest
nonzero charge magnitudes to be  10.2 In the following we then give an exhaustive set of
inequivalent integer solutions of Eqs. (2.2)–(2.7) with

� 10  XFi  10 for every Fi in Eq. (2.1), (2.8)

building on the work of Ref. [80], while imposing further constraints to produce viable
muoquark models.

2.2 Quark flavor universal U(1)X

The symmetry-breaking scalar fields are

H = (1,2,
1

2
, XH) , � = (1,1, 0, X�) , (2.9)

where H is the SM Higgs (with U(1)X charge XH) and � is the SM singlet responsible for
the breaking of U(1)X . Shifting the U(1)X charge assignments for all fields by a universal
multiple of the hypercharge, XF ! XF � aYF , gives a physically equivalent theory, cf.
Appendix A.1. The ambiguity in charge assignments is a direct consequence of the freedom
in defining the U(1) subgroups for a symmetry group with several Abelian factors. A
familiar example is the QCD, which, ignoring the anomalies, has a global U(1)V ⇥ U(1)A or,
equivalently, a U(1)L ⇥ U(1)R symmetry.

In what follows, we use the above reparameterization invariance to make H a U(1)X

singlet,
XH = 0 , (2.10)

and thus H is the usual SM Higgs. To simplify the discussion further, we require all quarks
to have the same U(1)X charge,

XQi = XUj = XDk ⌘ Xq, for all i, j, k = 1, 2, 3, (2.11)

such that their masses and the CKM mixing matrix are allowed by the gauge symmetry,
i.e. Y

ij
u Q̄

i
H̃u

j and Y
ij

d
Q̄

i
Hd

j where H̃ = ✏H
⇤. The conditions (2.11) reduce the number

2As a point of reference, this ratio is 6 for the SM hypercharge.
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Anomaly cancelation conditions:
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and the generators of U(1)X embeddings in SU(5) (Appendix C).

2 Model classification

We start by classifying the anomaly free models that, in addition to the SM, contain a
new gauge group U(1)X and a muoquark, that is, a leptoquark that only couples to muon
flavored fermions (muons and muon neutrinos). We assume that all the couplings allowed
by the gauge symmetry are nonzero. As such the fact that muoquark only couples to muons
is imposed by the choice of charge assignments under U(1)X , Eq. (2.12). Similarly, the
charge assignments, Eq. (2.13), forbid the proton decay, while quark Yukawas are allowed,
Eq. (2.11). In the rest of the section we discuss these requirements in detail.

2.1 General gauged flavor U(1)X

Throughout the manuscript we assume that the SM is extended by three right-handed
neutrinos. The chiral fermions of the theory thus carry the following charges under the
SU(3)C ⇥ SU(2)L ⇥ U(1)Y ⇥ U(1)X gauge group,

Qi ⇠ (3,2,
1
6 , XQi), Ui ⇠ (3,1,

2
3 , XUi), Di ⇠ (3,1, �

1
3 , XDi),

Li ⇠ (1,2, �
1
2 , XLi), Ei ⇠ (1,1, �1, XEi), Ni ⇠ (1,1, 0, XNi),

(2.1)

with i = 1, 2, 3 the flavor index. The SU(2)L doublets (singlets) are left (right) Weyl spinors
under Lorentz symmetry.

A consistent ultraviolet (UV) gauge theory has to be free of chiral anomalies. In this
work we require that the U(1)X charge assignments for the field content in Eq. (2.1) are
already anomaly free.1 This results in six conditions corresponding to the cancellation of
(mixed) triangle anomalies between U(1)X , SM gauge groups, and gravity [80],

SU(3)
2
C ⇥ U(1)X :

3X

i=1

(2XQi � XUi � XDi) = 0 , (2.2)

SU(2)
2
L ⇥ U(1)X :

3X
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(3XQi + XLi) = 0 , (2.3)

U(1)
2
Y ⇥ U(1)X :
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(XQi + 3XLi � 8XUi � 2XDi � 6XEi) = 0 , (2.4)
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(6XQi + 2XLi � 3XUi � 3XDi � XEi � XNi) = 0 , (2.5)

U(1)Y ⇥ U(1)
2
X :

3X

i=1

(X
2
Qi

� X
2
Li

� 2X
2
Ui

+ X
2
Di

+ X
2
Ei

) = 0 , (2.6)

1Our construction could be viewed as a low-energy effective theory in which anomalies could alternatively
be canceled by a higher-dimension Wess-Zumino-Witten operator [78]. The WZW operator is generated
by integrating out heavy chiral fermions in the UV. In general, it is not always clear how to make these
fermions heavy enough to satisfy the self-consistency of the effective theory assumptions. For an example
see, e.g., Ref. [79].
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and the generators of U(1)X embeddings in SU(5) (Appendix C).

2 Model classification

We start by classifying the anomaly free models that, in addition to the SM, contain a
new gauge group U(1)X and a muoquark, that is, a leptoquark that only couples to muon
flavored fermions (muons and muon neutrinos). We assume that all the couplings allowed
by the gauge symmetry are nonzero. As such the fact that muoquark only couples to muons
is imposed by the choice of charge assignments under U(1)X , Eq. (2.12). Similarly, the
charge assignments, Eq. (2.13), forbid the proton decay, while quark Yukawas are allowed,
Eq. (2.11). In the rest of the section we discuss these requirements in detail.

2.1 General gauged flavor U(1)X

Throughout the manuscript we assume that the SM is extended by three right-handed
neutrinos. The chiral fermions of the theory thus carry the following charges under the
SU(3)C ⇥ SU(2)L ⇥ U(1)Y ⇥ U(1)X gauge group,
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6 , XQi), Ui ⇠ (3,1,

2
3 , XUi), Di ⇠ (3,1, �

1
3 , XDi),

Li ⇠ (1,2, �
1
2 , XLi), Ei ⇠ (1,1, �1, XEi), Ni ⇠ (1,1, 0, XNi),

(2.1)

with i = 1, 2, 3 the flavor index. The SU(2)L doublets (singlets) are left (right) Weyl spinors
under Lorentz symmetry.

A consistent ultraviolet (UV) gauge theory has to be free of chiral anomalies. In this
work we require that the U(1)X charge assignments for the field content in Eq. (2.1) are
already anomaly free.1 This results in six conditions corresponding to the cancellation of
(mixed) triangle anomalies between U(1)X , SM gauge groups, and gravity [80],

SU(3)
2
C ⇥ U(1)X :

3X

i=1

(2XQi � XUi � XDi) = 0 , (2.2)

SU(2)
2
L ⇥ U(1)X :

3X

i=1

(3XQi + XLi) = 0 , (2.3)

U(1)
2
Y ⇥ U(1)X :

3X

i=1

(XQi + 3XLi � 8XUi � 2XDi � 6XEi) = 0 , (2.4)

Gravity2
⇥ U(1)X :

3X

i=1

(6XQi + 2XLi � 3XUi � 3XDi � XEi � XNi) = 0 , (2.5)

U(1)Y ⇥ U(1)
2
X :

3X

i=1

(X
2
Qi

� X
2
Li

� 2X
2
Ui

+ X
2
Di

+ X
2
Ei

) = 0 , (2.6)

1Our construction could be viewed as a low-energy effective theory in which anomalies could alternatively
be canceled by a higher-dimension Wess-Zumino-Witten operator [78]. The WZW operator is generated
by integrating out heavy chiral fermions in the UV. In general, it is not always clear how to make these
fermions heavy enough to satisfy the self-consistency of the effective theory assumptions. For an example
see, e.g., Ref. [79].
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and the generators of U(1)X embeddings in SU(5) (Appendix C).

2 Model classification

We start by classifying the anomaly free models that, in addition to the SM, contain a
new gauge group U(1)X and a muoquark, that is, a leptoquark that only couples to muon
flavored fermions (muons and muon neutrinos). We assume that all the couplings allowed
by the gauge symmetry are nonzero. As such the fact that muoquark only couples to muons
is imposed by the choice of charge assignments under U(1)X , Eq. (2.12). Similarly, the
charge assignments, Eq. (2.13), forbid the proton decay, while quark Yukawas are allowed,
Eq. (2.11). In the rest of the section we discuss these requirements in detail.

2.1 General gauged flavor U(1)X

Throughout the manuscript we assume that the SM is extended by three right-handed
neutrinos. The chiral fermions of the theory thus carry the following charges under the
SU(3)C ⇥ SU(2)L ⇥ U(1)Y ⇥ U(1)X gauge group,

Qi ⇠ (3,2,
1
6 , XQi), Ui ⇠ (3,1,

2
3 , XUi), Di ⇠ (3,1, �

1
3 , XDi),

Li ⇠ (1,2, �
1
2 , XLi), Ei ⇠ (1,1, �1, XEi), Ni ⇠ (1,1, 0, XNi),

(2.1)

with i = 1, 2, 3 the flavor index. The SU(2)L doublets (singlets) are left (right) Weyl spinors
under Lorentz symmetry.

A consistent ultraviolet (UV) gauge theory has to be free of chiral anomalies. In this
work we require that the U(1)X charge assignments for the field content in Eq. (2.1) are
already anomaly free.1 This results in six conditions corresponding to the cancellation of
(mixed) triangle anomalies between U(1)X , SM gauge groups, and gravity [80],

SU(3)
2
C ⇥ U(1)X :

3X

i=1

(2XQi � XUi � XDi) = 0 , (2.2)

SU(2)
2
L ⇥ U(1)X :

3X

i=1

(3XQi + XLi) = 0 , (2.3)

U(1)
2
Y ⇥ U(1)X :

3X

i=1

(XQi + 3XLi � 8XUi � 2XDi � 6XEi) = 0 , (2.4)

Gravity2
⇥ U(1)X :

3X

i=1

(6XQi + 2XLi � 3XUi � 3XDi � XEi � XNi) = 0 , (2.5)

U(1)Y ⇥ U(1)
2
X :

3X

i=1

(X
2
Qi

� X
2
Li

� 2X
2
Ui

+ X
2
Di

+ X
2
Ei

) = 0 , (2.6)

1Our construction could be viewed as a low-energy effective theory in which anomalies could alternatively
be canceled by a higher-dimension Wess-Zumino-Witten operator [78]. The WZW operator is generated
by integrating out heavy chiral fermions in the UV. In general, it is not always clear how to make these
fermions heavy enough to satisfy the self-consistency of the effective theory assumptions. For an example
see, e.g., Ref. [79].
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U(1)
3
X :

3X

i=1

(6X
3
Qi

+ 2X
3
Li

� 3X
3
Ui

� 3X
3
Di

� X
3
Ei

� X
3
Ni

) = 0 . (2.7)

We consider only rational solutions motivated by the unification scenario, i.e., embedding the
U(1)X into a simple Lie group at high-energies. We can work with integer charges without
loss of generality, since for any set of rational charges {pFi/qFi}, there is an equivalent
set of integer charges obtained by rescaling the gauge coupling gX with the least common
denominator. Any set of integer charges {XFi} satisfying the anomaly conditions (2.2)–(2.7)
can be used to generate up to (3!)

6 inequivalent solutions (and a correspondingly smaller set,
if some of the charges for different families coincide), by permuting the flavor specific charges
within each species. Below, we list the solutions to the Diophantine equations (2.2)–(2.7)
up to this freedom of family permutations.

Still, this leaves us with infinitely many integer solutions of the anomaly cancellation
conditions. For concreteness, we limit the maximal ratio of the largest and the smallest
nonzero charge magnitudes to be  10.2 In the following we then give an exhaustive set of
inequivalent integer solutions of Eqs. (2.2)–(2.7) with

� 10  XFi  10 for every Fi in Eq. (2.1), (2.8)

building on the work of Ref. [80], while imposing further constraints to produce viable
muoquark models.

2.2 Quark flavor universal U(1)X

The symmetry-breaking scalar fields are

H = (1,2,
1

2
, XH) , � = (1,1, 0, X�) , (2.9)

where H is the SM Higgs (with U(1)X charge XH) and � is the SM singlet responsible for
the breaking of U(1)X . Shifting the U(1)X charge assignments for all fields by a universal
multiple of the hypercharge, XF ! XF � aYF , gives a physically equivalent theory, cf.
Appendix A.1. The ambiguity in charge assignments is a direct consequence of the freedom
in defining the U(1) subgroups for a symmetry group with several Abelian factors. A
familiar example is the QCD, which, ignoring the anomalies, has a global U(1)V ⇥ U(1)A or,
equivalently, a U(1)L ⇥ U(1)R symmetry.

In what follows, we use the above reparameterization invariance to make H a U(1)X

singlet,
XH = 0 , (2.10)

and thus H is the usual SM Higgs. To simplify the discussion further, we require all quarks
to have the same U(1)X charge,

XQi = XUj = XDk ⌘ Xq, for all i, j, k = 1, 2, 3, (2.11)

such that their masses and the CKM mixing matrix are allowed by the gauge symmetry,
i.e. Y

ij
u Q̄

i
H̃u

j and Y
ij

d
Q̄

i
Hd

j where H̃ = ✏H
⇤. The conditions (2.11) reduce the number

2As a point of reference, this ratio is 6 for the SM hypercharge.
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and the generators of U(1)X embeddings in SU(5) (Appendix C).

2 Model classification

We start by classifying the anomaly free models that, in addition to the SM, contain a
new gauge group U(1)X and a muoquark, that is, a leptoquark that only couples to muon
flavored fermions (muons and muon neutrinos). We assume that all the couplings allowed
by the gauge symmetry are nonzero. As such the fact that muoquark only couples to muons
is imposed by the choice of charge assignments under U(1)X , Eq. (2.12). Similarly, the
charge assignments, Eq. (2.13), forbid the proton decay, while quark Yukawas are allowed,
Eq. (2.11). In the rest of the section we discuss these requirements in detail.

2.1 General gauged flavor U(1)X

Throughout the manuscript we assume that the SM is extended by three right-handed
neutrinos. The chiral fermions of the theory thus carry the following charges under the
SU(3)C ⇥ SU(2)L ⇥ U(1)Y ⇥ U(1)X gauge group,

Qi ⇠ (3,2,
1
6 , XQi), Ui ⇠ (3,1,

2
3 , XUi), Di ⇠ (3,1, �

1
3 , XDi),

Li ⇠ (1,2, �
1
2 , XLi), Ei ⇠ (1,1, �1, XEi), Ni ⇠ (1,1, 0, XNi),

(2.1)

with i = 1, 2, 3 the flavor index. The SU(2)L doublets (singlets) are left (right) Weyl spinors
under Lorentz symmetry.

A consistent ultraviolet (UV) gauge theory has to be free of chiral anomalies. In this
work we require that the U(1)X charge assignments for the field content in Eq. (2.1) are
already anomaly free.1 This results in six conditions corresponding to the cancellation of
(mixed) triangle anomalies between U(1)X , SM gauge groups, and gravity [80],

SU(3)
2
C ⇥ U(1)X :

3X

i=1

(2XQi � XUi � XDi) = 0 , (2.2)

SU(2)
2
L ⇥ U(1)X :

3X

i=1

(3XQi + XLi) = 0 , (2.3)

U(1)
2
Y ⇥ U(1)X :

3X

i=1

(XQi + 3XLi � 8XUi � 2XDi � 6XEi) = 0 , (2.4)

Gravity2
⇥ U(1)X :

3X

i=1

(6XQi + 2XLi � 3XUi � 3XDi � XEi � XNi) = 0 , (2.5)

U(1)Y ⇥ U(1)
2
X :

3X

i=1

(X
2
Qi

� X
2
Li

� 2X
2
Ui

+ X
2
Di

+ X
2
Ei

) = 0 , (2.6)

1Our construction could be viewed as a low-energy effective theory in which anomalies could alternatively
be canceled by a higher-dimension Wess-Zumino-Witten operator [78]. The WZW operator is generated
by integrating out heavy chiral fermions in the UV. In general, it is not always clear how to make these
fermions heavy enough to satisfy the self-consistency of the effective theory assumptions. For an example
see, e.g., Ref. [79].
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• Unification => Rational charges. Rescale  => Integer charges.gX

=> 21’546’920 inequivalent solutions (i.e. up to flavor permutation, etc)

Gravity2
⇥ U(1)X :

3X

i=1

(6XQi + 2XLi � 3XUi � 3XDi � XEi � XNi) = 0 , (2.5)

U(1)Y ⇥ U(1)
2
X :

3X

i=1

(X
2
Qi

� X
2
Li

� 2X
2
Ui

+ X
2
Di

+ X
2
Ei

) = 0 , (2.6)

U(1)
3
X :

3X

i=1

(6X
3
Qi

+ 2X
3
Li

� 3X
3
Ui

� 3X
3
Di

� X
3
Ei

� X
3
Ni

) = 0 . (2.7)

We consider only rational solutions motivated by the unification scenario, i.e., embedding the
U(1)X into a simple Lie group at high-energies. We can work with integer charges without
loss of generality, since for any set of rational charges {pFi/qFi}, there is an equivalent
set of integer charges obtained by rescaling the gauge coupling gX with the least common
denominator. Any set of integer charges {XFi} satisfying the anomaly conditions (2.2)–(2.7)
can be used to generate up to (3!)

6 inequivalent solutions (and a correspondingly smaller set,
if some of the charges for different families coincide), by permuting the flavor specific charges
within each species. Below, we list the solutions to the Diophantine equations (2.2)–(2.7)
up to this freedom of family permutations.

Still, this leaves us with infinitely many integer solutions of the anomaly cancellation
conditions. For concreteness, we limit the maximal ratio of the largest and the smallest
nonzero charge magnitudes to be  10.2 In the following we then give an exhaustive set of
inequivalent integer solutions of Eqs. (2.2)–(2.7) with

� 10  XFi  10 for every Fi in Eq. (2.1), (2.8)

building on the work of Ref. [82], while imposing further constraints to produce viable
muoquark models.

2.2 Quark flavor universal U(1)X

The symmetry-breaking scalar fields are

H = (1,2,
1

2
, XH) , � = (1,1, 0, X�) , (2.9)

where H is the SM Higgs (with U(1)X charge XH) and � is the SM singlet responsible
for the breaking of U(1)X . Shifting the U(1)X charge assignments for all fields f by a
universal multiple of the hypercharge, Xf ! Xf � aYf , gives a physically equivalent theory,
cf. Appendix A.1. In particular, after a linear invertible field transformation qf = (Yf , Xf )

|

becomes

q̃f = L
|
qf where L =

 
1 �a

0 1

!
. (2.10)

The ambiguity in charge assignments is a direct consequence of the freedom in defining the
U(1) subgroups for a symmetry group with several Abelian factors. A familiar example is
the QCD, which, ignoring the anomalies, has a global U(1)V ⇥ U(1)A or, equivalently, a
U(1)L ⇥ U(1)R symmetry.

2As a point of reference, this ratio is 6 for the SM hypercharge.
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U(1)
3
X :

3X

i=1

(6X
3
Qi

+ 2X
3
Li

� 3X
3
Ui

� 3X
3
Di

� X
3
Ei

� X
3
Ni

) = 0 . (2.7)

We consider only rational solutions motivated by the unification scenario, i.e., embedding the
U(1)X into a simple Lie group at high-energies. We can work with integer charges without
loss of generality, since for any set of rational charges {pFi/qFi}, there is an equivalent
set of integer charges obtained by rescaling the gauge coupling gX with the least common
denominator. Any set of integer charges {XFi} satisfying the anomaly conditions (2.2)–(2.7)
can be used to generate up to (3!)

6 inequivalent solutions (and a correspondingly smaller set,
if some of the charges for different families coincide), by permuting the flavor specific charges
within each species. Below, we list the solutions to the Diophantine equations (2.2)–(2.7)
up to this freedom of family permutations.

Still, this leaves us with infinitely many integer solutions of the anomaly cancellation
conditions. For concreteness, we limit the maximal ratio of the largest and the smallest
nonzero charge magnitudes to be  10.2 In the following we then give an exhaustive set of
inequivalent integer solutions of Eqs. (2.2)–(2.7) with

� 10  XFi  10 for every Fi in Eq. (2.1), (2.8)

building on the work of Ref. [80], while imposing further constraints to produce viable
muoquark models.

2.2 Quark flavor universal U(1)X

The symmetry-breaking scalar fields are

H = (1,2,
1

2
, XH) , � = (1,1, 0, X�) , (2.9)

where H is the SM Higgs (with U(1)X charge XH) and � is the SM singlet responsible for
the breaking of U(1)X . Shifting the U(1)X charge assignments for all fields by a universal
multiple of the hypercharge, XF ! XF � aYF , gives a physically equivalent theory, cf.
Appendix A.1. The ambiguity in charge assignments is a direct consequence of the freedom
in defining the U(1) subgroups for a symmetry group with several Abelian factors. A
familiar example is the QCD, which, ignoring the anomalies, has a global U(1)V ⇥ U(1)A or,
equivalently, a U(1)L ⇥ U(1)R symmetry.

In what follows, we use the above reparameterization invariance to make H a U(1)X

singlet,
XH = 0 , (2.10)

and thus H is the usual SM Higgs. To simplify the discussion further, we require all quarks
to have the same U(1)X charge,

XQi = XUj = XDk ⌘ Xq, for all i, j, k = 1, 2, 3, (2.11)

such that their masses and the CKM mixing matrix are allowed by the gauge symmetry,
i.e. Y

ij
u Q̄

i
H̃u

j and Y
ij

d
Q̄

i
Hd

j where H̃ = ✏H
⇤. The conditions (2.11) reduce the number

2As a point of reference, this ratio is 6 for the SM hypercharge.

– 5 –

The  atlasU(1)X

Admir Greljo | Muonic force behind flavor anomalies

Quark flavor universal

•  are allowed => Yu,d

AG, Soreq, Stangl, Thomsen, Zupan; 2107.07518

(XH = 0)

[276 inequivalent solutions]

Gravity2
⇥ U(1)X :

3X

i=1

(6XQi + 2XLi � 3XUi � 3XDi � XEi � XNi) = 0 , (2.5)

U(1)Y ⇥ U(1)
2
X :

3X

i=1

(X
2
Qi

� X
2
Li

� 2X
2
Ui

+ X
2
Di

+ X
2
Ei

) = 0 , (2.6)

U(1)
3
X :

3X

i=1

(6X
3
Qi

+ 2X
3
Li

� 3X
3
Ui

� 3X
3
Di

� X
3
Ei

� X
3
Ni

) = 0 . (2.7)

We consider only rational solutions motivated by the unification scenario, i.e., embedding the
U(1)X into a simple Lie group at high-energies. We can work with integer charges without
loss of generality, since for any set of rational charges {pFi/qFi}, there is an equivalent
set of integer charges obtained by rescaling the gauge coupling gX with the least common
denominator. Any set of integer charges {XFi} satisfying the anomaly conditions (2.2)–(2.7)
can be used to generate up to (3!)

6 inequivalent solutions (and a correspondingly smaller set,
if some of the charges for different families coincide), by permuting the flavor specific charges
within each species. Below, we list the solutions to the Diophantine equations (2.2)–(2.7)
up to this freedom of family permutations.

Still, this leaves us with infinitely many integer solutions of the anomaly cancellation
conditions. For concreteness, we limit the maximal ratio of the largest and the smallest
nonzero charge magnitudes to be  10.2 In the following we then give an exhaustive set of
inequivalent integer solutions of Eqs. (2.2)–(2.7) with

� 10  XFi  10 for every Fi in Eq. (2.1), (2.8)

building on the work of Ref. [82], while imposing further constraints to produce viable
muoquark models.

2.2 Quark flavor universal U(1)X

The symmetry-breaking scalar fields are

H = (1,2,
1

2
, XH) , � = (1,1, 0, X�) , (2.9)

where H is the SM Higgs (with U(1)X charge XH) and � is the SM singlet responsible
for the breaking of U(1)X . Shifting the U(1)X charge assignments for all fields f by a
universal multiple of the hypercharge, Xf ! Xf � aYf , gives a physically equivalent theory,
cf. Appendix A.1. In particular, after a linear invertible field transformation qf = (Yf , Xf )

|

becomes

q̃f = L
|
qf where L =

 
1 �a

0 1

!
. (2.10)

The ambiguity in charge assignments is a direct consequence of the freedom in defining the
U(1) subgroups for a symmetry group with several Abelian factors. A familiar example is
the QCD, which, ignoring the anomalies, has a global U(1)V ⇥ U(1)A or, equivalently, a
U(1)L ⇥ U(1)R symmetry.

2As a point of reference, this ratio is 6 for the SM hypercharge.
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• Muoquark requirement

[276 inequivalent solutions]

U(1)
3
X :

3X

i=1

(6X
3
Qi

+ 2X
3
Li

� 3X
3
Ui

� 3X
3
Di

� X
3
Ei

� X
3
Ni

) = 0 . (2.7)

We consider only rational solutions motivated by the unification scenario, i.e., embedding the
U(1)X into a simple Lie group at high-energies. We can work with integer charges without
loss of generality, since for any set of rational charges {pFi/qFi}, there is an equivalent
set of integer charges obtained by rescaling the gauge coupling gX with the least common
denominator. Any set of integer charges {XFi} satisfying the anomaly conditions (2.2)–(2.7)
can be used to generate up to (3!)

6 inequivalent solutions (and a correspondingly smaller set,
if some of the charges for different families coincide), by permuting the flavor specific charges
within each species. Below, we list the solutions to the Diophantine equations (2.2)–(2.7)
up to this freedom of family permutations.

Still, this leaves us with infinitely many integer solutions of the anomaly cancellation
conditions. For concreteness, we limit the maximal ratio of the largest and the smallest
nonzero charge magnitudes to be  10.2 In the following we then give an exhaustive set of
inequivalent integer solutions of Eqs. (2.2)–(2.7) with

� 10  XFi  10 for every Fi in Eq. (2.1), (2.8)

building on the work of Ref. [80], while imposing further constraints to produce viable
muoquark models.

2.2 Quark flavor universal U(1)X

The symmetry-breaking scalar fields are

H = (1,2,
1

2
, XH) , � = (1,1, 0, X�) , (2.9)

where H is the SM Higgs (with U(1)X charge XH) and � is the SM singlet responsible for
the breaking of U(1)X . Shifting the U(1)X charge assignments for all fields by a universal
multiple of the hypercharge, XF ! XF � aYF , gives a physically equivalent theory, cf.
Appendix A.1. The ambiguity in charge assignments is a direct consequence of the freedom
in defining the U(1) subgroups for a symmetry group with several Abelian factors. A
familiar example is the QCD, which, ignoring the anomalies, has a global U(1)V ⇥ U(1)A or,
equivalently, a U(1)L ⇥ U(1)R symmetry.

In what follows, we use the above reparameterization invariance to make H a U(1)X

singlet,
XH = 0 , (2.10)

and thus H is the usual SM Higgs. To simplify the discussion further, we require all quarks
to have the same U(1)X charge,

XQi = XUj = XDk ⌘ Xq, for all i, j, k = 1, 2, 3, (2.11)

such that their masses and the CKM mixing matrix are allowed by the gauge symmetry,
i.e. Y

ij
u Q̄

i
H̃u

j and Y
ij

d
Q̄

i
Hd

j where H̃ = ✏H
⇤. The conditions (2.11) reduce the number

2As a point of reference, this ratio is 6 for the SM hypercharge.
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extensions some care needs to be taken to remove the potential Goldstone bosons, as well
as to avoid baryon number violating operators at dimension-5. While the catalog of the
models derived in this manuscript provides a good starting point, a detailed discussion of
the neutrino sector is beyond the scope of the present work and is left for future studies.

With the above caveat about neutrino masses in mind let us now move to the classification
of different anomaly free U(1)X models. It is remarkable that almost all anomaly-free charge
assignments XFi 2 [�10, 10] in the quark flavor universal U(1)X automatically satisfy the
muoquark conditions. The list of charge assignments can be classified into two categories:

vector category : XLi = XEi for all i = 1, 2, 3 , (2.14)
chiral category : the rest. (2.15)

In the vector category models the charged lepton Yukawas for all three generations are
allowed by the U(1)X symmetry, while in the chiral category models at least some of the
charged lepton Yukawas are forbidden and thus all the lepton masses are generated only
after the U(1)X symmetry is spontaneously broken.

Before discussing each of the two categories in more detail, let us consider several
examples of muoquarks adopting the nomenclature from Ref. [75]:

• The scalar leptoquark S3 ⌘ (3,3, 1/3, XS3), where XS3 = �Xq � XL2 , gives V � A

contribution to b ! sµ
+
µ

� transitions, see e.g. [1, 75, 77, 83–91]. The condition
in Eq. (2.13b) implies XL2 6= �3Xq such that the dimension-4 operator QQS3 is
forbidden.

• The scalar leptoquark S1 ⌘ (3,1, 1/3, XS1), where XS1 = �Xq � XL2 or XS1 =

�Xq � XE2 , implemented in “vector category” models, couples to both L2 and E2

to give the mt-enhanced contribution to (g � 2)µ, see e.g. [1, 75, 87, 91–95]. The
condition in Eq. (2.13b) is X`2 6= �3Xq.

• The scalar leptoquark R2 ⌘ (3,2, 7/6, XR2), where XR2 = Xq � XL2 or XR2 =

Xq�XE2 , and the condition in Eq. (2.13a) is X`2 6= 3Xq such that dimension-5 operator
ddH

†
R2 is forbidden. Note that otherwise such operators would lead to excessive

proton decay even when suppressed by the Planck scale [75, 96, 97]. This scalar
leptoquark representation is also used to address the (g � 2)µ, see e.g. [75, 91, 93, 95].
We will employ it in Section 4 to build a model for radiative muon mass and (g � 2)µ.

• The vector leptoquark U1 ⌘ (3,1, 2/3, XU1), where XU1 = Xq � XL2 or XU1 =

Xq � XE2 . The baryon number violating dimension-5 operator QdH
†
U1 is forbidden

when X`2 6= 3Xq, Eq. (2.13a). Possible UV completions for the U1 vector muoquark
will be presented in Section 5. This leptoquark representation was extensively discussed
in the literature to address the B-decay anomalies, see e.g. [98–112].

2.2.1 Vector category U(1)X charge assignments

The vector category is defined such that the left-handed and the right-handed e, µ and
⌧ leptons carry the same X charge. Solutions to the anomaly conditions (2.2)–(2.7) that
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Gravity2
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) = 0 . (2.7)

We consider only rational solutions motivated by the unification scenario, i.e., embedding the
U(1)X into a simple Lie group at high-energies. We can work with integer charges without
loss of generality, since for any set of rational charges {pFi/qFi}, there is an equivalent
set of integer charges obtained by rescaling the gauge coupling gX with the least common
denominator. Any set of integer charges {XFi} satisfying the anomaly conditions (2.2)–(2.7)
can be used to generate up to (3!)

6 inequivalent solutions (and a correspondingly smaller set,
if some of the charges for different families coincide), by permuting the flavor specific charges
within each species. Below, we list the solutions to the Diophantine equations (2.2)–(2.7)
up to this freedom of family permutations.

Still, this leaves us with infinitely many integer solutions of the anomaly cancellation
conditions. For concreteness, we limit the maximal ratio of the largest and the smallest
nonzero charge magnitudes to be  10.2 In the following we then give an exhaustive set of
inequivalent integer solutions of Eqs. (2.2)–(2.7) with

� 10  XFi  10 for every Fi in Eq. (2.1), (2.8)

building on the work of Ref. [82], while imposing further constraints to produce viable
muoquark models.

2.2 Quark flavor universal U(1)X

The symmetry-breaking scalar fields are

H = (1,2,
1

2
, XH) , � = (1,1, 0, X�) , (2.9)

where H is the SM Higgs (with U(1)X charge XH) and � is the SM singlet responsible
for the breaking of U(1)X . Shifting the U(1)X charge assignments for all fields f by a
universal multiple of the hypercharge, Xf ! Xf � aYf , gives a physically equivalent theory,
cf. Appendix A.1. In particular, after a linear invertible field transformation qf = (Yf , Xf )

|

becomes

q̃f = L
|
qf where L =

 
1 �a

0 1

!
. (2.10)

The ambiguity in charge assignments is a direct consequence of the freedom in defining the
U(1) subgroups for a symmetry group with several Abelian factors. A familiar example is
the QCD, which, ignoring the anomalies, has a global U(1)V ⇥ U(1)A or, equivalently, a
U(1)L ⇥ U(1)R symmetry.

2As a point of reference, this ratio is 6 for the SM hypercharge.

– 5 –

[273 inequivalent solutions]

[21 inequivalent solutions]
 allowed => Ye

AG, Soreq, Stangl, Thomsen, Zupan; 2107.07518

(XH = 0)

eg.  LQ: S3 XL2
≠ {XL1,3

, −3Xq}

[252 inequivalent solutions]
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The  atlasU(1)X

Admir Greljo | Muonic force behind flavor anomalies

Third-family-quark

• The “2+1” charge assignment

AG, Soreq, Stangl, Thomsen, Zupan; 2107.07518

The universal quark charge is �9Xq = XL1 + XL2 + XL3 , while the right-handed neutrino
charges are XN1 , XN2 and XN3 . The 18 solutions that have

bE1 = �bE2/2 = bE3 , (2.27)

are listed in Table 1 (up to flavor permutations). The remaining three solutions are

{XL1,2,3} ={�7, 0, 7}, {bE1,2,3} = {�1, 3, �2}, {XN1,2,3} = {�5, �3, 8}, (2.28)
{XL1,2,3} ={�5, �3, 8}, {bE1,2,3} = {�2, 3, �1}, {XN1,2,3} = {�6, �4, 10}, (2.29)
{XL1,2,3} ={�5, 6, 8}, {bE1,2,3} = {1, �3, 2}, {XN1,2,3} = {0, 3, 6}. (2.30)

These solutions are particularly interesting as they facilitate models in which the muon mass
and the (g � 2)µ are both generated at one-loop order (see Section 4).

2.3 Third-family-quark U(1)X

One can relax the assumption of universal U(1)X charges for quarks, Eq. (2.12), and instead
allow for family-dependent quark charges. The quark Yukawa matrices Y

ij
u and Y

ij

d
are

then no longer arbitrary 3 ⇥ 3 complex matrices but, rather, have a texture restricted by
the gauge symmetry. The “2 + 1” quark charge assignment is particularly well-motivated by
phenomenology. In this case, the U(1)X charge of the third quark family differs from that
of the first two families, the latter still taken to be universal:

XQi = XUj = XDk ⌘ Xq12 for all i, j, k = 1, 2, and
XQ3 = XU3 = XD3 ⌘ Xq3 .

(2.31)

The anomaly cancellation conditions (2.2)–(2.7) are identical to the quark flavor-universal
case (Section 2.2) provided that

2Xq12 + Xq3 = 3Xq , (2.32)

where Xq is defined in Eq. (2.12). The quark flavor-universal solutions found in Section 2.2
can, therefore, immediately be extended to the 2 + 1 case. Each flavor-universal solution
generates a one-parameter family of 2 + 1 charge assignments. Xq3 can be taken as a free
parameter, while Xq12 is set to Xq12 = (3Xq � Xq3)/2, with Xq the flavor-universal quark
charge assignment for a given solution listed in Section 2.2. In the phenomenological studies
(Section 3.5), we will focus on the scenario where Xq12 = 0 and Xq3 = 3Xq 6= 0.

The non-Abelian accidental symmetry of the renormalizable Lagrangian without Yukawa
interactions is the SU(2)Q ⇥ SU(2)U ⇥ SU(2)D flavor symmetry, under which the first two
generations transform as doublets, while the third generation is a singlet [118, 119]. As
discussed in the literature [118–120], the minimal set of the symmetry-breaking spurions
capable of explaining the observed quark masses and the CKM mixing matrix consists of a
doublet V ⇠ (2,1,1) and two bidoublets �U ⇠ (2, 2̄,1) and �D ⇠ (2,1, 2̄). For the 2 + 1

charge assignments, the bidoublet spurions are allowed in the Yukawa interactions already
at the dimension-4 level. The doublet V is generated only at the dimension-5 level,

L �
x

u

i

⇤
QiH̃�U3 +

x
d

i

⇤
QiH�D3 + H.c. , (2.33)
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• The CKM elements  at dim-5:(Vtd , Vts)

The universal quark charge is �9Xq = XL1 + XL2 + XL3 , while the right-handed neutrino
charges are XN1 , XN2 and XN3 . The 18 solutions that have

bE1 = �bE2/2 = bE3 , (2.27)

are listed in Table 1 (up to flavor permutations). The remaining three solutions are

{XL1,2,3} ={�7, 0, 7}, {bE1,2,3} = {�1, 3, �2}, {XN1,2,3} = {�5, �3, 8}, (2.28)
{XL1,2,3} ={�5, �3, 8}, {bE1,2,3} = {�2, 3, �1}, {XN1,2,3} = {�6, �4, 10}, (2.29)
{XL1,2,3} ={�5, 6, 8}, {bE1,2,3} = {1, �3, 2}, {XN1,2,3} = {0, 3, 6}. (2.30)

These solutions are particularly interesting as they facilitate models in which the muon mass
and the (g � 2)µ are both generated at one-loop order (see Section 4).

2.3 Third-family-quark U(1)X

One can relax the assumption of universal U(1)X charges for quarks, Eq. (2.12), and instead
allow for family-dependent quark charges. The quark Yukawa matrices Y

ij
u and Y

ij

d
are

then no longer arbitrary 3 ⇥ 3 complex matrices but, rather, have a texture restricted by
the gauge symmetry. The “2 + 1” quark charge assignment is particularly well-motivated by
phenomenology. In this case, the U(1)X charge of the third quark family differs from that
of the first two families, the latter still taken to be universal:

XQi = XUj = XDk ⌘ Xq12 for all i, j, k = 1, 2, and
XQ3 = XU3 = XD3 ⌘ Xq3 .

(2.31)

The anomaly cancellation conditions (2.2)–(2.7) are identical to the quark flavor-universal
case (Section 2.2) provided that

2Xq12 + Xq3 = 3Xq , (2.32)

where Xq is defined in Eq. (2.12). The quark flavor-universal solutions found in Section 2.2
can, therefore, immediately be extended to the 2 + 1 case. Each flavor-universal solution
generates a one-parameter family of 2 + 1 charge assignments. Xq3 can be taken as a free
parameter, while Xq12 is set to Xq12 = (3Xq � Xq3)/2, with Xq the flavor-universal quark
charge assignment for a given solution listed in Section 2.2. In the phenomenological studies
(Section 3.5), we will focus on the scenario where Xq12 = 0 and Xq3 = 3Xq 6= 0.

The non-Abelian accidental symmetry of the renormalizable Lagrangian without Yukawa
interactions is the SU(2)Q ⇥ SU(2)U ⇥ SU(2)D flavor symmetry, under which the first two
generations transform as doublets, while the third generation is a singlet [118, 119]. As
discussed in the literature [118–120], the minimal set of the symmetry-breaking spurions
capable of explaining the observed quark masses and the CKM mixing matrix consists of a
doublet V ⇠ (2,1,1) and two bidoublets �U ⇠ (2, 2̄,1) and �D ⇠ (2,1, 2̄). For the 2 + 1

charge assignments, the bidoublet spurions are allowed in the Yukawa interactions already
at the dimension-4 level. The doublet V is generated only at the dimension-5 level,

L �
x

u

i

⇤
QiH̃�U3 +

x
d

i

⇤
QiH�D3 + H.c. , (2.33)

– 10 –

(XH = 0)
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• The ACC conditions are satisfied provided

The  atlasU(1)X

Admir Greljo | Muonic force behind flavor anomalies

Third-family-quark

• The “2+1” charge assignment

AG, Soreq, Stangl, Thomsen, Zupan; 2107.07518

The universal quark charge is �9Xq = XL1 + XL2 + XL3 , while the right-handed neutrino
charges are XN1 , XN2 and XN3 . The 18 solutions that have

bE1 = �bE2/2 = bE3 , (2.27)

are listed in Table 1 (up to flavor permutations). The remaining three solutions are

{XL1,2,3} ={�7, 0, 7}, {bE1,2,3} = {�1, 3, �2}, {XN1,2,3} = {�5, �3, 8}, (2.28)
{XL1,2,3} ={�5, �3, 8}, {bE1,2,3} = {�2, 3, �1}, {XN1,2,3} = {�6, �4, 10}, (2.29)
{XL1,2,3} ={�5, 6, 8}, {bE1,2,3} = {1, �3, 2}, {XN1,2,3} = {0, 3, 6}. (2.30)

These solutions are particularly interesting as they facilitate models in which the muon mass
and the (g � 2)µ are both generated at one-loop order (see Section 4).

2.3 Third-family-quark U(1)X

One can relax the assumption of universal U(1)X charges for quarks, Eq. (2.12), and instead
allow for family-dependent quark charges. The quark Yukawa matrices Y

ij
u and Y

ij

d
are

then no longer arbitrary 3 ⇥ 3 complex matrices but, rather, have a texture restricted by
the gauge symmetry. The “2 + 1” quark charge assignment is particularly well-motivated by
phenomenology. In this case, the U(1)X charge of the third quark family differs from that
of the first two families, the latter still taken to be universal:

XQi = XUj = XDk ⌘ Xq12 for all i, j, k = 1, 2, and
XQ3 = XU3 = XD3 ⌘ Xq3 .

(2.31)

The anomaly cancellation conditions (2.2)–(2.7) are identical to the quark flavor-universal
case (Section 2.2) provided that

2Xq12 + Xq3 = 3Xq , (2.32)

where Xq is defined in Eq. (2.12). The quark flavor-universal solutions found in Section 2.2
can, therefore, immediately be extended to the 2 + 1 case. Each flavor-universal solution
generates a one-parameter family of 2 + 1 charge assignments. Xq3 can be taken as a free
parameter, while Xq12 is set to Xq12 = (3Xq � Xq3)/2, with Xq the flavor-universal quark
charge assignment for a given solution listed in Section 2.2. In the phenomenological studies
(Section 3.5), we will focus on the scenario where Xq12 = 0 and Xq3 = 3Xq 6= 0.

The non-Abelian accidental symmetry of the renormalizable Lagrangian without Yukawa
interactions is the SU(2)Q ⇥ SU(2)U ⇥ SU(2)D flavor symmetry, under which the first two
generations transform as doublets, while the third generation is a singlet [118, 119]. As
discussed in the literature [118–120], the minimal set of the symmetry-breaking spurions
capable of explaining the observed quark masses and the CKM mixing matrix consists of a
doublet V ⇠ (2,1,1) and two bidoublets �U ⇠ (2, 2̄,1) and �D ⇠ (2,1, 2̄). For the 2 + 1

charge assignments, the bidoublet spurions are allowed in the Yukawa interactions already
at the dimension-4 level. The doublet V is generated only at the dimension-5 level,

L �
x

u

i

⇤
QiH̃�U3 +

x
d

i

⇤
QiH�D3 + H.c. , (2.33)
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The universal quark charge is �9Xq = XL1 + XL2 + XL3 , while the right-handed neutrino
charges are XN1 , XN2 and XN3 . The 18 solutions that have

bE1 = �bE2/2 = bE3 , (2.27)

are listed in Table 1 (up to flavor permutations). The remaining three solutions are

{XL1,2,3} ={�7, 0, 7}, {bE1,2,3} = {�1, 3, �2}, {XN1,2,3} = {�5, �3, 8}, (2.28)
{XL1,2,3} ={�5, �3, 8}, {bE1,2,3} = {�2, 3, �1}, {XN1,2,3} = {�6, �4, 10}, (2.29)
{XL1,2,3} ={�5, 6, 8}, {bE1,2,3} = {1, �3, 2}, {XN1,2,3} = {0, 3, 6}. (2.30)

These solutions are particularly interesting as they facilitate models in which the muon mass
and the (g � 2)µ are both generated at one-loop order (see Section 4).

2.3 Third-family-quark U(1)X

One can relax the assumption of universal U(1)X charges for quarks, Eq. (2.12), and instead
allow for family-dependent quark charges. The quark Yukawa matrices Y

ij
u and Y

ij

d
are

then no longer arbitrary 3 ⇥ 3 complex matrices but, rather, have a texture restricted by
the gauge symmetry. The “2 + 1” quark charge assignment is particularly well-motivated by
phenomenology. In this case, the U(1)X charge of the third quark family differs from that
of the first two families, the latter still taken to be universal:

XQi = XUj = XDk ⌘ Xq12 for all i, j, k = 1, 2, and
XQ3 = XU3 = XD3 ⌘ Xq3 .

(2.31)

The anomaly cancellation conditions (2.2)–(2.7) are identical to the quark flavor-universal
case (Section 2.2) provided that

2Xq12 + Xq3 = 3Xq , (2.32)

where Xq is defined in Eq. (2.12). The quark flavor-universal solutions found in Section 2.2
can, therefore, immediately be extended to the 2 + 1 case. Each flavor-universal solution
generates a one-parameter family of 2 + 1 charge assignments. Xq3 can be taken as a free
parameter, while Xq12 is set to Xq12 = (3Xq � Xq3)/2, with Xq the flavor-universal quark
charge assignment for a given solution listed in Section 2.2. In the phenomenological studies
(Section 3.5), we will focus on the scenario where Xq12 = 0 and Xq3 = 3Xq 6= 0.

The non-Abelian accidental symmetry of the renormalizable Lagrangian without Yukawa
interactions is the SU(2)Q ⇥ SU(2)U ⇥ SU(2)D flavor symmetry, under which the first two
generations transform as doublets, while the third generation is a singlet [118, 119]. As
discussed in the literature [118–120], the minimal set of the symmetry-breaking spurions
capable of explaining the observed quark masses and the CKM mixing matrix consists of a
doublet V ⇠ (2,1,1) and two bidoublets �U ⇠ (2, 2̄,1) and �D ⇠ (2,1, 2̄). For the 2 + 1

charge assignments, the bidoublet spurions are allowed in the Yukawa interactions already
at the dimension-4 level. The doublet V is generated only at the dimension-5 level,

L �
x

u

i

⇤
QiH̃�U3 +

x
d

i

⇤
QiH�D3 + H.c. , (2.33)
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*The quark flavor-universal 
solutions can immediately be 
extended to the 2 + 1 case. 

• The CKM elements  at dim-5:(Vtd , Vts)

The universal quark charge is �9Xq = XL1 + XL2 + XL3 , while the right-handed neutrino
charges are XN1 , XN2 and XN3 . The 18 solutions that have

bE1 = �bE2/2 = bE3 , (2.27)

are listed in Table 1 (up to flavor permutations). The remaining three solutions are

{XL1,2,3} ={�7, 0, 7}, {bE1,2,3} = {�1, 3, �2}, {XN1,2,3} = {�5, �3, 8}, (2.28)
{XL1,2,3} ={�5, �3, 8}, {bE1,2,3} = {�2, 3, �1}, {XN1,2,3} = {�6, �4, 10}, (2.29)
{XL1,2,3} ={�5, 6, 8}, {bE1,2,3} = {1, �3, 2}, {XN1,2,3} = {0, 3, 6}. (2.30)

These solutions are particularly interesting as they facilitate models in which the muon mass
and the (g � 2)µ are both generated at one-loop order (see Section 4).

2.3 Third-family-quark U(1)X

One can relax the assumption of universal U(1)X charges for quarks, Eq. (2.12), and instead
allow for family-dependent quark charges. The quark Yukawa matrices Y

ij
u and Y

ij

d
are

then no longer arbitrary 3 ⇥ 3 complex matrices but, rather, have a texture restricted by
the gauge symmetry. The “2 + 1” quark charge assignment is particularly well-motivated by
phenomenology. In this case, the U(1)X charge of the third quark family differs from that
of the first two families, the latter still taken to be universal:

XQi = XUj = XDk ⌘ Xq12 for all i, j, k = 1, 2, and
XQ3 = XU3 = XD3 ⌘ Xq3 .

(2.31)

The anomaly cancellation conditions (2.2)–(2.7) are identical to the quark flavor-universal
case (Section 2.2) provided that

2Xq12 + Xq3 = 3Xq , (2.32)

where Xq is defined in Eq. (2.12). The quark flavor-universal solutions found in Section 2.2
can, therefore, immediately be extended to the 2 + 1 case. Each flavor-universal solution
generates a one-parameter family of 2 + 1 charge assignments. Xq3 can be taken as a free
parameter, while Xq12 is set to Xq12 = (3Xq � Xq3)/2, with Xq the flavor-universal quark
charge assignment for a given solution listed in Section 2.2. In the phenomenological studies
(Section 3.5), we will focus on the scenario where Xq12 = 0 and Xq3 = 3Xq 6= 0.

The non-Abelian accidental symmetry of the renormalizable Lagrangian without Yukawa
interactions is the SU(2)Q ⇥ SU(2)U ⇥ SU(2)D flavor symmetry, under which the first two
generations transform as doublets, while the third generation is a singlet [118, 119]. As
discussed in the literature [118–120], the minimal set of the symmetry-breaking spurions
capable of explaining the observed quark masses and the CKM mixing matrix consists of a
doublet V ⇠ (2,1,1) and two bidoublets �U ⇠ (2, 2̄,1) and �D ⇠ (2,1, 2̄). For the 2 + 1

charge assignments, the bidoublet spurions are allowed in the Yukawa interactions already
at the dimension-4 level. The doublet V is generated only at the dimension-5 level,

L �
x

u

i

⇤
QiH̃�U3 +

x
d

i

⇤
QiH�D3 + H.c. , (2.33)
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• The muoquark conditions slightly change: 

(XH = 0)

eg.  LQ:S3

Let us consider as an illustration a scalar leptoquark S3 ⌘ (3,3, 1/3, XS3). Assuming
Xq3 6= 0 and Xq12 = 0, we further require:

i) the interaction Q3L2S3 is allowed,

ii) Q3L1,3S3, Q1,2L1,3S3, and Q1,2,3Q1,2,3S
†
3 are forbidden.

For this to be true, the following set of conditions needs to be satisfied

XL2 6= {XL1,3 , XL1,3 � Xq3 , �Xq3 , �2Xq3 , �3Xq3} . (2.34)

These criteria are met by 171 inequivalent sets of XFi charges in the range [�10, 10] out of
which 158 belong to the vector category (cf. Eq. (2.15)) and 13 are in the chiral category.
We will explore the phenomenology of the sub-GeV Xµ vector boson of the gauged U(1)X

with:

Xq12 = 0 , Xq3 = �3 ,

XL1,2,3 = XE1,2,3 = XN1,2,3 = {0, 1, 8}, {0, 2, 7}, {0, 4, 5}, or {0, �1, 10}. (2.35)

These benchmarks satisfy Eq. (2.34) and do not couple X to electrons or valence quarks.
The S3 muoquark at tree-level contributes to b ! sµµ decays and can fit the data well,

see e.g. Ref. [1]. The coupling to the strange quark is generated in a way similar to the
CKM matrix, i.e., by a dimension-5 operator

L �
z

u

i

⇤
Q

C

i L2S3�
†

+ H.c. , (2.36)

where i = 1, 2. This operator is allowed by gauge symmetry despite the U(1)X charges
already being fixed by Eqs. (2.33) and (2.34). The simplest way to generate this operator
without spoiling the down-alignment of Xµ interactions is to introduce a vector-like lepton
� ⇠ (1,2, �

1
2 , �XS3). More precisely, the interactions Q

C

1,2�LS3 and �̄R�
†
L2 generate the

operator in Eq. (2.36) when the � field gets integrated out at tree-level.

3 Light Xµ phenomenology

When the U(1)X gauge boson Xµ is light, it can give the dominant new physics contribution
to (g � 2)µ and potentially resolve the discrepancy between the measurements and the SM
prediction, see e.g. [122]. In this section we show that the (g � 2)µ anomaly can indeed be
explained, without violating other experimental constraints, by a sub-GeV vector boson Xµ

in a broad class of U(1)X gauge models. The U(1)X models that we consider all admit the
muoquark solution of the rare B decay anomalies in the R

K(⇤) ratios and b ! sµµ angular
distributions and branching ratios.

The model independent discussion in Sections 3.1, 3.2, and 3.3 is limited to the flavor
conserving Xµ couplings applicable for the U(1)X gauge models. Section 3.4 contains also a
short discussion of challenges facing a light vector boson that would be flavor violating [123].
The main goal of Section 3.4 is to show that a single light Xµ cannot simultaneously resolve
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[171 inequivalent sol.]

Gravity2
⇥ U(1)X :

3X

i=1

(6XQi + 2XLi � 3XUi � 3XDi � XEi � XNi) = 0 , (2.5)

U(1)Y ⇥ U(1)
2
X :

3X

i=1

(X
2
Qi

� X
2
Li

� 2X
2
Ui

+ X
2
Di

+ X
2
Ei

) = 0 , (2.6)

U(1)
3
X :

3X

i=1

(6X
3
Qi

+ 2X
3
Li

� 3X
3
Ui

� 3X
3
Di

� X
3
Ei

� X
3
Ni

) = 0 . (2.7)

We consider only rational solutions motivated by the unification scenario, i.e., embedding the
U(1)X into a simple Lie group at high-energies. We can work with integer charges without
loss of generality, since for any set of rational charges {pFi/qFi}, there is an equivalent
set of integer charges obtained by rescaling the gauge coupling gX with the least common
denominator. Any set of integer charges {XFi} satisfying the anomaly conditions (2.2)–(2.7)
can be used to generate up to (3!)

6 inequivalent solutions (and a correspondingly smaller set,
if some of the charges for different families coincide), by permuting the flavor specific charges
within each species. Below, we list the solutions to the Diophantine equations (2.2)–(2.7)
up to this freedom of family permutations.

Still, this leaves us with infinitely many integer solutions of the anomaly cancellation
conditions. For concreteness, we limit the maximal ratio of the largest and the smallest
nonzero charge magnitudes to be  10.2 In the following we then give an exhaustive set of
inequivalent integer solutions of Eqs. (2.2)–(2.7) with

� 10  XFi  10 for every Fi in Eq. (2.1), (2.8)

building on the work of Ref. [82], while imposing further constraints to produce viable
muoquark models.

2.2 Quark flavor universal U(1)X

The symmetry-breaking scalar fields are

H = (1,2,
1

2
, XH) , � = (1,1, 0, X�) , (2.9)

where H is the SM Higgs (with U(1)X charge XH) and � is the SM singlet responsible
for the breaking of U(1)X . Shifting the U(1)X charge assignments for all fields f by a
universal multiple of the hypercharge, Xf ! Xf � aYf , gives a physically equivalent theory,
cf. Appendix A.1. In particular, after a linear invertible field transformation qf = (Yf , Xf )

|

becomes

q̃f = L
|
qf where L =

 
1 �a

0 1

!
. (2.10)

The ambiguity in charge assignments is a direct consequence of the freedom in defining the
U(1) subgroups for a symmetry group with several Abelian factors. A familiar example is
the QCD, which, ignoring the anomalies, has a global U(1)V ⇥ U(1)A or, equivalently, a
U(1)L ⇥ U(1)R symmetry.

2As a point of reference, this ratio is 6 for the SM hypercharge.
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The universal quark charge is �9Xq = XL1 + XL2 + XL3 , while the right-handed neutrino
charges are XN1 , XN2 and XN3 . The 18 solutions that have

bE1 = �bE2/2 = bE3 , (2.27)

are listed in Table 1 (up to flavor permutations). The remaining three solutions are

{XL1,2,3} ={�7, 0, 7}, {bE1,2,3} = {�1, 3, �2}, {XN1,2,3} = {�5, �3, 8}, (2.28)
{XL1,2,3} ={�5, �3, 8}, {bE1,2,3} = {�2, 3, �1}, {XN1,2,3} = {�6, �4, 10}, (2.29)
{XL1,2,3} ={�5, 6, 8}, {bE1,2,3} = {1, �3, 2}, {XN1,2,3} = {0, 3, 6}. (2.30)

These solutions are particularly interesting as they facilitate models in which the muon mass
and the (g � 2)µ are both generated at one-loop order (see Section 4).

2.3 Third-family-quark U(1)X

One can relax the assumption of universal U(1)X charges for quarks, Eq. (2.12), and instead
allow for family-dependent quark charges. The quark Yukawa matrices Y

ij
u and Y

ij

d
are

then no longer arbitrary 3 ⇥ 3 complex matrices but, rather, have a texture restricted by
the gauge symmetry. The “2 + 1” quark charge assignment is particularly well-motivated by
phenomenology. In this case, the U(1)X charge of the third quark family differs from that
of the first two families, the latter still taken to be universal:

XQi = XUj = XDk ⌘ Xq12 for all i, j, k = 1, 2, and
XQ3 = XU3 = XD3 ⌘ Xq3 .

(2.31)

The anomaly cancellation conditions (2.2)–(2.7) are identical to the quark flavor-universal
case (Section 2.2) provided that

2Xq12 + Xq3 = 3Xq , (2.32)

where Xq is defined in Eq. (2.12). The quark flavor-universal solutions found in Section 2.2
can, therefore, immediately be extended to the 2 + 1 case. Each flavor-universal solution
generates a one-parameter family of 2 + 1 charge assignments. Xq3 can be taken as a free
parameter, while Xq12 is set to Xq12 = (3Xq � Xq3)/2, with Xq the flavor-universal quark
charge assignment for a given solution listed in Section 2.2. In the phenomenological studies
(Section 3.5), we will focus on the scenario where Xq12 = 0 and Xq3 = 3Xq 6= 0.

The non-Abelian accidental symmetry of the renormalizable Lagrangian without Yukawa
interactions is the SU(2)Q ⇥ SU(2)U ⇥ SU(2)D flavor symmetry, under which the first two
generations transform as doublets, while the third generation is a singlet [118, 119]. As
discussed in the literature [118–120], the minimal set of the symmetry-breaking spurions
capable of explaining the observed quark masses and the CKM mixing matrix consists of a
doublet V ⇠ (2,1,1) and two bidoublets �U ⇠ (2, 2̄,1) and �D ⇠ (2,1, 2̄). For the 2 + 1

charge assignments, the bidoublet spurions are allowed in the Yukawa interactions already
at the dimension-4 level. The doublet V is generated only at the dimension-5 level,

L �
x

u

i

⇤
QiH̃�U3 +

x
d

i

⇤
QiH�D3 + H.c. , (2.33)
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ton decay and LFV in stark contrast with observations.
A resolution is the idea of combining leptoquarks with a
gauged lepton symmetry as in Ref. [70, 71].

Lepton-flavored U(1) gauge symmetries impose non-
trivial restrictions on the structure of the neutrino mass
matrices. This has been thoroughly studied in the liter-
ature in the context of two-zero-texture (-minor) struc-
tures, aiming at predicting the remaining parameters in
the neutrino sector [72–76]. Building on Refs. [44, 69, 71,
76], we show how to naturally reconcile all muon anoma-
lies in a single framework and rationalize why these are
the first signs of physics beyond the SM. We face the
challenge of generating a phenomenologically acceptable
neutrino sector in leptoquark models with gauged lep-
ton flavor while keeping the proton stable. It turns
out that the U(1)B�3Lµ

gauge symmetry has the desired
property of also forbidding dangerous baryon-number-
violating dimension-5 operators.

In Section II we present the model and discuss the pa-
rameter space capable of addressing the anomalies. Sec-
tion III outlines alternative models and a connection with
b ! c⌧⌫ decays. We show that no tuned cancellations
is needed in the observables, the scalar masses respect
finite naturalness, and the couplings can be extrapolated
to high-energies without inconsistencies.

II. A MODEL FOR (g � 2)µ AND b ! sµ+µ�

We extend the SM+3⌫R with a gauged U(1)B�3Lµ
sym-

metry under which the leptons `
2
L, µR, ⌫µ,R have charge

�3, while q
i

L, u
i

R, d
i

R all have charge +1/3. With this
fermion content, the symmetry is anomaly-free. An SM
singlet � with U(1)B�3Lµ

charge q� = +3 is responsible
for the spontaneous breaking of the new symmetry. In
addition, the matter field content is extended with two
scalar leptoquarks S1 = (3, 1, 1/3) and S3 = (3, 3, 1/3)
of charge +8/3 under U(1)B�3Lµ

.
The renormalizable Lagrangian for this model is

L = LSM�VH
+ |Dµ�|

2 + |DµS1|
2 + |DµS3|

2
�

1
4X

2
µ⌫

�
�
⌘
3L
i

q
c i

L `
2
L S3 + ⌘

1L
i

q
c i

L `
2
LS1 + ⌘

1R
i

u
c i

R µRS1

+ ⌘̃
1R
i

d
c i

R ⌫µ,RS1 + h.c.
�

+ 1
2"BXBµ⌫X

µ⌫ (2)

� VH�(H, �) � V13(H, �, S1, S3) + ⌫̄
i

Ri /D⌫
i

R

�
�
y

ij

⌫
¯̀i
LH̃⌫

j

R + M
ij

R ⌫̄
ci

R ⌫
j

R + y
ij

� � ⌫̄
ci

R ⌫
j

R + h.c.
�

,

where the SU(2)L contraction in the left-handed Yukawa
couplings is with i�

2
�

a for S3 and i�
2 for S1 with Pauli

matrices �
a.

The gauge symmetry ensures that leptoquarks cou-
ple exclusively to 2nd generation leptons through the
Yukawa couplings ⌘

x. Leptoquarks coupling exclusively
to 2nd generation leptons are properly referred to as
muoquarks. We will show how this structure reconciles
the muon anomalies with the complementary constraints.
We then separately address the scalar potential and the
kinetic mixing, as it has minimal baring on the flavor

analysis: in 1-loop matching it only gives corrections on
top of the operators already generated at tree-level.

Finally, due to the extra gauge symmetry, the model
has accidental baryon and individual lepton number sym-
metries at the renormalizable level just like the SM. Fur-
thermore, there is an accidental baryon number conser-
vation at the level of dimension-5 operators. It is an
intricate relation between i) neutrino masses and mix-
ings, ii) matter stability, and iii) the high-quality U(1)Lµ

global symmetry, which ultimately leads to the choice of
the U(1)B�3Lµ

gauge symmetry. An alternative choice is
discussed in Section III.

A. Muoquark solution of the muon anomalies

We assume that � develops a large VEV so as to break
U(1)B�3Lµ

and decouple the X, ⌫
i

R
, and � fields for the

moment. The remnant of the U(1)B�3Lµ
symmetry pro-

vides an e↵ective U(1)Lµ
global symmetry under which

the muoquarks are charged. This forbids LFV processes
such as µ ! e� but introduces new lepton non-universal
muophilic interactions. The idea is to use a tree-level S3

exchange to explain the RK(⇤) anomalies and an S1 loop
for the (g � 2)µ.

The gauge symmetry fixes the lepton flavor coupling
to S1,3 but not the quark flavor structure of ⌘

x

i
. The

SM Yukawa interactions exhibit a good approximate fla-
vor symmetry U(2)q ⇥ U(2)u ⇥ U(2)d under which the
first two generations transform as doublets, while the
third generation is a singlet [77] (see also [78]). When
this symmetry is exact, only the top and bottom quarks
are massive and the CKM matrix is the identity. A
slight breaking, needed to fit data, is minimally pro-
vided by the leading breaking spurion V = (Vtd, Vts)T,
which is a doublet of U(2)q, together with two bidoublets
�u,d [77, 79]. Thinking about this symmetry as a rem-
nant of deep UV dynamics, it is reasonable to assume
the muoquark Yukawa couplings share a similar struc-
ture. In particular, we expect the left-handed couplings
to be ⌘

1(3)L
/ O(V ) � 1 and the relevant right-handed

ones to be ⌘
1R

/ O(�†
u
V ) � 1. This sets the relative

size between di↵erent quark flavors. On general grounds
we expect the absolute sizes of the couplings and the
muoquark masses M1,3 to be similar. Remarkably, when
⌘

x

3 = O(0.1) and M1,3 = O(TeV), this setup explains
b ! sµ

+
µ

� and (g � 2)µ anomalies with negligible cor-
rections to any other complementary constraints. (Note
that U(2)3 is just one example of a CKM-like flavor struc-
ture in the quark sector.)

The most general S1 + S3 renormalizable model is
matched to the SM e↵ective field theory at the 1-loop
level in Ref. [80]. We implement these results in a code
that is interfaced with the Python package smelli (the
SMEFT likelihood tool) [81, 82]. After we pass the
SMEFT Wilson coe�cients, which we compute from the
parameters of our Lagrangian (2) at the matching scale
µM , to smelli, this tool automatically takes care of
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scale µM , to smelli, this tool automatically takes care
of the renormalization group running down to the me-
son scale as well as the intermediate matching to the
low-energy EFT [84–88] thanks to the wilson [89] pack-
age. It further uses flavio [90] to compute a large
list of electroweak-scale and low-energy precision observ-
ables, including charged LFV and LFU, magnetic mo-
ments, neutral meson mixings, semileptonic and rare me-
son decays, etc. The full list of observables included
in the initial version of smelli can be found in the
appendix of [82], but this list has been extended [91],
and we refer to [92] for the up-to-date version. We use
smelli v2.3.0, which takes into account the most re-
cent results for RK [35] and (g � 2)µ [36] as well as the
current world average of BR(Bs,d ! µµ) from [93], which
includes the most recent LHCb measurement [94]. With
this setup, we are now in position to perform a global fit
in the parameter space of our model.

Shown in Fig. 1 is the preferred region in the ⌘
3L
3 ver-

sus ⌘
1L
3 = ⌘

1R
3 plane for M1 = M3 = 3TeV. We take

⌘̃
1R = 0, as loop-induced contributions from the heavy

right-handed neutrinos are expected to be negligible in
the fit. Muon anomalies clearly prefer the parameter
space far away from the SM limit ⌘

x

3 = 0. The best fit
point is (⌘3L

3 , ⌘
1L
3 = ⌘

1R
3 ) ' (0.42, 0.12) with a ��

2
' 56

compared to the SM point. The current limits from di-
rect searches at the LHC are M3 & 1.7 TeV [95] and
M1 & 1.4 TeV [96], while the final reach of HL-LHC is
projected in [97]. The indirect e↵ects in the high-pT lep-
ton tails are also beyond the HL-LHC projections for the
best fit couplings [98]. The change in the mass is accom-
modated by an approximate linear change in the cou-
plings keeping the same low-energy Wilson coe�cients.
However, the finite naturalness of the Higgs mass and
muon Yukawa, disfavors heavier muoquarks, as discussed
later.

While in principle both muoquarks contribute to all
anomalies, there is a clear factorization, namely S1 dom-
inates in the (g � 2)µ thanks to the chiral enhancement
from the top quark, whereas S3 dominates in b ! sµ

+
µ

�

since it gives a tree-level contribution unlike S1. The
U(2) flavor structure provides su�cient suppression in all
other complementary processes such as KL ! µ

+
µ

� [99].
When varying the O(1) coe�cients in front of the spuri-
ons we find the same goodness of fit: the best fit region is
shifted to accommodate for b ! sµ

+
µ

�, but none of the
complementary observables listed above receive a large
pull.

B. Symmetry breaking

Heavy vector resonances with couplings to both quarks
and leptons have been extensively searched for at the
LHC. The most recent ATLAS 13TeV search with
139 fb�1 of data [100] reports the exclusions on the cou-
plings as a function of the mass in their Fig. 4 (b). A
viable benchmark example in our case is gauge coupling
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FIG. 1. The preferred muoquark Yukawa couplings from
the global fit to low-energy data. Here we choose
⌘3L
i = (Vtd, Vts, 1) ⌘3L

3 , ⌘1L
i = (Vtd, Vts, 1) ⌘1L

3 , and ⌘1R
i =

(0, 0, 1) ⌘1R
3 . The muoquark masses are set to M1 = M3 =

3 TeV.

gX = 0.1 and mass mX = 3TeV. The high-pT dimuon
tails [98] set an upper limit on gX/mX for large mX .
In the opposite limit, the bounds are avoided when gX

is small enough (see Fig. 5 of [98]). It is, however, al-
ways possible to take the decoupling limit, namely large
mX and small gX , without conflicting the muoquark so-
lution of muon anomalies. We expect X to have negligi-
ble e↵ects in flavor physics through suppressed penguins,
which decouple in the same limit.1

The symmetry breaking scalar � develops a VEV
h�i = v� related to the X mass by v� =

p
2mX/3gX

or 14TeV for the benchmark point. Taking M
2
1,3 > 0

and small cross-quartic couplings, guarantees that S1,3

do not develop a VEV, and the part of the scalar poten-
tial relevant for symmetry-breaking is

VH� = �µ
2
H

|H|
2

� µ
2
�|�|

2 + 1
2�H |H|

4

+ 1
4��|�|

4 + ��H |�|
2
|H|

2
. (3)

We can directly relate the potential parameters for the
Higgs VEV v = hHi; v�; the masses of the radial modes
mh, m�; and the mixing angle, which has to satisfy ✓ ⌧ 1

1 A U(1)B�3Lµ
model with vector-like quarks and X as the main

mediator of b ! sµ
+
µ
� anomaly cannot reconcile the Bs meson-

mixing constraints with the high-pT dimuon tails [98].
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shifted to accommodate for b ! sµ

+
µ

�, but none of the
complementary observables listed above receive a large
pull.

B. Symmetry breaking

Heavy vector resonances with couplings to both quarks
and leptons have been extensively searched for at the
LHC. The most recent ATLAS 13TeV search with
139 fb�1 of data [100] reports the exclusions on the cou-
plings as a function of the mass in their Fig. 4 (b). A
viable benchmark example in our case is gauge coupling
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3 TeV.

gX = 0.1 and mass mX = 3TeV. The high-pT dimuon
tails [98] set an upper limit on gX/mX for large mX .
In the opposite limit, the bounds are avoided when gX

is small enough (see Fig. 5 of [98]). It is, however, al-
ways possible to take the decoupling limit, namely large
mX and small gX , without conflicting the muoquark so-
lution of muon anomalies. We expect X to have negligi-
ble e↵ects in flavor physics through suppressed penguins,
which decouple in the same limit.1

The symmetry breaking scalar � develops a VEV
h�i = v� related to the X mass by v� =

p
2mX/3gX

or 14TeV for the benchmark point. Taking M
2
1,3 > 0

and small cross-quartic couplings, guarantees that S1,3

do not develop a VEV, and the part of the scalar poten-
tial relevant for symmetry-breaking is
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We can directly relate the potential parameters for the
Higgs VEV v = hHi; v�; the masses of the radial modes
mh, m�; and the mixing angle, which has to satisfy ✓ ⌧ 1

1 A U(1)B�3Lµ
model with vector-like quarks and X as the main

mediator of b ! sµ
+
µ
� anomaly cannot reconcile the Bs meson-

mixing constraints with the high-pT dimuon tails [98].
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scale µM , to smelli, this tool automatically takes care
of the renormalization group running down to the me-
son scale as well as the intermediate matching to the
low-energy EFT [84–88] thanks to the wilson [89] pack-
age. It further uses flavio [90] to compute a large
list of electroweak-scale and low-energy precision observ-
ables, including charged LFV and LFU, magnetic mo-
ments, neutral meson mixings, semileptonic and rare me-
son decays, etc. The full list of observables included
in the initial version of smelli can be found in the
appendix of [82], but this list has been extended [91],
and we refer to [92] for the up-to-date version. We use
smelli v2.3.0, which takes into account the most re-
cent results for RK [35] and (g � 2)µ [36] as well as the
current world average of BR(Bs,d ! µµ) from [93], which
includes the most recent LHCb measurement [94]. With
this setup, we are now in position to perform a global fit
in the parameter space of our model.

Shown in Fig. 1 is the preferred region in the ⌘
3L
3 ver-

sus ⌘
1L
3 = ⌘

1R
3 plane for M1 = M3 = 3TeV. We take

⌘̃
1R = 0, as loop-induced contributions from the heavy

right-handed neutrinos are expected to be negligible in
the fit. Muon anomalies clearly prefer the parameter
space far away from the SM limit ⌘

x

3 = 0. The best fit
point is (⌘3L

3 , ⌘
1L
3 = ⌘

1R
3 ) ' (0.42, 0.12) with a ��

2
' 56

compared to the SM point. The current limits from di-
rect searches at the LHC are M3 & 1.7 TeV [95] and
M1 & 1.4 TeV [96], while the final reach of HL-LHC is
projected in [97]. The indirect e↵ects in the high-pT lep-
ton tails are also beyond the HL-LHC projections for the
best fit couplings [98]. The change in the mass is accom-
modated by an approximate linear change in the cou-
plings keeping the same low-energy Wilson coe�cients.
However, the finite naturalness of the Higgs mass and
muon Yukawa, disfavors heavier muoquarks, as discussed
later.

While in principle both muoquarks contribute to all
anomalies, there is a clear factorization, namely S1 dom-
inates in the (g � 2)µ thanks to the chiral enhancement
from the top quark, whereas S3 dominates in b ! sµ

+
µ

�

since it gives a tree-level contribution unlike S1. The
U(2) flavor structure provides su�cient suppression in all
other complementary processes such as KL ! µ

+
µ

� [99].
When varying the O(1) coe�cients in front of the spuri-
ons we find the same goodness of fit: the best fit region is
shifted to accommodate for b ! sµ

+
µ

�, but none of the
complementary observables listed above receive a large
pull.

B. Symmetry breaking

Heavy vector resonances with couplings to both quarks
and leptons have been extensively searched for at the
LHC. The most recent ATLAS 13TeV search with
139 fb�1 of data [100] reports the exclusions on the cou-
plings as a function of the mass in their Fig. 4 (b). A
viable benchmark example in our case is gauge coupling
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the global fit to low-energy data. Here we choose
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3 , ⌘1L
i = (Vtd, Vts, 1) ⌘1L

3 , and ⌘1R
i =

(0, 0, 1) ⌘1R
3 . The muoquark masses are set to M1 = M3 =

3 TeV.

gX = 0.1 and mass mX = 3TeV. The high-pT dimuon
tails [98] set an upper limit on gX/mX for large mX .
In the opposite limit, the bounds are avoided when gX

is small enough (see Fig. 5 of [98]). It is, however, al-
ways possible to take the decoupling limit, namely large
mX and small gX , without conflicting the muoquark so-
lution of muon anomalies. We expect X to have negligi-
ble e↵ects in flavor physics through suppressed penguins,
which decouple in the same limit.1

The symmetry breaking scalar � develops a VEV
h�i = v� related to the X mass by v� =

p
2mX/3gX

or 14TeV for the benchmark point. Taking M
2
1,3 > 0

and small cross-quartic couplings, guarantees that S1,3

do not develop a VEV, and the part of the scalar poten-
tial relevant for symmetry-breaking is

VH� = �µ
2
H

|H|
2

� µ
2
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We can directly relate the potential parameters for the
Higgs VEV v = hHi; v�; the masses of the radial modes
mh, m�; and the mixing angle, which has to satisfy ✓ ⌧ 1

1 A U(1)B�3Lµ
model with vector-like quarks and X as the main

mediator of b ! sµ
+
µ
� anomaly cannot reconcile the Bs meson-

mixing constraints with the high-pT dimuon tails [98].
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son scale as well as the intermediate matching to the
low-energy EFT [84–88] thanks to the wilson [89] pack-
age. It further uses flavio [90] to compute a large
list of electroweak-scale and low-energy precision observ-
ables, including charged LFV and LFU, magnetic mo-
ments, neutral meson mixings, semileptonic and rare me-
son decays, etc. The full list of observables included
in the initial version of smelli can be found in the
appendix of [82], but this list has been extended [91],
and we refer to [92] for the up-to-date version. We use
smelli v2.3.0, which takes into account the most re-
cent results for RK [35] and (g � 2)µ [36] as well as the
current world average of BR(Bs,d ! µµ) from [93], which
includes the most recent LHCb measurement [94]. With
this setup, we are now in position to perform a global fit
in the parameter space of our model.
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3 ver-
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compared to the SM point. The current limits from di-
rect searches at the LHC are M3 & 1.7 TeV [95] and
M1 & 1.4 TeV [96], while the final reach of HL-LHC is
projected in [97]. The indirect e↵ects in the high-pT lep-
ton tails are also beyond the HL-LHC projections for the
best fit couplings [98]. The change in the mass is accom-
modated by an approximate linear change in the cou-
plings keeping the same low-energy Wilson coe�cients.
However, the finite naturalness of the Higgs mass and
muon Yukawa, disfavors heavier muoquarks, as discussed
later.

While in principle both muoquarks contribute to all
anomalies, there is a clear factorization, namely S1 dom-
inates in the (g � 2)µ thanks to the chiral enhancement
from the top quark, whereas S3 dominates in b ! sµ

+
µ

�

since it gives a tree-level contribution unlike S1. The
U(2) flavor structure provides su�cient suppression in all
other complementary processes such as KL ! µ

+
µ

� [99].
When varying the O(1) coe�cients in front of the spuri-
ons we find the same goodness of fit: the best fit region is
shifted to accommodate for b ! sµ

+
µ

�, but none of the
complementary observables listed above receive a large
pull.

B. Symmetry breaking

Heavy vector resonances with couplings to both quarks
and leptons have been extensively searched for at the
LHC. The most recent ATLAS 13TeV search with
139 fb�1 of data [100] reports the exclusions on the cou-
plings as a function of the mass in their Fig. 4 (b). A
viable benchmark example in our case is gauge coupling
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3 , and ⌘1R
i =

(0, 0, 1) ⌘1R
3 . The muoquark masses are set to M1 = M3 =

3 TeV.

gX = 0.1 and mass mX = 3TeV. The high-pT dimuon
tails [98] set an upper limit on gX/mX for large mX .
In the opposite limit, the bounds are avoided when gX

is small enough (see Fig. 5 of [98]). It is, however, al-
ways possible to take the decoupling limit, namely large
mX and small gX , without conflicting the muoquark so-
lution of muon anomalies. We expect X to have negligi-
ble e↵ects in flavor physics through suppressed penguins,
which decouple in the same limit.1

The symmetry breaking scalar � develops a VEV
h�i = v� related to the X mass by v� =

p
2mX/3gX

or 14TeV for the benchmark point. Taking M
2
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We can directly relate the potential parameters for the
Higgs VEV v = hHi; v�; the masses of the radial modes
mh, m�; and the mixing angle, which has to satisfy ✓ ⌧ 1
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model with vector-like quarks and X as the main
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� anomaly cannot reconcile the Bs meson-

mixing constraints with the high-pT dimuon tails [98].
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FIG. 2. The RG flow of a selection of couplings from the
benchmark point to the Planck scale. All couplings were in-
cluded in the running, and none of them develops a Landau
pole in this range.

Additionally, the S1 muoquark generates a non-
multiplicative radiative corrections to the muon Yukawa
coupling [80, 107, 108]:

�yµ = �
3

(4⇡)2

✓
1 + ln

µ
2
M

M
2
1

◆
⌘
1L⇤
i

y
ij

u
⌘
1R
j

. (7)

For the part of parameter space with large enough cou-
plings to explain the (g � 2)µ, a tuning argument again
favors models with smaller masses. In our best fit point
the change in yµ is roughly 50%. The same muoquark
loop that gives the threshold correction to yµ also gives
rise to a significant running of this Yukawa as shown in
Fig. 2. This is yet another independent argument in favor
of lighter muoquarks potentially accessible at high-pT .

D. Neutrino masses and proton decay

Coming back to the neutrino sector outlined in the
last line of the model Lagrangian (2), the U(1)B�3Lµ

gauge symmetry imposes a flavor structure for y⌫ , MR

and y�. Notably, y⌫ splits into a 2⇥2 electron–tau block
and a diagonal muon entry. When � receives a VEV,
the Majorana mass matrix is entirely populated except
for the (2,2) entry. This structure has enough paramet-
ric freedom to explain the observed neutrino oscillation
data [109], the limit on the sum of neutrino masses from
Planck [110], and the absence of neutrinoless double beta
decay [111]. Ref. [76] performed a careful analysis of a

specific limit when the y
13,31
⌫

and y
23
� are set to zero, ar-

riving at the two-zero minor structure of type DR
1 . This

limit perfectly accommodates neutrino oscillations data,
predicting

P
i
m⌫i

comfortably below the present limit
and no neutrinoless beta decay. The firm predictions of
the DR

1 can be alerted in our case by nonzero y
13,31
⌫

and
y
23
� parameters.
The type-I seesaw formula for the masses of the active

neutrinos,

m⌫ ' �v
2
y⌫

�
MR + y�h�i

��1
y
T
⌫

, (8)

suggests that in our chosen benchmark the Dirac Yukawa
is in the same ballpark as the electron Yukawa, O(10�6).
The S1 muoquark, contributing to (g � 2)µ would ra-
diatively correct the y

22
⌫

with the bottom quark in the
loop [112]. The ⌘̃

1R
3 coupling is an input parameter, how-

ever, if it is of the same order as the ⌘
1R
3 coupling, it

would contribute comparably to the tree-level. Hence,
no tuning is introduced here.

Finally, the Lagrangian in Eq. (2) respects baryon
number and keeps the proton stable. However, the ab-
sence of B violation for a TeV-scale leptoquark model
has to be required also for the leading irrelevant oper-
ators arising at dimension-5 [113, 114]. Quantum grav-
ity is expected to break global charges [115], and even
if the dimension-5 operator under consideration is sup-
pressed by the Planck scale, it is not enough to evade
the stringent bounds on the proton lifetime. This seems
to be a quite generic issue often neglected in the litera-
ture, with the notable exception of the Pati–Salam gauge
leptoquark, see e.g. [116–129].

The U(1)B�3Lµ
gauge symmetry, however, with the

available field content ensure that B number is conserved
also at the dimension-5 e↵ective Lagrangian.3 The lead-
ing breaking is expected at dimension 6 similarly to the
SM. It is a nontrivial fact that this is compatible with
the minimal realization of neutrino masses. This is, for
instance, not the case for U(1)Lµ�L⌧

symmetry where
the minimal neutrino sector [71] allows for a coupling
1/MPl q

c

LS
†
3�

†
qL, which, together with the q

c

L`LS3 needed
for the anomaly, leads to proton decay in gross violation
of the experiment. We estimate that such leptoquark
has to be several orders of magnitude heavier to respect
the proton lifetime bound, or, equivalently, the couplings
should be smaller. In either case, the explanation of the
anomaly is gone. Going beyond the minimal neutrino
mass realizations in U(1)Lµ�L⌧

, even more involved con-
structions proposed in the literature share this problem,
see e.g. [130–133].

3 The only way to build color singlets with non-vanishing baryon
number at this order is with fields SSS, qSS, or qqS. These
combinations have U(1)B�3Lµ

charge ±8, ±5, and ±2, respec-
tively. It is easy to verify that they cannot be completed to a
gauge invariant dimension-5 operator with the available matter
fields.

• For  the largest coupling ~ M1,3 = 3 TeV 0.4

- Two loop Yukawa and 
quartic, three loop gauge  
(RGBeta 2101.08265)

• No Landau poles 
up to the Planck 
and the potential is 
stable.

• Present collider constraints:  
,  [ATLAS]M1 > 1.4 TeV M3 > 1.7 TeV

• No fine tuning in  
or  due to .

mH
mμ S1,3

•This is contrary to the  models which 
should be “around the corner”, and 
sometimes even invoke tuned cancelations to 
pass complementary observables!
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Type A Type B Type C

RK(⇤) , b ! sµµ S3 S3 heavy X

(g � 2)µ S1/R2 light X S1/R2

TABLE I. Three types of muoquark models, which can ad-
dress the muon anomalies for a variety of lepton-flavored
U(1)X gauge groups. For each model class, a field respon-
sible for addressing a corresponding anomaly, is listed. The
an R2 muoquark with SM charges (3, 2, 7/6) can be used as
an alternative to S1 for addressing the (g � 2)µ.

III. ALTERNATIVE MODELS

We now turn our focus to alternative models for the
muon and B-decay anomalies, in some of which the
U(1)B�3Lµ

symmetry is exchanged for other U(1)X sym-
metries. These models o↵er di↵erent scenarios of phe-
nomenological interest.

A. The scenarios for muon anomalies

U(1)B�3Lµ
is only one example of many possible

lepton-flavored gauge extensions of the SM, under which
leptoquarks become muoquarks. Variations of the model
can use di↵erent choices of U(1)X symmetry to ensure
the leptoquarks coupling exclusively to second genera-
tion leptons and fall into three classes shown in Table I
based on what mediators are responsible for the RK(⇤)

and (g � 2)µ anomalies. Below we give some specific ex-
amples of these variations:

Type A — As a showcase example, we trade the
U(1)B�3Lµ

for a U(1)Lµ�L⌧
gauge symmetry to obtain an

extension of the leptoquark model of Ref. [71]. The lepto-
quarks are assigned charge �1 under the symmetry, such
that they still couple exclusively to 2nd generation lep-
tons. The minimal type-I seesaw realization of the neu-
trino mass with the U(1)Lµ�L⌧

-breaking scalar of charge
+1 predicts the two-zero minor structure CR, which
shows some tension in fitting ✓23 and

P
i
m⌫i

[76], thus
more elaborate model building may be needed [133].4

The muoquark solution of the muon anomalies dis-
cussed above applies equally to this model. The main
phenomenological di↵erence is that the gauge vector X

does not couple to quarks and is less constrained at col-
liders. Thus, the X field can more easily elude cur-
rent experimental bound (see Fig. 2 of [43]). For exam-
ple, constraints from neutrino trident production requires
mX & 60 (200) GeV for gX ⇠ 0.1 (0.3). Again, X and �
can simply be decoupled in the limit of the large v� and

4 We will not explore these constructions in any detail here but
merely reiterate the point that a charge-1 scalar is poten-
tially problematic since it enables a baryon-number-violating
dimension-5 operator.

FIG. 3. Allowed parameter space for the light X solution to
the (g � 2)µ anomaly in the U(1)B�3Lµ

model. The shaded
regions are excluded by various experiments, while the region
between the black lines is preferred by (g � 2)µ. The upper
(lower) plot uses kinetic mixing "BX = gX ("BX = gX/10).

small gauge coupling. This scenario belongs to Type A
class of models as explained in Table I.
Type B — A second avenue to address (g �2)µ arises

in this model, invoking a light U(1)Lµ�L⌧
gauge boson X

as a mediator running in the loop [40, 43, 134]. The dis-
crepancy between the experiment and the SM prediction
can be resolved with mX ⇠ 20 MeV and gauge coupling
gX ⇠ 5 · 10�4, nestling snugly in the window allowed
by current experimental constraints, such as CCFR and
Borexino [43, 44]. In fact, even the future DUNE experi-
ment is not expected to cover the entire window [44]. In
this scenario, S1 is entirely superfluous to the anomalies
and can be removed from the model altogether. Addi-
tionally, the small allowed region for X mass and cou-
plings gives a sharp prediction for the U(1)Lµ�L⌧

sector.
We have checked that the small gauge coupling and as-
sociated small kinetic mixing are stable under radiative
corrections. The RK(⇤) anomaly in this scenario is still
explained by a tree-level mediation of S3, and with a
similar allowed parameter space as before.

The U(1)Lµ�L⌧
-breaking VEV, v�, is given as v� =

p
2mX/|q�|gX ⇠ 60 GeV/|q�| while the cross-quartic

coupling induces mixing between real scalars h and �.
This scenario has a chance to leave observable imprints
in the overall Higgs couplings or in the invisible Higgs
decays (h ! XX) if the cross quartic in Eq. (3) is large

*minimal 
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Type A Type B Type C

RK(⇤) , b ! sµµ S3 S3 heavy X

(g � 2)µ S1/R2 light X S1/R2

TABLE I. Three types of muoquark models, which can ad-
dress the muon anomalies for a variety of lepton-flavored
U(1)X gauge groups. For each model class, a field respon-
sible for addressing a corresponding anomaly, is listed. The
an R2 muoquark with SM charges (3, 2, 7/6) can be used as
an alternative to S1 for addressing the (g � 2)µ.

III. ALTERNATIVE MODELS

We now turn our focus to alternative models for the
muon and B-decay anomalies, in some of which the
U(1)B�3Lµ

symmetry is exchanged for other U(1)X sym-
metries. These models o↵er di↵erent scenarios of phe-
nomenological interest.

A. The scenarios for muon anomalies

U(1)B�3Lµ
is only one example of many possible

lepton-flavored gauge extensions of the SM, under which
leptoquarks become muoquarks. Variations of the model
can use di↵erent choices of U(1)X symmetry to ensure
the leptoquarks coupling exclusively to second genera-
tion leptons and fall into three classes shown in Table I
based on what mediators are responsible for the RK(⇤)

and (g � 2)µ anomalies. Below we give some specific ex-
amples of these variations:

Type A — As a showcase example, we trade the
U(1)B�3Lµ

for a U(1)Lµ�L⌧
gauge symmetry to obtain an

extension of the leptoquark model of Ref. [71]. The lepto-
quarks are assigned charge �1 under the symmetry, such
that they still couple exclusively to 2nd generation lep-
tons. The minimal type-I seesaw realization of the neu-
trino mass with the U(1)Lµ�L⌧

-breaking scalar of charge
+1 predicts the two-zero minor structure CR, which
shows some tension in fitting ✓23 and

P
i
m⌫i

[76], thus
more elaborate model building may be needed [133].4

The muoquark solution of the muon anomalies dis-
cussed above applies equally to this model. The main
phenomenological di↵erence is that the gauge vector X

does not couple to quarks and is less constrained at col-
liders. Thus, the X field can more easily elude cur-
rent experimental bound (see Fig. 2 of [43]). For exam-
ple, constraints from neutrino trident production requires
mX & 60 (200) GeV for gX ⇠ 0.1 (0.3). Again, X and �
can simply be decoupled in the limit of the large v� and

4 We will not explore these constructions in any detail here but
merely reiterate the point that a charge-1 scalar is poten-
tially problematic since it enables a baryon-number-violating
dimension-5 operator.

FIG. 3. Allowed parameter space for the light X solution to
the (g � 2)µ anomaly in the U(1)B�3Lµ

model. The shaded
regions are excluded by various experiments, while the region
between the black lines is preferred by (g � 2)µ. The upper
(lower) plot uses kinetic mixing "BX = gX ("BX = gX/10).

small gauge coupling. This scenario belongs to Type A
class of models as explained in Table I.
Type B — A second avenue to address (g �2)µ arises

in this model, invoking a light U(1)Lµ�L⌧
gauge boson X

as a mediator running in the loop [40, 43, 134]. The dis-
crepancy between the experiment and the SM prediction
can be resolved with mX ⇠ 20 MeV and gauge coupling
gX ⇠ 5 · 10�4, nestling snugly in the window allowed
by current experimental constraints, such as CCFR and
Borexino [43, 44]. In fact, even the future DUNE experi-
ment is not expected to cover the entire window [44]. In
this scenario, S1 is entirely superfluous to the anomalies
and can be removed from the model altogether. Addi-
tionally, the small allowed region for X mass and cou-
plings gives a sharp prediction for the U(1)Lµ�L⌧

sector.
We have checked that the small gauge coupling and as-
sociated small kinetic mixing are stable under radiative
corrections. The RK(⇤) anomaly in this scenario is still
explained by a tree-level mediation of S3, and with a
similar allowed parameter space as before.

The U(1)Lµ�L⌧
-breaking VEV, v�, is given as v� =

p
2mX/|q�|gX ⇠ 60 GeV/|q�| while the cross-quartic

coupling induces mixing between real scalars h and �.
This scenario has a chance to leave observable imprints
in the overall Higgs couplings or in the invisible Higgs
decays (h ! XX) if the cross quartic in Eq. (3) is large
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both the (g � 2)µ and rare B decay anomalies, and therefore another heavy mediator such as
S3 ⌘ (3,3, 1/3, XS3) is required. Section 3.5 then contains several benchmark models that
can solve both the (g � 2)µ and rare B decay anomalies, with most of the phenomenological
discussion focused on Xµ while for the S3 phenomenology we refer to [1, 79, 86, 89, 90].

3.1 Muon (g � 2)µ

Recently, the Muon g � 2 collaboration at the Fermilab announced its first preliminary
measurement of the muon anomalous magnetic moment [124–126], consistent with the BNL
result [2]. The combination of the two experimental results (aavg

µ ) differs by 4.2� [124] from
the SM prediction (aSM

µ ),4

�a
R

µ = a
avg
µ � a

SM
µ = (251 ± 59) ⇥ 10

�11
. (3.1)

The SM prediction obtained on the lattice by the BMW collaboration [25], on the other hand,
differs by only 1.6 � from the experimental average, and is thus consistent with �aµ = 0. In
the numerical studies we use Eq. (3.1) with the caveat that the situation calls for further
studies of the SM prediction.

The light gauge boson Xµ that couples to muons,

L � gX µ /X(qV � qA�5)µ , (3.2)

gives the following 1-loop contribution to the muon anomalous magnetic moment, see, e.g.,
Refs. [122, 129],

�aµ =
g
2
X

8⇡2
r
2
µ

⇥
q
2
V IV (rµ) + q

2
A IA(rµ)

⇤
=

g
2
X

8⇡2

(
q
2
V

� 2 r
2
µ q

2
A
, mX ⌧ mµ

2
3r

2
µ

⇥
q
2
V

� 5 q
2
A

⇤
, mX � mµ

, (3.3)

where r` = m`/mX and

IV (r`) =

Z 1

0
dx

2x
2
(1 � x)

1 � x + r
2
`
x2

, IA(r`) = �

Z 1

0
dx

2x(1 � x)(4 � x) + 4r
2
`
x

3

1 � x + r
2
`
x2

(3.4)

Both IV (r`) and IA(r`) are monotonic functions of mX such that the vector (axial)
contributions to aµ are always positive (negative). Thus, in order to account for the central
value of �aµ in Eq. (3.1), the vector coupling needs to be nonzero, qV 6= 0. Numerically,

gX =

✓
�aµ

251 ⇥ 10�11

◆1/2
(

4.5 ⇥ 10
�4

⇥
q
2
V

� 2 q
2
A

r
2
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⇤�1/2
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5.5 ⇥ 10
�4

r
�1/2
µ

⇥
q
2
V

� 5 q
2
A

⇤�1/2
, mX � mµ.

(3.5)

For mX below or comparable with the muon mass, the gauge coupling required to explain
the observed �aµ is gX ⇠ O(10

�4
). To get the correct sign, Eq. (3.5) implies that Xµ needs

to predominantly couple vectorially, with the axial-to-vector ratio of couplings required to
be below

��qA/qV

�� < mX/(
p

2mµ) ⌧ 1 when mX ⌧ mµ, and below
��qA/qV

�� < 1/
p

5 when
mµ ⌧ mX .

4Obtained from the measurements of R-ratios, see [3] and reference therein. This prediction is supported
by the electroweak precision tests, where the same e+e� !hadrons data is used to calculate ↵(mZ) [127, 128].
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=> Neutrino trident production:

3.2 Neutrino trident production

The neutrino trident production provides important bounds on the muonic force explanations
of the (g � 2)µ anomaly. The muon neutrino and the left-handed muon form an electroweak
doublet and thus share the same coupling to Xµ, proportional to / (qV + qA). Since any
explanation of the (g � 2)µ anomaly must be mostly vectorial, a flavor diagonal explanation
of the (g � 2)µ anomaly necessarily implies NP contributions to the trident production
⌫µN ! ⌫µNµ

+
µ

� induced by the ⌫µ neutrino scattering on nucleus N . The strongest
bound on the NP contributions to the trident production cross section is from the CCFR
experiment that reported �CCFR/�SM = 0.82± 0.28 [130], where �CCFR is the measured cross
section and �SM the SM prediction.

The calculation of the trident production cross section in the presence of NP was
performed in Ref. [48], by considering the scattering of neutrinos on the potential photons
sourced by the nucleus, ⌫µ� ! ⌫µ�µ

+
µ

�. The corresponding matrix element squared is
given by

|M⌫µ� |
2

= |M0|
2
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X

V

m
2
X

k2 � m
2
X

�2

+


C

SM
A � C

X

A

m
2
X

k2 � m
2
X

�2
!

, (3.6)

where k is the momentum flowing through the Xµ propagator in the NP tree level diagram.
The SM contribution is due to the W/Z exchanges and is encoded in the coefficients
C

SM
V

=
1
2 +2 sin

2
✓W and C

SM
A

=
1
2 , and in the common prefactor M0. The NP contributions

are given by the NP coefficients

C
X

V,A = g
2
X qV,A (qV + qA)

v
2
SM

m
2
X

, (3.7)

conveniently normalized to the Fermi constant.
In the numerical results we use the recast of experimental results from Ref. [48], but

with an appropriate approximation that extends it to the case of nonzero, yet still subleading,
axial couplings of Xµ. In Ref. [48] the integrated cross section �(⌫µN ! ⌫µNµ

+
µ

�
) was

computed for a purely vectorial NP force with qA = 0, qV = 1, and the bounds on the
couplings were deduced by comparing the predictions with the experimental measurements,
paying special attention to the experimental cuts. In Eq. (3.6), because C

SM
V

6= C
SM
A

, the
NP axial coupling has a different relative weight between the pure NP contribution and the
interference term with the SM. Consequently, the phenomenological analysis of Ref. [48]
does not apply without changes to the more general case of Eq. (3.6). In Appendix B.1 we
explain in detail how to reinterpret this bound with O(10%) accuracy.

3.3 Other constraints

Borexino

The Borexino experiment measured a cross section for the elastic scattering of 7Be solar
neutrinos on electrons [131, 132]. Because of neutrino oscillations the flux on Earth is
composed of all three neutrino flavors incoherently scattering on electrons. The tree-level Xµ

exchanges can modify the scattering rate from the SM expectation. Since no deviation was
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transfer of the neutrinos in COHERENT is ⇠ 50 MeV, right in the middle of the viable
mX window for a (g � 2)µ explanation, the effective interaction (3.8) overestimates the NP
contribution to the cross section. Nevertheless, we use the analysis of Ref. [162] to place an
aggressive bound from the COHERENT data on our benchmarks.

3.4 A single mediator for both (g � 2)µ and rare B decay anomalies?

An interesting question is whether a single mediator could be responsible for both the
(g � 2)µ and rare B decay anomalies. Here we explore to what extent this is possible when
the mediator is a neutral spin-1 boson, Xµ. We keep the discussion quite general so that
the results also apply to the different U(1)X models.

We construct an EFT with the dynamical gauge field Xµ and the U(1)X symmetry-
breaking scalar �, while the rest of the BSM spectrum is integrated out. In particular, the
quark flavor-violating Xbs interaction, needed to explain the anomalies in rare B decays, is a
result of some unspecified short-distance physics (e.g., from integrating out heavy vector-like
fermions). The relevant effective Xµ interactions are given by

Le↵ � + gX (qV + qA) ⌫µL /X ⌫µL + gX µ /X (qV � qA �5) µ

+

h
b /X (g

bs

L PL + g
bs

R PR) s + H.c.

i
, (3.9)

extending the effective Lagrangian in Eq. (3.2). For U(1)X models, the second line can arise
from higher-dimension gauge invariant operators, for example from (�

†
Dµ�)(Q2�

µ
Q3), . . .,

after the breaking of U(1)X by the � VEV. The flavor-diagonal couplings to muons and
muon neutrinos, on the other hand, occur in U(1)X models directly from charging them
under the U(1)X group.

The EFT in Eq. (3.9) allows us to address the following question: Can the anomalies in
both (g � 2)µ and rare B decays be explained by one-loop and tree-level exchanges of Xµ,
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both the (g � 2)µ and rare B decay anomalies, and therefore another heavy mediator such as
S3 ⌘ (3,3, 1/3, XS3) is required. Section 3.5 then contains several benchmark models that
can solve both the (g � 2)µ and rare B decay anomalies, with most of the phenomenological
discussion focused on Xµ while for the S3 phenomenology we refer to [1, 79, 86, 89, 90].

3.1 Muon (g � 2)µ

Recently, the Muon g � 2 collaboration at the Fermilab announced its first preliminary
measurement of the muon anomalous magnetic moment [124–126], consistent with the BNL
result [2]. The combination of the two experimental results (aavg

µ ) differs by 4.2� [124] from
the SM prediction (aSM

µ ),4

�a
R

µ = a
avg
µ � a

SM
µ = (251 ± 59) ⇥ 10

�11
. (3.1)

The SM prediction obtained on the lattice by the BMW collaboration [25], on the other hand,
differs by only 1.6 � from the experimental average, and is thus consistent with �aµ = 0. In
the numerical studies we use Eq. (3.1) with the caveat that the situation calls for further
studies of the SM prediction.

The light gauge boson Xµ that couples to muons,

L � gX µ /X(qV � qA�5)µ , (3.2)

gives the following 1-loop contribution to the muon anomalous magnetic moment, see, e.g.,
Refs. [122, 129],
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g
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where r` = m`/mX and
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Z 1

0
dx

2x
2
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2
`
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0
dx

2x(1 � x)(4 � x) + 4r
2
`
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2
`
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(3.4)

Both IV (r`) and IA(r`) are monotonic functions of mX such that the vector (axial)
contributions to aµ are always positive (negative). Thus, in order to account for the central
value of �aµ in Eq. (3.1), the vector coupling needs to be nonzero, qV 6= 0. Numerically,

gX =

✓
�aµ

251 ⇥ 10�11

◆1/2
(

4.5 ⇥ 10
�4

⇥
q
2
V

� 2 q
2
A

r
2
µ

⇤�1/2
, mX ⌧ mµ,

5.5 ⇥ 10
�4

r
�1/2
µ

⇥
q
2
V

� 5 q
2
A

⇤�1/2
, mX � mµ.

(3.5)

For mX below or comparable with the muon mass, the gauge coupling required to explain
the observed �aµ is gX ⇠ O(10

�4
). To get the correct sign, Eq. (3.5) implies that Xµ needs

to predominantly couple vectorially, with the axial-to-vector ratio of couplings required to
be below

��qA/qV

�� < mX/(
p

2mµ) ⌧ 1 when mX ⌧ mµ, and below
��qA/qV

�� < 1/
p

5 when
mµ ⌧ mX .

4Obtained from the measurements of R-ratios, see [3] and reference therein. This prediction is supported
by the electroweak precision tests, where the same e+e� !hadrons data is used to calculate ↵(mZ) [127, 128].
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(g � 2)µ and rare B decay anomalies. Here we explore to what extent this is possible when
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the results also apply to the different U(1)X models.
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muon neutrinos, on the other hand, occur in U(1)X models directly from charging them
under the U(1)X group.

The EFT in Eq. (3.9) allows us to address the following question: Can the anomalies in
both (g � 2)µ and rare B decays be explained by one-loop and tree-level exchanges of Xµ,
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The NP effects that could explain R
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Figure 1. Parameter space for the light Xµ solution to the (g � 2)µ anomaly with the 2� region
and the central values in solid and dashed black, respectively. The gray region is excluded by the
neutrino trident production (see Section 3.4). In the orange region, the LHCb measurement of
R

[1.1,6]
K can be explained at the 1� level while satisfying the constraint on q

bs
L,R from BR(B ! K⌫⌫).

Let us now consider the one-loop contributions to (g � 2)µ from Xµ and either e, µ or
⌧ running in the loop (and forget for the moment about the UV completions). For e and ⌧

running in the loop, the Xµ couplings are flavor violating, a possibility suggested in [123].
The (g � 2)µ excess can in principle be explained by the flavor violating Xµ⌧ coupling, with
mX > 1.7GeV. In contrast, the Xeµ coupling leads to a negative contributions to �aµ.
For the flavor conserving option, with Xµ coupling to muons inducing the (g � 2)µ at one
loop, is viable, as long as vector couplings are larger than axial ones, see the discussion
in Section 3.1. If we want to explain (g � 2)µ and the anomalies in rare B decays at the
same time, the requirement of a sizable Xµµ coupling to explain the latter precludes an
explanation of (g �2)µ predominantly through flavor violating Xµ⌧ couplings. The presence
of both Xµ⌧ and Xµµ couplings would lead to too large BR(⌧ ! 3µ) in conflict with
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Figure 2. Parameter space for the light Xµ solution of the (g � 2)µ anomaly in the U(1)Lµ�L⌧

model (left) and B � 3Lµ model (right). The shaded regions are excluded by various experiments,
as denoted in the legend, with dotted lines giving the future projections for the exclusions, while the
2� region between the black solid lines is preferred by (g � 2)µ (dashed line for central values). [JZ:
Here maybe it would be useful to show instead of B � 3Lµ on the right panel a different mixing
choice?]

3.5.2 Gauged B � 3Lµ

The B � 3Lµ gauge group has charges

Xµ = XN2 = �3, Xe,⌧ = XN1,N2 = 0, XQi,Ui,Di =
1
3 . (3.15)

This is another example of the vector category U(1)X charge assignments. The U(1)B�3Lµ

was the first gauge group used in a muoquark construction [1]. This group is particularly
suitable for the task at hand because it allows for a phenomenologically viable type-I seesaw
with only one symmetry-breaking scalar while still forbidding U(1)B-violating dimension-5
operators. In contrast to the Lµ �L⌧ model, a sizable kinetic mixing parameter is generated
by the RG running. As a reasonable choice, we take as benchmark numerical value " = 0.1gX .

The bounds on the B � 3Lµ model in the sub-GeV mass region for the light vector,
which can explain the (g � 2)µ anomaly (black lines), is reported in Fig. 2 (right). The
new features, with respect to the plot on the left, are the NA62 and LHCb bounds due
to the quark couplings. The bound from Borexino (red region), mainly sensitive to the
electron coupling, allows for a possible solution to the (g�2)µ anomaly when mX & 10 MeV,
while the BaBar bound kicks in at mX � 2mµ. This leaves an unconstrained region
200 MeV & mX & 10 MeV and gX ⇠ 2 ⇥ 10

�4 that can explain the (g � 2)µ anomaly.
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observed, this implies bounds on Xµ couplings to fermions that are due to a combination
of direct U(1)X charges and induced couplings from kinetic mixing of Xµ with the photon
(in particular to the electron). For the numerical estimates we closely follow the analysis
in Ref. [49]. The bound becomes stronger if Xµ also couples to tau and electron neutrinos
in addition to the muon neutrino and becomes weaker if the direct coupling of Xµ to the
electron cancels against the kinetic-mixing-induced one.

Light resonance searches

New light resonances can be probed by a number of intensity frontier experiments, summa-
rized, e.g., in Refs. [133, 134]. In the numerical estimates we mostly use DarkCast [133]
to recast the existing and future projections of dark photon bounds. The Xµµ coupling
is currently probed by NA62 (K ! µ⌫X decays) [135, 136], and BaBar (searches for
X ! µµ decays in the 4µ final state) [137]. In case of couplings to baryon number and/or
to electron via kinetic mixing there are additional bounds from the LHCb dark photon
searches [138–140], NA64 [141], BaBar [142] and NA62 (invisible ⇡

0 decays) [143].
For future projections on the sensitivity to Xµµ coupling we consider NA64µ [144–147],

M3 [148], Belle-II [149], NA62 [135] and ATLAS [150]. For other couplings (e.g. to hadrons)
we also consider the projections for LHCb from Ref. [138].

Astrophysics and cosmology

The parameter region of interest easily passes the astrophysical and cosmological constraints.
The Xµ decays to neutrinos before the onset of BBN for mX & 6 MeV [151]. The potential
supernova 1987A limits discussed in [152] (see [153] for the robustness of the bound) apply
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Neutrino NSI important for the valence quarks!
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Figure 3. Parameter space for the light X solution to the (g � 2)µ anomaly in the U(1)Le�Lµ

model. The shaded regions are excluded by various experiments, as denoted in the legend, while the
2� region between the black lines is preferred by (g � 2)µ (dashed lines denote central values).

3.5.3 Gauged Le � Lµ

As an alternative to the Lµ � L⌧ model, a simple permutation of the charges gives a model
with the gauged Le � Lµ symmetry,

X⌧ = XN3 = 0, Xµ = �Xe = 1, XN2 = �XN1 . (3.16)

The large electron charge greatly enhances the Xµ interactions with electrons. Since such
couplings are targeted by many of the light-sector searches one may naively expect for the
experimental searches to disqualify the U(1)Le�Lµ model as an explanation of (g � 2)µ.

While this expectation is indeed borne out in most of the parameter space, a loophole
that circumvents the stringent electron based bounds is if the kinetic mixing cancels part
of the coupling of the physical Xµ to the electrons. The effective charge of the electron is
given by

Xe↵ = Xe �
e

gX

", (3.17)

so it is possible that |qe↵ | ⌧ 1 for a suitable choice of ". Fig. 3 (left) gives the constraints
that are obtained for " = 0 in the UV, in which case the (g �2)µ preferred region is excluded
(2� band between the black solid lines, dashed line denotes the central values). Fig. 3 (right),
on the other hand, illustrates that a window of parameter space opens up, in which (g � 2)µ

explanation is still phenomenologically viable, if there is a %-level tuning between direct
couplings to the electrons and the one induced by kinetic mixing parameter ". Equivalently,
this can be viewed as adjusting the charges with a hypercharge-proportional component in
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Gauged Le − Lμ

• The electron induced bounds from NA64, Borexino and NSI
• The kinetic mixing can relax the first two, but not the NSI
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Figure 4. Parameter space for the light X solution to the (g � 2)µ anomaly in the third-family
quark model U(1)3B3�8Lµ�L⌧ model. The shaded regions are excluded by various experiments, as
denoted in the legend, while the 2� region between the black lines is preferred by (g � 2)µ (dashed
lines denote central values).

such a manner as to leave the electron uncharged (see Appendix A.1). Indeed the plot on
the right is similar to Fig. 2 (right).

3.5.4 Gauged 3B3 � 8Lµ � L⌧

As a benchmark for a third-family-quark model, we investigate the U(1)3B3�8Lµ�L⌧ model of
Eq. (2.35). As discussed in Sec. 2.3, a (g � 2)µ solution of this type should be down-aligned
to avoid strong constraints from B decays. However, this leaves strong bounds from D � D

mixing and D ! ⇡X decays. Fig. 4, demonstrates that the D meson bounds are strong
enough to completely rule out the light X (g � 2)µ solution in this model. The only viable
models of this kind would be one with |XL2,E2 | � |Xq3 | in order to suppress NP couplings
to the quark sector relative to the leptons, which could be achieved by taking a linear
combination of one of the third-family charge assignments and the U(1)µ�⌧ . Clearly one
could approximate the physics of U(1)µ�⌧ arbitrarily well by allowing for sufficiently large
charges.

3.5.5 Gauged B3 � Lµ

[JZ: TBD]

3.5.6 Gauged 2B3 � Lµ � L⌧

[JZ: TBD]

3.5.7 Gauged B3 + Le � Lµ � L⌧

[JZ: an example where we can cancel the Le with kinetic mixing]
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• Third-family quark  [down-alignment]

• FCNCs in  interactions call for the quark universality!
U(1)X

Xμ
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• The dimension-4 muon Yukawa is forbidden by U(1)X

XL2
≠ XE2

• Introduce two scalar muoquarks S± = (3, 2, 7/6, XS±
)

• Mix them via  breaking U(1)X

Figure 7. Preferred parameter space in the muoquark model for the radiative muon mass generation
as implied by the (g � 2)µ anomaly. See the main text in Sec. 4 for further details.

The preferred region in the S1, S2 mass plane, taking QS = 5/3, that explains the observed
deviations in �aµ is shown in Fig. 7 as the brown shaded band.8

U(1)X completion

The above scenario can be elegantly UV completed in our setup. The scan over the anomaly
free charge assignments in Section 2 reveals a family of solutions for which the dimension-4
muon Yukawa is forbidden. This occurs when the U(1)Xµ charge of the left-handed muon is
different from the charge of the right-handed muon. We assume that in addition to the SM
there are three scalars, the S± in the (3, 2, 7/6) representation of the SM gauge group and
the SM singlet �. The extra scalars carry the following charges under the U(1)Xµ gauge
symmetry

XS+ = �XL2 + XUi = �Xµ + Xq , (4.8)
XS� = �XE2 + XQi = �Xµ � bE2 + Xq , (4.9)
X� = �XS� + XS+ = bE2 . (4.10)

where Xq = (�Xe � Xµ � X⌧ )/9 (see Section 2.2.2). The leptoquarks S+(S�) have allowed
couplings to the left-(right-)handed muons, respectively, i.e., they are the muoquarks. An
explicit mass mixing between S+ and S� is forbidden by the U(1)Xµ gauge symmetry.
However, there is a gauge invariant trilinear scalar coupling

L � �A�S
†
+S� + H.c. , (4.11)

that gives rise to the U(1)Xµ mass mixing term, em2
S

= Av�, once the SM singlet � gets a
VEV, h�i = v� and breaks U(1)Xµ spontaneously. The radiative generation of the muon

8We note in passing that requiring a positive contribution to �aµ even in this more general case still
remains quite restrictive regarding the viable choices for the leptoquark gauge representations. In particular,
the (3, 1, 1/3) scalar leptoquark is not a phenomenologically viable possibility.
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Figure 6. A muoquark model for the radiative muon mass generation that also contributes to the
anomalous magnetic moment through the above diagram. See main text in Sec. 4 for further details.

bound (that the Borexino bound is relevant even for small induced couplings to electrons
we saw already in the case of the Lµ�⌧ model).

Even though the two models, L̃�3B and L̃µ�⌧ , were chosen such that they would avoid
the most stringent bounds, it is clear from Fig. 5 that the Borexino and CCFR bounds are
still strong enough to almost completely close the window on the region of parameter space
that would lead to the explanation of the (g � 2)µ anomalies, assuming that the kinetic
mixing vanishes in the UV.7 It would be interesting to relax the model search criteria beyond
|XF |  10. We anticipate that this would generate additional feasible models with axial
currents that are further suppressed, and also have a larger muon-to-electron charge ratio,
further relaxing the experimental bounds.

4 Muon mass and (g � 2)µ at one loop

The observed smallness of Yukawa couplings can be explained in models in which fermion
masses are generated from radiative corrections [170, 171]. Here we focus on radiatively
generated muon mass. Since both the muon mass and the muon anomalous magnetic
moment are chirality flipping operators, the TeV-scale NP that at one-loop generates the
muon mass then generically also gives correlated one-loop NP contributions to (g � 2)µ [172].

Model example

Let us consider a scenario in which the SM is extended by two scalar leptoquarks, S+ and S�,
in the (3, 2, 7/6) representation of the SM gauge group. This leptoquark representation is
usually called R2 as in Ref. [77], however, for clarity we use a simpler notation in this section.
We assume that the leptoquarks are coupled to the third generation quarks, q

3
L, tR, and the

second generation leptons, `
2
L, µR. The model is assumed to have a Z2 parity symmetry

under which S� and µR are odd, while all the other fields are even,

L � ⌘L tR`
2
L i�2S+ � ⌘R q

3
L µR S� + H.c. . (4.1)

7Note that we still use DarkCast to draw the exclusion regions even though only contributions from
vector couplings are implemented in it at present. While this captures the dominant contributions the
correct bounds should be even slightly stronger than what is shown in Fig. 5.
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Figure 7. Preferred parameter space in the muoquark model for the radiative muon mass generation
as implied by the (g � 2)µ anomaly. See the main text in Sec. 4 for further details.

The preferred region in the S1, S2 mass plane, taking QS = 5/3, that explains the observed
deviations in �aµ is shown in Fig. 7 as the brown shaded band.8

U(1)X completion

The above scenario can be elegantly UV completed in our setup. The scan over the anomaly
free charge assignments in Section 2 reveals a family of solutions for which the dimension-4
muon Yukawa is forbidden. This occurs when the U(1)Xµ charge of the left-handed muon is
different from the charge of the right-handed muon. We assume that in addition to the SM
there are three scalars, the S± in the (3, 2, 7/6) representation of the SM gauge group and
the SM singlet �. The extra scalars carry the following charges under the U(1)Xµ gauge
symmetry

XS+ = �XL2 + XUi = �Xµ + Xq , (4.8)
XS� = �XE2 + XQi = �Xµ � bE2 + Xq , (4.9)
X� = �XS� + XS+ = bE2 . (4.10)

where Xq = (�Xe � Xµ � X⌧ )/9 (see Section 2.2.2). The leptoquarks S+(S�) have allowed
couplings to the left-(right-)handed muons, respectively, i.e., they are the muoquarks. An
explicit mass mixing between S+ and S� is forbidden by the U(1)Xµ gauge symmetry.
However, there is a gauge invariant trilinear scalar coupling

L � �A�S
†
+S� + H.c. , (4.11)

that gives rise to the U(1)Xµ mass mixing term, em2
S

= Av�, once the SM singlet � gets a
VEV, h�i = v� and breaks U(1)Xµ spontaneously. The radiative generation of the muon

8We note in passing that requiring a positive contribution to �aµ even in this more general case still
remains quite restrictive regarding the viable choices for the leptoquark gauge representations. In particular,
the (3, 1, 1/3) scalar leptoquark is not a phenomenologically viable possibility.
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AG, Soreq, Stangl, Thomsen, Zupan; 2107.07518Figure 5. Parameter space for the light X solution to the (g � 2)µ anomaly in the U(1)L̃�3B model.
The shaded regions are excluded by various experiments, while the region between the black lines is
preferred by (g � 2)µ.

3.5.8 Chiral models

We now entertain some of the more exotic options for the U(1)X group from among the
models of Sec. 2.2.2 with chiral charge assignments.
L̃ � 3B model:

(XL1 , XL2 , XL3) = (�3, 8, 4), (XE1 , XE2 , XE3) = (�2, 9, 2),

(XN1 , XN2 , XN3) = (�1, 3, 7), XQi,Di,Ui = �1, (3.18)

[JZ: Added:]L̃ � 9B3 model:

(XL1 , XL2 , XL3) = (�3, 8, 4), (XE1 , XE2 , XE3) = (�2, 9, 2),

(XN1 , XN2 , XN3) = (�1, 3, 7), XQ3,D3,U3 = �3, XQ1,2,D1,2,U1,2 = 0, (3.19)

L̃µ�⌧ model:

(XL1 , XL2 , XL3) = (0, 7, �7), (XE1 , XE2 , XE3) = (�3, 8, �5),

(XN1 , XN2 , XN3) = (5, 3, 8), XQi,Di,Ui = 0. (3.20)

Common for these models is that they have large vectorial coupling to the muons and only
a small axial component, which then maximizes the NP contributions to the (g � 2)µ with
the right sign to explain the anomaly. Both models also maintain a large ratio between
the muon and electron charges, without which there is little hope of evading the Borexino
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• The dimension-4 muon Yukawa is forbidden by U(1)X
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Figure 4. A muoquark model for the radiative muon mass generation that also contributes to

the anomalous magnetic moment through the above diagram. See main text in Sec. 5 for further

details.

5 Muon mass and (g � 2)µ at one loop

The observed smallness of Yukawa couplings can be explained in models in which fermion
masses are generated from radiative corrections [61, 62]. Here we focus on the case of
radiatively generated muon mass. Since both the muon mass and the muon anomalous
magnetic moment are chirality flipping operators, the TeV-scale NP that generates at one-
loop the muon mass then generically also gives correlated NP contributions to (g �2)µ [63].

Let us consider a scenario in which the SM is extended by two scalar leptoquarks,
S+ and S�, in (3, 2, 7/6) representation of the SM gauge group. We assume that the
leptoquarks are coupled to the third generation quarks, q

3
L
, tR, and the second generation

leptons, `
2
L
, µR. The model is assumed to have a Z2 parity symmetry under which S� and

µR are odd while all the other fields are even,

L � ⌘L tR`
2
L i�2S+ � ⌘R q

3
L µR S� + H.c. . (5.1)

The global phase rotations can be used to make the couplings ⌘L,R real without loss of
generality. We assume that the left-handed quark doublet is defined in the down-quark
mass eigenstate basis and take Vtb = 1.

The Z2 symmetry forbids the direct muon Yukawa coupling, `
2
LH̃µR, which is generated

only radiatively due to the presence of a Z2 soft breaking term,

Lbreak � �m̃
2
S
†
+S� + H.c. . (5.2)

This induces a finite one-loop contribution to the muon mass as well as to the anomalous
magnetic moment. Let SH and SL be the heavy and the light mass eigenstates, respectively,
while ✓LH is their mixing angle. For simplicity, let us assume m

2
S

⌘ m
2
S+

= m
2
S�

and m̃
2

⌧

m
2
S
, leading to the maximal mixing ✓LH = ⇡/4 and the physical masses m

2
SH(L)

= m
2
S

±m̃
2.

In this limit,

�aµ =
m

2
µ

m
2
t

F (m
2
S/m

2
t ) , (5.3)

where
F (x) = 2

QS(1 � x
2
) + x(2 + x)

(x � 1)2
+

1 + 2QS(1 � x) + 2x

1 � x + log x
. (5.4)

– 14 –

XL2
≠ XE2

• Introduce two scalar muoquarks S± = (3, 2, 7/6, XS±
)

• Mix them via  breaking U(1)X
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Figure 6. A muoquark model for the radiative muon mass generation that also contributes to the
anomalous magnetic moment through the above diagram. See main text in Sec. 4 for further details.

bound (that the Borexino bound is relevant even for small induced couplings to electrons
we saw already in the case of the Lµ�⌧ model).

Even though the two models, L̃�3B and L̃µ�⌧ , were chosen such that they would avoid
the most stringent bounds, it is clear from Fig. 5 that the Borexino and CCFR bounds are
still strong enough to almost completely close the window on the region of parameter space
that would lead to the explanation of the (g � 2)µ anomalies, assuming that the kinetic
mixing vanishes in the UV.7 It would be interesting to relax the model search criteria beyond
|XF |  10. We anticipate that this would generate additional feasible models with axial
currents that are further suppressed, and also have a larger muon-to-electron charge ratio,
further relaxing the experimental bounds.

4 Muon mass and (g � 2)µ at one loop

The observed smallness of Yukawa couplings can be explained in models in which fermion
masses are generated from radiative corrections [170, 171]. Here we focus on radiatively
generated muon mass. Since both the muon mass and the muon anomalous magnetic
moment are chirality flipping operators, the TeV-scale NP that at one-loop generates the
muon mass then generically also gives correlated one-loop NP contributions to (g � 2)µ [172].

Model example

Let us consider a scenario in which the SM is extended by two scalar leptoquarks, S+ and S�,
in the (3, 2, 7/6) representation of the SM gauge group. This leptoquark representation is
usually called R2 as in Ref. [77], however, for clarity we use a simpler notation in this section.
We assume that the leptoquarks are coupled to the third generation quarks, q

3
L, tR, and the

second generation leptons, `
2
L, µR. The model is assumed to have a Z2 parity symmetry

under which S� and µR are odd, while all the other fields are even,

L � ⌘L tR`
2
L i�2S+ � ⌘R q

3
L µR S� + H.c. . (4.1)

7Note that we still use DarkCast to draw the exclusion regions even though only contributions from
vector couplings are implemented in it at present. While this captures the dominant contributions the
correct bounds should be even slightly stronger than what is shown in Fig. 5.

– 24 –

Figure 7. Preferred parameter space in the muoquark model for the radiative muon mass generation
as implied by the (g � 2)µ anomaly. See the main text in Sec. 4 for further details.

The preferred region in the S1, S2 mass plane, taking QS = 5/3, that explains the observed
deviations in �aµ is shown in Fig. 7 as the brown shaded band.8

U(1)X completion

The above scenario can be elegantly UV completed in our setup. The scan over the anomaly
free charge assignments in Section 2 reveals a family of solutions for which the dimension-4
muon Yukawa is forbidden. This occurs when the U(1)Xµ charge of the left-handed muon is
different from the charge of the right-handed muon. We assume that in addition to the SM
there are three scalars, the S± in the (3, 2, 7/6) representation of the SM gauge group and
the SM singlet �. The extra scalars carry the following charges under the U(1)Xµ gauge
symmetry

XS+ = �XL2 + XUi = �Xµ + Xq , (4.8)
XS� = �XE2 + XQi = �Xµ � bE2 + Xq , (4.9)
X� = �XS� + XS+ = bE2 . (4.10)

where Xq = (�Xe � Xµ � X⌧ )/9 (see Section 2.2.2). The leptoquarks S+(S�) have allowed
couplings to the left-(right-)handed muons, respectively, i.e., they are the muoquarks. An
explicit mass mixing between S+ and S� is forbidden by the U(1)Xµ gauge symmetry.
However, there is a gauge invariant trilinear scalar coupling

L � �A�S
†
+S� + H.c. , (4.11)

that gives rise to the U(1)Xµ mass mixing term, em2
S

= Av�, once the SM singlet � gets a
VEV, h�i = v� and breaks U(1)Xµ spontaneously. The radiative generation of the muon

8We note in passing that requiring a positive contribution to �aµ even in this more general case still
remains quite restrictive regarding the viable choices for the leptoquark gauge representations. In particular,
the (3, 1, 1/3) scalar leptoquark is not a phenomenologically viable possibility.
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• The dimension-4 muon Yukawa is forbidden by U(1)X
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Figure 4. A muoquark model for the radiative muon mass generation that also contributes to

the anomalous magnetic moment through the above diagram. See main text in Sec. 5 for further

details.

5 Muon mass and (g � 2)µ at one loop

The observed smallness of Yukawa couplings can be explained in models in which fermion
masses are generated from radiative corrections [61, 62]. Here we focus on the case of
radiatively generated muon mass. Since both the muon mass and the muon anomalous
magnetic moment are chirality flipping operators, the TeV-scale NP that generates at one-
loop the muon mass then generically also gives correlated NP contributions to (g �2)µ [63].

Let us consider a scenario in which the SM is extended by two scalar leptoquarks,
S+ and S�, in (3, 2, 7/6) representation of the SM gauge group. We assume that the
leptoquarks are coupled to the third generation quarks, q

3
L
, tR, and the second generation

leptons, `
2
L
, µR. The model is assumed to have a Z2 parity symmetry under which S� and

µR are odd while all the other fields are even,

L � ⌘L tR`
2
L i�2S+ � ⌘R q

3
L µR S� + H.c. . (5.1)

The global phase rotations can be used to make the couplings ⌘L,R real without loss of
generality. We assume that the left-handed quark doublet is defined in the down-quark
mass eigenstate basis and take Vtb = 1.

The Z2 symmetry forbids the direct muon Yukawa coupling, `
2
LH̃µR, which is generated

only radiatively due to the presence of a Z2 soft breaking term,

Lbreak � �m̃
2
S
†
+S� + H.c. . (5.2)

This induces a finite one-loop contribution to the muon mass as well as to the anomalous
magnetic moment. Let SH and SL be the heavy and the light mass eigenstates, respectively,
while ✓LH is their mixing angle. For simplicity, let us assume m

2
S

⌘ m
2
S+

= m
2
S�

and m̃
2

⌧

m
2
S
, leading to the maximal mixing ✓LH = ⇡/4 and the physical masses m

2
SH(L)

= m
2
S

±m̃
2.

In this limit,

�aµ =
m

2
µ

m
2
t

F (m
2
S/m

2
t ) , (5.3)

where
F (x) = 2

QS(1 � x
2
) + x(2 + x)

(x � 1)2
+

1 + 2QS(1 � x) + 2x

1 � x + log x
. (5.4)
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Figure 6. A muoquark model for the radiative muon mass generation that also contributes to the
anomalous magnetic moment through the above diagram. See main text in Sec. 4 for further details.

bound (that the Borexino bound is relevant even for small induced couplings to electrons
we saw already in the case of the Lµ�⌧ model).

Even though the two models, L̃�3B and L̃µ�⌧ , were chosen such that they would avoid
the most stringent bounds, it is clear from Fig. 5 that the Borexino and CCFR bounds are
still strong enough to almost completely close the window on the region of parameter space
that would lead to the explanation of the (g � 2)µ anomalies, assuming that the kinetic
mixing vanishes in the UV.7 It would be interesting to relax the model search criteria beyond
|XF |  10. We anticipate that this would generate additional feasible models with axial
currents that are further suppressed, and also have a larger muon-to-electron charge ratio,
further relaxing the experimental bounds.

4 Muon mass and (g � 2)µ at one loop

The observed smallness of Yukawa couplings can be explained in models in which fermion
masses are generated from radiative corrections [170, 171]. Here we focus on radiatively
generated muon mass. Since both the muon mass and the muon anomalous magnetic
moment are chirality flipping operators, the TeV-scale NP that at one-loop generates the
muon mass then generically also gives correlated one-loop NP contributions to (g � 2)µ [172].

Model example

Let us consider a scenario in which the SM is extended by two scalar leptoquarks, S+ and S�,
in the (3, 2, 7/6) representation of the SM gauge group. This leptoquark representation is
usually called R2 as in Ref. [77], however, for clarity we use a simpler notation in this section.
We assume that the leptoquarks are coupled to the third generation quarks, q

3
L, tR, and the

second generation leptons, `
2
L, µR. The model is assumed to have a Z2 parity symmetry

under which S� and µR are odd, while all the other fields are even,

L � ⌘L tR`
2
L i�2S+ � ⌘R q

3
L µR S� + H.c. . (4.1)

7Note that we still use DarkCast to draw the exclusion regions even though only contributions from
vector couplings are implemented in it at present. While this captures the dominant contributions the
correct bounds should be even slightly stronger than what is shown in Fig. 5.
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Figure 7. Preferred parameter space in the muoquark model for the radiative muon mass generation
as implied by the (g � 2)µ anomaly. See the main text in Sec. 4 for further details.

The preferred region in the S1, S2 mass plane, taking QS = 5/3, that explains the observed
deviations in �aµ is shown in Fig. 7 as the brown shaded band.8

U(1)X completion

The above scenario can be elegantly UV completed in our setup. The scan over the anomaly
free charge assignments in Section 2 reveals a family of solutions for which the dimension-4
muon Yukawa is forbidden. This occurs when the U(1)Xµ charge of the left-handed muon is
different from the charge of the right-handed muon. We assume that in addition to the SM
there are three scalars, the S± in the (3, 2, 7/6) representation of the SM gauge group and
the SM singlet �. The extra scalars carry the following charges under the U(1)Xµ gauge
symmetry

XS+ = �XL2 + XUi = �Xµ + Xq , (4.8)
XS� = �XE2 + XQi = �Xµ � bE2 + Xq , (4.9)
X� = �XS� + XS+ = bE2 . (4.10)

where Xq = (�Xe � Xµ � X⌧ )/9 (see Section 2.2.2). The leptoquarks S+(S�) have allowed
couplings to the left-(right-)handed muons, respectively, i.e., they are the muoquarks. An
explicit mass mixing between S+ and S� is forbidden by the U(1)Xµ gauge symmetry.
However, there is a gauge invariant trilinear scalar coupling

L � �A�S
†
+S� + H.c. , (4.11)

that gives rise to the U(1)Xµ mass mixing term, em2
S

= Av�, once the SM singlet � gets a
VEV, h�i = v� and breaks U(1)Xµ spontaneously. The radiative generation of the muon

8We note in passing that requiring a positive contribution to �aµ even in this more general case still
remains quite restrictive regarding the viable choices for the leptoquark gauge representations. In particular,
the (3, 1, 1/3) scalar leptoquark is not a phenomenologically viable possibility.
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Figure 7. Preferred parameter space in the muoquark model for the radiative muon mass generation
as implied by the (g � 2)µ anomaly. See the main text in Sec. 4 for further details.

The preferred region in the S1, S2 mass plane, taking QS = 5/3, that explains the observed
deviations in �aµ is shown in Fig. 7 as the brown shaded band.8

U(1)X completion

The above scenario can be elegantly UV completed in our setup. The scan over the anomaly
free charge assignments in Section 2 reveals a family of solutions for which the dimension-4
muon Yukawa is forbidden. This occurs when the U(1)Xµ charge of the left-handed muon is
different from the charge of the right-handed muon. We assume that in addition to the SM
there are three scalars, the S± in the (3, 2, 7/6) representation of the SM gauge group and
the SM singlet �. The extra scalars carry the following charges under the U(1)Xµ gauge
symmetry

XS+ = �XL2 + XUi = �Xµ + Xq , (4.8)
XS� = �XE2 + XQi = �Xµ � bE2 + Xq , (4.9)
X� = �XS� + XS+ = bE2 . (4.10)

where Xq = (�Xe � Xµ � X⌧ )/9 (see Section 2.2.2). The leptoquarks S+(S�) have allowed
couplings to the left-(right-)handed muons, respectively, i.e., they are the muoquarks. An
explicit mass mixing between S+ and S� is forbidden by the U(1)Xµ gauge symmetry.
However, there is a gauge invariant trilinear scalar coupling

L � �A�S
†
+S� + H.c. , (4.11)

that gives rise to the U(1)Xµ mass mixing term, em2
S

= Av�, once the SM singlet � gets a
VEV, h�i = v� and breaks U(1)Xµ spontaneously. The radiative generation of the muon

8We note in passing that requiring a positive contribution to �aµ even in this more general case still
remains quite restrictive regarding the viable choices for the leptoquark gauge representations. In particular,
the (3, 1, 1/3) scalar leptoquark is not a phenomenologically viable possibility.
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by assumption for viable phenomenology:
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⇥
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µ
2
H
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2

⇥
m

2
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2
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2✓�m
2
v�/v,

µ
2
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2

⇥
m

2
�

+ ✓
2�m

2
⇤
+ 1

2✓�m
2
v/v�,

where �m
2 = m

2
h

� m
2
�
. For �H , �� ⇠ 0.1, the radial

mode � has a mass around the TeV scale for the bench-
mark point. A small ��H = 10�3 consistent with the
finite naturalness discussed below leads to unobservable
mixing with the Higgs boson [100, 101].

C. Naturalness

The contribution to the scalar potential involving the
muoquarks is

V13 = M
2
1 |S1|

2 + M
2
3 |S3|

2 + ��1|�|
2
|S1|

2 + ��3|�|
2
|S3|

2 + 1
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†
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2 + �H1|H|
2
|S1|
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2
|S3|

2

+ H3H
†
�

I
�

J
H(S†I

3 S
J

3 ) + (H13H
†
�

I
H(S†

1S
I

3 ) + h.c.) + 1
2�3(S

†
3S3)
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23(S

†I

3 S
J

3 )(S†J

3 S
I
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+ 1
2�3(S

†I

3 S
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3 S
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2
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3 S1)(S
†
1S

I

3 ) + (�13(S
†
1S

I

3 )(S†
1S

I

3 ) + h.c.).

(5)

We qualitatively examine the UV consistency of the
model through the RG flow of the couplings from the best
fit discussed in Sec. II A. In particular, we explore the
running of the full model with �-functions at 3-loop or-
der for the gauge and 2-loop order for Yukawa and quartic
couplings derived with RGBeta [102–104]. The SM cou-
plings have been fixed at µM as part of the matching
process. The resulting flows for a few selected couplings
are shown in Fig. 2.

All terms in the 1-loop �-functions of the � cross-
quartic couplings ��H , ��1, and ��3 involve this set
of � cross quartics or are U(1)B�3Lµ

gauge contribu-
tions (with/without kinetic mixing). These three cou-
plings can, consequently, be taken simultaneously small
while limiting radiative correction with a floor deter-
mined by gauge and 2-loop contribution. While taking all
��x(µM ) = 0 gives ��x(MPl) ⇠ 10�3, ��x(µM ) = 10�3

gives slow running couplings (see Fig. 2). We, therefore,
take the latter as a natural minimal ��x that prevents
a large tuning in the Higgs mass (with a contribution
��Hv

2
�) as � condenses.

As in most models with many scalar degrees of free-
dom, the quartic couplings tend to reinforce each others
running in such a way that they drive each other to Lan-
dau poles quickly. Avoiding any such before the Planck
scale in our case tends to favor small quartic couplings
. 0.05 at the matching scale. Individual couplings can
be larger, but in particular the muoquark self-couplings
have fast running due to their large multiplicity, leading
to poles (typically driven by �3). The constraints from
absence of Landau poles are much stronger than those
obtained from electroweak precision data and Higgs sig-
nal strengths [69, 105], which constrain the couplings at
O(1). For the benchmark point, we take all remaining
quartic couplings of V13 to be 0.05 at µM .

It is worth pointing out that the potential is stable all
the way up to the Planck scale in the benchmark scenario;

although �3 runs negative, the condition �3 + 3 + �3 �

0 is satisfied, ensuring stability. The minimum of the
potential discussed in the previous section is thus the
true vacuum.

The large charges of the muoquarks under the
U(1)B�3Lµ

symmetry has profound impact on the RG
flow. The g

4
X

contribution to the muoquark quartic cou-
plings scale with their charge to the fourth power, and
so is extremely sensitive to the value of gX .2 For in-
stance, gX(µM ) = 0.15 leads to a Landau pole at MPl,
whereas gX(µM ) = 0.25 pulls the pole to ⇠ 1011 GeV.
The same large charges (with that of the muon) also
cause sizable running in the kinetic-mixing parameter
"BX . For our benchmark point gX(µM ) = 0.1 we ob-
serve "BX(MPl)�"BX(µM ) ⇠ 0.2 regardless of the exact
value "BX(µM ) (cf. Fig. 2). As a natural value for this
parameter we take "BX = 0.1, which is perfectly consis-
tent with phenomenology [106].

As in any model with multiple mass scales, there is
a risk that the heavier scale will destabilize the lighter
through radiative corrections. In our case the 1-loop cor-
rection to the Higgs mass parameter due to the heavy
muoquark is [80]

�µ
2
H

= �
9(�H3 + H3)

(4⇡)2
M

2
3

✓
1 + ln

µ
2
M

M
2
3

◆

+
3�H1

(4⇡)2
M

2
1

✓
1 + ln

µ
2
M

M
2
1

◆
+ O(µ4

/M
2
1,3).

(6)

With the small quartic couplings of O(0.05), as preferred
by the RG, the theory is finitely natural for M1,3 .
O(1 TeV). Tuning arguments therefore favor light muo-
quarks which is a great news for collider searches.

2 E.g. the 1-loop �3 �-function has a contribution d�3/ d lnµ �
1024g4X/(27⇡2).

• The rest of the potential:
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2

ton decay and LFV in stark contrast with observations.
A resolution is the idea of combining leptoquarks with a
gauged lepton symmetry as in Ref. [70, 71].

Lepton-flavored U(1) gauge symmetries impose non-
trivial restrictions on the structure of the neutrino mass
matrices. This has been thoroughly studied in the liter-
ature in the context of two-zero-texture (-minor) struc-
tures, aiming at predicting the remaining parameters in
the neutrino sector [72–76]. Building on Refs. [44, 69, 71,
76], we show how to naturally reconcile all muon anoma-
lies in a single framework and rationalize why these are
the first signs of physics beyond the SM. We face the
challenge of generating a phenomenologically acceptable
neutrino sector in leptoquark models with gauged lep-
ton flavor while keeping the proton stable. It turns
out that the U(1)B�3Lµ

gauge symmetry has the desired
property of also forbidding dangerous baryon-number-
violating dimension-5 operators.

In Section II we present the model and discuss the pa-
rameter space capable of addressing the anomalies. Sec-
tion III outlines alternative models and a connection with
b ! c⌧⌫ decays. We show that no tuned cancellations
is needed in the observables, the scalar masses respect
finite naturalness, and the couplings can be extrapolated
to high-energies without inconsistencies.

II. A MODEL FOR (g � 2)µ AND b ! sµ+µ�

We extend the SM+3⌫R with a gauged U(1)B�3Lµ
sym-

metry under which the leptons `
2
L, µR, ⌫µ,R have charge

�3, while q
i

L, u
i

R, d
i

R all have charge +1/3. With this
fermion content, the symmetry is anomaly-free. An SM
singlet � with U(1)B�3Lµ

charge q� = +3 is responsible
for the spontaneous breaking of the new symmetry. In
addition, the matter field content is extended with two
scalar leptoquarks S1 = (3, 1, 1/3) and S3 = (3, 3, 1/3)
of charge +8/3 under U(1)B�3Lµ

.
The renormalizable Lagrangian for this model is

L = LSM�VH
+ |Dµ�|

2 + |DµS1|
2 + |DµS3|

2
�

1
4X

2
µ⌫

�
�
⌘
3L
i

q
c i

L `
2
L S3 + ⌘

1L
i

q
c i

L `
2
LS1 + ⌘

1R
i

u
c i

R µRS1

+ ⌘̃
1R
i

d
c i

R ⌫µ,RS1 + h.c.
�

+ 1
2"BXBµ⌫X

µ⌫ (2)

� VH�(H, �) � V13(H, �, S1, S3) + ⌫̄
i

Ri /D⌫
i

R

�
�
y

ij

⌫
¯̀i
LH̃⌫

j

R + M
ij

R ⌫̄
ci

R ⌫
j

R + y
ij

� � ⌫̄
ci

R ⌫
j

R + h.c.
�

,

where the SU(2)L contraction in the left-handed Yukawa
couplings is with i�

2
�

a for S3 and i�
2 for S1 with Pauli

matrices �
a.

The gauge symmetry ensures that leptoquarks cou-
ple exclusively to 2nd generation leptons through the
Yukawa couplings ⌘

x. Leptoquarks coupling exclusively
to 2nd generation leptons are properly referred to as
muoquarks. We will show how this structure reconciles
the muon anomalies with the complementary constraints.
We then separately address the scalar potential and the
kinetic mixing, as it has minimal baring on the flavor

analysis: in 1-loop matching it only gives corrections on
top of the operators already generated at tree-level.

Finally, due to the extra gauge symmetry, the model
has accidental baryon and individual lepton number sym-
metries at the renormalizable level just like the SM. Fur-
thermore, there is an accidental baryon number conser-
vation at the level of dimension-5 operators. It is an
intricate relation between i) neutrino masses and mix-
ings, ii) matter stability, and iii) the high-quality U(1)Lµ

global symmetry, which ultimately leads to the choice of
the U(1)B�3Lµ

gauge symmetry. An alternative choice is
discussed in Section III.

A. Muoquark solution of the muon anomalies

We assume that � develops a large VEV so as to break
U(1)B�3Lµ

and decouple the X, ⌫
i

R
, and � fields for the

moment. The remnant of the U(1)B�3Lµ
symmetry pro-

vides an e↵ective U(1)Lµ
global symmetry under which

the muoquarks are charged. This forbids LFV processes
such as µ ! e� but introduces new lepton non-universal
muophilic interactions. The idea is to use a tree-level S3

exchange to explain the RK(⇤) anomalies and an S1 loop
for the (g � 2)µ.

The gauge symmetry fixes the lepton flavor coupling
to S1,3 but not the quark flavor structure of ⌘

x

i
. The

SM Yukawa interactions exhibit a good approximate fla-
vor symmetry U(2)q ⇥ U(2)u ⇥ U(2)d under which the
first two generations transform as doublets, while the
third generation is a singlet [77] (see also [78]). When
this symmetry is exact, only the top and bottom quarks
are massive and the CKM matrix is the identity. A
slight breaking, needed to fit data, is minimally pro-
vided by the leading breaking spurion V = (Vtd, Vts)T,
which is a doublet of U(2)q, together with two bidoublets
�u,d [77, 79]. Thinking about this symmetry as a rem-
nant of deep UV dynamics, it is reasonable to assume
the muoquark Yukawa couplings share a similar struc-
ture. In particular, we expect the left-handed couplings
to be ⌘

1(3)L
/ O(V ) � 1 and the relevant right-handed

ones to be ⌘
1R

/ O(�†
u
V ) � 1. This sets the relative

size between di↵erent quark flavors. On general grounds
we expect the absolute sizes of the couplings and the
muoquark masses M1,3 to be similar. Remarkably, when
⌘

x

3 = O(0.1) and M1,3 = O(TeV), this setup explains
b ! sµ

+
µ

� and (g � 2)µ anomalies with negligible cor-
rections to any other complementary constraints. (Note
that U(2)3 is just one example of a CKM-like flavor struc-
ture in the quark sector.)

The most general S1 + S3 renormalizable model is
matched to the SM e↵ective field theory at the 1-loop
level in Ref. [80]. We implement these results in a code
that is interfaced with the Python package smelli (the
SMEFT likelihood tool) [81, 82]. After we pass the
SMEFT Wilson coe�cients, which we compute from the
parameters of our Lagrangian (2) at the matching scale
µM , to smelli, this tool automatically takes care of
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FIG. 2. The RG flow of a selection of couplings from the
benchmark point to the Planck scale. All couplings were in-
cluded in the running, and none of them develops a Landau
pole in this range.

Additionally, the S1 muoquark generates a non-
multiplicative radiative corrections to the muon Yukawa
coupling [80, 107, 108]:

�yµ = �
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2
1

◆
⌘
1L⇤
i

y
ij

u
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For the part of parameter space with large enough cou-
plings to explain the (g � 2)µ, a tuning argument again
favors models with smaller masses. In our best fit point
the change in yµ is roughly 50%. The same muoquark
loop that gives the threshold correction to yµ also gives
rise to a significant running of this Yukawa as shown in
Fig. 2. This is yet another independent argument in favor
of lighter muoquarks potentially accessible at high-pT .

D. Neutrino masses and proton decay

Coming back to the neutrino sector outlined in the
last line of the model Lagrangian (2), the U(1)B�3Lµ

gauge symmetry imposes a flavor structure for y⌫ , MR

and y�. Notably, y⌫ splits into a 2⇥2 electron–tau block
and a diagonal muon entry. When � receives a VEV,
the Majorana mass matrix is entirely populated except
for the (2,2) entry. This structure has enough paramet-
ric freedom to explain the observed neutrino oscillation
data [109], the limit on the sum of neutrino masses from
Planck [110], and the absence of neutrinoless double beta
decay [111]. Ref. [76] performed a careful analysis of a

specific limit when the y
13,31
⌫

and y
23
� are set to zero, ar-

riving at the two-zero minor structure of type DR
1 . This

limit perfectly accommodates neutrino oscillations data,
predicting

P
i
m⌫i

comfortably below the present limit
and no neutrinoless beta decay. The firm predictions of
the DR

1 can be alerted in our case by nonzero y
13,31
⌫

and
y
23
� parameters.
The type-I seesaw formula for the masses of the active

neutrinos,

m⌫ ' �v
2
y⌫

�
MR + y�h�i

��1
y
T
⌫

, (8)

suggests that in our chosen benchmark the Dirac Yukawa
is in the same ballpark as the electron Yukawa, O(10�6).
The S1 muoquark, contributing to (g � 2)µ would ra-
diatively correct the y

22
⌫

with the bottom quark in the
loop [112]. The ⌘̃

1R
3 coupling is an input parameter, how-

ever, if it is of the same order as the ⌘
1R
3 coupling, it

would contribute comparably to the tree-level. Hence,
no tuning is introduced here.

Finally, the Lagrangian in Eq. (2) respects baryon
number and keeps the proton stable. However, the ab-
sence of B violation for a TeV-scale leptoquark model
has to be required also for the leading irrelevant oper-
ators arising at dimension-5 [113, 114]. Quantum grav-
ity is expected to break global charges [115], and even
if the dimension-5 operator under consideration is sup-
pressed by the Planck scale, it is not enough to evade
the stringent bounds on the proton lifetime. This seems
to be a quite generic issue often neglected in the litera-
ture, with the notable exception of the Pati–Salam gauge
leptoquark, see e.g. [116–129].

The U(1)B�3Lµ
gauge symmetry, however, with the

available field content ensure that B number is conserved
also at the dimension-5 e↵ective Lagrangian.3 The lead-
ing breaking is expected at dimension 6 similarly to the
SM. It is a nontrivial fact that this is compatible with
the minimal realization of neutrino masses. This is, for
instance, not the case for U(1)Lµ�L⌧

symmetry where
the minimal neutrino sector [71] allows for a coupling
1/MPl q

c

LS
†
3�

†
qL, which, together with the q

c

L`LS3 needed
for the anomaly, leads to proton decay in gross violation
of the experiment. We estimate that such leptoquark
has to be several orders of magnitude heavier to respect
the proton lifetime bound, or, equivalently, the couplings
should be smaller. In either case, the explanation of the
anomaly is gone. Going beyond the minimal neutrino
mass realizations in U(1)Lµ�L⌧

, even more involved con-
structions proposed in the literature share this problem,
see e.g. [130–133].

3 The only way to build color singlets with non-vanishing baryon
number at this order is with fields SSS, qSS, or qqS. These
combinations have U(1)B�3Lµ

charge ±8, ±5, and ±2, respec-
tively. It is easy to verify that they cannot be completed to a
gauge invariant dimension-5 operator with the available matter
fields.

• The minimal type-I seesaw mechanism

• Not the case for all . Example is , see 1907.04042.
• However, in general, it is always possible to introduce additional  

symmetry-breaking scalars whose VEVs then populate the missing entries 
in the mass matrix.

U(1)Xμ
U(1)Lμ−Lτ

U(1)X

- Neutrino oscillations data,
- The Planck limit on the sum of neutrino masses,
- The absence of neutrinoless double beta decay.
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Proton decay

• The  gauge symmetry and the available field content ensure 
that  number is conserved also at the dim-5 effective Lagrangian.

U(1)B−3Lμ

B

• What  does to a leptoquark?U(1)B−3Lμ

• No proton decay up to dim-6• Interacts only with muons

ℒ ⊃ QL L(2)
L S3 QQS†

3 QQS†
3 ϕ†

• This is not the case for e.g. . Quantum gravity is expected to 
break global charges and dim-5 diquark can be dangerous.

Lμ − Lτ

• If , together with  needed for the muon anomalies and 

TeV-scale  mass, leads to dangerous proton decay.

1
MP

qS†ϕ†q qℓS

S
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Figure 5. Parameter space for the light X solution to the (g � 2)µ anomaly in the U(1)L̃�3B model.
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3.5.8 Chiral models

We now entertain some of the more exotic options for the U(1)X group from among the
models of Sec. 2.2.2 with chiral charge assignments.
L̃ � 3B model:

(XL1 , XL2 , XL3) = (�3, 8, 4), (XE1 , XE2 , XE3) = (�2, 9, 2),

(XN1 , XN2 , XN3) = (�1, 3, 7), XQi,Di,Ui = �1, (3.18)
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(XN1 , XN2 , XN3) = (5, 3, 8), XQi,Di,Ui = 0. (3.20)

Common for these models is that they have large vectorial coupling to the muons and only
a small axial component, which then maximizes the NP contributions to the (g � 2)µ with
the right sign to explain the anomaly. Both models also maintain a large ratio between
the muon and electron charges, without which there is little hope of evading the Borexino
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The size of the effect
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ℒNP = GNP
evEW

16π2
μ̄LσμνμR Fμν ⟹ GNP ∼ few × 10−4GF

Heavy NP: No chiral suppression

Light NP:  With chiral suppression

ℒNP = GNP yμ
evEW

16π2
μ̄LσμνμR Fμν ⟹ GNP ∼ GF

• b → sμμ

• (g − 2)μ

ℒNP = GNP b̄LγμsL μ̄LγμμL ⟹ GNP ∼ few × 10−5GF

Heavy NP:



Finite naturalness
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by assumption for viable phenomenology:
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. For �H , �� ⇠ 0.1, the radial

mode � has a mass around the TeV scale for the bench-
mark point. A small ��H = 10�3 consistent with the
finite naturalness discussed below leads to unobservable
mixing with the Higgs boson [100, 101].

C. Naturalness

The contribution to the scalar potential involving the
muoquarks is

V13 = M
2
1 |S1|

2 + M
2
3 |S3|

2 + ��1|�|
2
|S1|

2 + ��3|�|
2
|S3|

2 + 1
2�1(S

†
1S1)

2 + �H1|H|
2
|S1|

2 + �H3|H|
2
|S3|

2

+ H3H
†
�

I
�

J
H(S†I

3 S
J

3 ) + (H13H
†
�

I
H(S†

1S
I

3 ) + h.c.) + 1
2�3(S

†
3S3)

2 + 1
23(S

†I

3 S
J

3 )(S†J

3 S
I

3 )

+ 1
2�3(S

†I

3 S
J

3 )(S†I

3 S
J

3 ) + �13|S1|
2
|S3|

2 + 13(S
†I

3 S1)(S
†
1S

I

3 ) + (�13(S
†
1S

I

3 )(S†
1S

I

3 ) + h.c.).

(5)

We qualitatively examine the UV consistency of the
model through the RG flow of the couplings from the best
fit discussed in Sec. II A. In particular, we explore the
running of the full model with �-functions at 3-loop or-
der for the gauge and 2-loop order for Yukawa and quartic
couplings derived with RGBeta [102–104]. The SM cou-
plings have been fixed at µM as part of the matching
process. The resulting flows for a few selected couplings
are shown in Fig. 2.

All terms in the 1-loop �-functions of the � cross-
quartic couplings ��H , ��1, and ��3 involve this set
of � cross quartics or are U(1)B�3Lµ

gauge contribu-
tions (with/without kinetic mixing). These three cou-
plings can, consequently, be taken simultaneously small
while limiting radiative correction with a floor deter-
mined by gauge and 2-loop contribution. While taking all
��x(µM ) = 0 gives ��x(MPl) ⇠ 10�3, ��x(µM ) = 10�3

gives slow running couplings (see Fig. 2). We, therefore,
take the latter as a natural minimal ��x that prevents
a large tuning in the Higgs mass (with a contribution
��Hv

2
�) as � condenses.

As in most models with many scalar degrees of free-
dom, the quartic couplings tend to reinforce each others
running in such a way that they drive each other to Lan-
dau poles quickly. Avoiding any such before the Planck
scale in our case tends to favor small quartic couplings
. 0.05 at the matching scale. Individual couplings can
be larger, but in particular the muoquark self-couplings
have fast running due to their large multiplicity, leading
to poles (typically driven by �3). The constraints from
absence of Landau poles are much stronger than those
obtained from electroweak precision data and Higgs sig-
nal strengths [69, 105], which constrain the couplings at
O(1). For the benchmark point, we take all remaining
quartic couplings of V13 to be 0.05 at µM .

It is worth pointing out that the potential is stable all
the way up to the Planck scale in the benchmark scenario;

although �3 runs negative, the condition �3 + 3 + �3 �

0 is satisfied, ensuring stability. The minimum of the
potential discussed in the previous section is thus the
true vacuum.

The large charges of the muoquarks under the
U(1)B�3Lµ

symmetry has profound impact on the RG
flow. The g

4
X

contribution to the muoquark quartic cou-
plings scale with their charge to the fourth power, and
so is extremely sensitive to the value of gX .2 For in-
stance, gX(µM ) = 0.15 leads to a Landau pole at MPl,
whereas gX(µM ) = 0.25 pulls the pole to ⇠ 1011 GeV.
The same large charges (with that of the muon) also
cause sizable running in the kinetic-mixing parameter
"BX . For our benchmark point gX(µM ) = 0.1 we ob-
serve "BX(MPl)�"BX(µM ) ⇠ 0.2 regardless of the exact
value "BX(µM ) (cf. Fig. 2). As a natural value for this
parameter we take "BX = 0.1, which is perfectly consis-
tent with phenomenology [106].

As in any model with multiple mass scales, there is
a risk that the heavier scale will destabilize the lighter
through radiative corrections. In our case the 1-loop cor-
rection to the Higgs mass parameter due to the heavy
muoquark is [80]
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With the small quartic couplings of O(0.05), as preferred
by the RG, the theory is finitely natural for M1,3 .
O(1 TeV). Tuning arguments therefore favor light muo-
quarks which is a great news for collider searches.

2 E.g. the 1-loop �3 �-function has a contribution d�3/ d lnµ �
1024g4X/(27⇡2).

• The Higgs mass

For a small RGE-induced quartic couplings , no tuning only if 𝒪(0.05) M1,3 ≲ a few TeV

= + +

Figure 1: The one loop corrections to the Higgs mass parameter in the SM. All three diagrams
are quadratically divergent, leading to the hierarchy problem.

• In the above discussion we have been somewhat cavalier with the cut-off scale ⇤2. One
might worry (and indeed many people do!) that the hierarchy problem is merely an ar-
tifact of using a crude cut-off regulator. However, those understanding effective theories
well realize quickly that the hierarchy problem is not at all about various regularization
schemes. As in any good effective theory, ⇤ in our calculations is merely standing in
for the physical mass threshold at which new heavy particles appear. You can think
of ⇤ as literally the mass of a new heavy particle (mNP ), and the “quadratically di-
vergent" contributions to the Higgs mass parameter simply as log-divergent or finite
contribution from the heavy particle which are proportional to m2

NP
. Moreover, these

contributions contain an imaginary part from the new particle going on-shell, which is
physical and cannot be removed by regulation scheme. Thus using dimensional regular-
ization (a scheme where power law divergences are simply regulated to zero) is really
not a solution of the hierarchy problem.

• The hierarchy problem is really the sensitivity to new scales. If there is no new scale
there really is no hierarchy problem. However most physicists believe that there are at
least two issues that will force us to extend the SM: the appearance of quantum gravity
around the Planck scale and the appearance of a Landau pole in the hypercharge gauge
coupling at exponentially large scales.

• For a while it was popular to play with the idea that the terms in Eq. (1.2) actually
cancel each other. This used to be known as the “Veltman condition", which would have
singled out a very particular value for the Higgs mass. However we can easily see that
even if the mass had turned out to be the magical value (which it did not) this would not
have solved the hierarchy problem. As we discussed in Eq. (1.2) ⇤ is merely a stand-in
for the mass of a heavy particle that will ultimately regulate these loops. However this
can numerically be different for the three diagrams, thus one should really be talking
about the gauge cut-off scale ⇤g, the fermion cut-off scale ⇤f and the Higgs cut-off scale
⇤H , which could all be different by O(1) factors or even more. Thus it is not really
meaningful to talk about a Veltman-like condition, unless some symmetry ensures that
all these cut-off scales are equal.

• A simple way to phrase the hierarchy problem is the fact that the Higgs mass term
µ2

|H|
2 is a relevant operator, which grows towards the IR. The Wilsonian formulation

of the hierarchy problem then is that it is difficult to choose a RG trajectory which in

– 3 –

• The muon Yukawa
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• Removing the photon  correction to the muon Yukawa→
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FIG. 2. The RG flow of a selection of couplings from the
benchmark point to the Planck scale. All couplings were in-
cluded in the running, and none of them develops a Landau
pole in this range.

Additionally, the S1 muoquark generates a non-
multiplicative radiative corrections to the muon Yukawa
coupling [80, 107, 108]:
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For the part of parameter space with large enough cou-
plings to explain the (g � 2)µ, a tuning argument again
favors models with smaller masses. In our best fit point
the change in yµ is roughly 50%. The same muoquark
loop that gives the threshold correction to yµ also gives
rise to a significant running of this Yukawa as shown in
Fig. 2. This is yet another independent argument in favor
of lighter muoquarks potentially accessible at high-pT .

D. Neutrino masses and proton decay

Coming back to the neutrino sector outlined in the
last line of the model Lagrangian (2), the U(1)B�3Lµ

gauge symmetry imposes a flavor structure for y⌫ , MR

and y�. Notably, y⌫ splits into a 2⇥2 electron–tau block
and a diagonal muon entry. When � receives a VEV,
the Majorana mass matrix is entirely populated except
for the (2,2) entry. This structure has enough paramet-
ric freedom to explain the observed neutrino oscillation
data [109], the limit on the sum of neutrino masses from
Planck [110], and the absence of neutrinoless double beta
decay [111]. Ref. [76] performed a careful analysis of a

specific limit when the y
13,31
⌫

and y
23
� are set to zero, ar-

riving at the two-zero minor structure of type DR
1 . This

limit perfectly accommodates neutrino oscillations data,
predicting

P
i
m⌫i

comfortably below the present limit
and no neutrinoless beta decay. The firm predictions of
the DR

1 can be alerted in our case by nonzero y
13,31
⌫

and
y
23
� parameters.
The type-I seesaw formula for the masses of the active

neutrinos,

m⌫ ' �v
2
y⌫

�
MR + y�h�i

��1
y
T
⌫

, (8)

suggests that in our chosen benchmark the Dirac Yukawa
is in the same ballpark as the electron Yukawa, O(10�6).
The S1 muoquark, contributing to (g � 2)µ would ra-
diatively correct the y

22
⌫

with the bottom quark in the
loop [112]. The ⌘̃

1R
3 coupling is an input parameter, how-

ever, if it is of the same order as the ⌘
1R
3 coupling, it

would contribute comparably to the tree-level. Hence,
no tuning is introduced here.

Finally, the Lagrangian in Eq. (2) respects baryon
number and keeps the proton stable. However, the ab-
sence of B violation for a TeV-scale leptoquark model
has to be required also for the leading irrelevant oper-
ators arising at dimension-5 [113, 114]. Quantum grav-
ity is expected to break global charges [115], and even
if the dimension-5 operator under consideration is sup-
pressed by the Planck scale, it is not enough to evade
the stringent bounds on the proton lifetime. This seems
to be a quite generic issue often neglected in the litera-
ture, with the notable exception of the Pati–Salam gauge
leptoquark, see e.g. [116–129].

The U(1)B�3Lµ
gauge symmetry, however, with the

available field content ensure that B number is conserved
also at the dimension-5 e↵ective Lagrangian.3 The lead-
ing breaking is expected at dimension 6 similarly to the
SM. It is a nontrivial fact that this is compatible with
the minimal realization of neutrino masses. This is, for
instance, not the case for U(1)Lµ�L⌧

symmetry where
the minimal neutrino sector [71] allows for a coupling
1/MPl q

c

LS
†
3�

†
qL, which, together with the q

c

L`LS3 needed
for the anomaly, leads to proton decay in gross violation
of the experiment. We estimate that such leptoquark
has to be several orders of magnitude heavier to respect
the proton lifetime bound, or, equivalently, the couplings
should be smaller. In either case, the explanation of the
anomaly is gone. Going beyond the minimal neutrino
mass realizations in U(1)Lµ�L⌧

, even more involved con-
structions proposed in the literature share this problem,
see e.g. [130–133].

3 The only way to build color singlets with non-vanishing baryon
number at this order is with fields SSS, qSS, or qqS. These
combinations have U(1)B�3Lµ

charge ±8, ±5, and ±2, respec-
tively. It is easy to verify that they cannot be completed to a
gauge invariant dimension-5 operator with the available matter
fields.

•  requires larger couplings for heavier leptoquark(g − 2)μ

• Finite naturalness provides argument for direct searches at colliders
43

• No tuning only if , see also the RG flowM1,3 ≲ a few TeV



Implications for Higgs physics

44

3

the renormalization group running down to the meson
scale as well as the intermediate matching to the low-
energy EFT [83–87] thanks to the wilson [88] package.
It further uses flavio [89] to compute a large list of
electroweak-scale and low-energy precision observables,
including charged LFV and LFU, magnetic moments,
neutral meson mixings, semileptonic and rare meson de-
cays, etc. The full list of observables included in the
initial version of smelli can be found in the appendix
of [81], but this list has been extended [90], and we refer
to [91] for the up-to-date version. We update the mea-
surements included in smelli and take into account the
most recent results for RK [35] and (g�2)µ [36] as well as
the current world average of BR(Bs,d ! µµ) from [92],
which includes the most recent LHCb measurement [93].
With this setup, we are now in position to perform a
global fit in the parameter space of our model.

Shown in Fig. 1 is the preferred region in the ⌘
3L
3 ver-

sus ⌘
1L
3 = ⌘

1R
3 plane for M1 = M3 = 3TeV. We take

⌘̃
1R = 0, as loop-induced contributions from the heavy

right-handed neutrinos are expected to be negligible in
the fit. Muon anomalies clearly prefer the parameter
space far away from the SM limit ⌘

x

3 = 0. The best fit
point is (⌘3L

3 , ⌘
1L
3 = ⌘

1R
3 ) ' (0.43, 0.12) with a ��

2
' 62

compared to the SM point. The current limits from di-
rect searches at the LHC are M3 & 1.7 TeV [94] and
M1 & 1.4 TeV [95], while the final reach of HL-LHC is
projected in [96]. The indirect e↵ects in the high-pT lep-
ton tails are also beyond the HL-LHC projections for the
best fit couplings [97]. The change in the mass is accom-
modated by an approximate linear change in the cou-
plings keeping the same low-energy Wilson coe�cients.
However, the finite naturalness of the Higgs mass and
muon Yukawa, disfavors heavier muoquarks, as discussed
later.

While in principle both muoquarks contribute to all
anomalies, there is a clear factorization, namely S1 dom-
inates in the (g � 2)µ thanks to the chiral enhancement
from the top quark, whereas S3 dominates in b ! sµ

+
µ

�

since it gives a tree-level contribution unlike S1. The
U(2) flavor structure provides su�cient suppression in all
other complementary processes such as KL ! µ

+
µ

� [98].
When varying the O(1) coe�cients in front of the spuri-
ons we find the same goodness of fit: the best fit region is
shifted to accommodate for b ! sµ

+
µ

�, but none of the
complementary observables listed above receive a large
pull.

B. Symmetry breaking

Heavy vector resonances with couplings to both quarks
and leptons have been extensively searched for at the
LHC. The most recent ATLAS 13TeV search with
139 fb�1 of data [99] reports the exclusions on the cou-
plings as a function of the mass in their Fig. 4 (b). A
viable benchmark example in our case is gauge coupling
gX = 0.1 and mass mX = 3TeV. The high-pT dimuon

FIG. 1. The preferred muoquark Yukawa couplings from
the global fit to low-energy data. Here we choose
⌘3L
i = (Vtd, Vts, 1) ⌘3L

3 , ⌘1L
i = (Vtd, Vts, 1) ⌘1L

3 , and ⌘1R
i =

(0, 0, 1) ⌘1R
3 . The muoquark masses are set to M1 = M3 =

3 TeV.

tails [97] set an upper limit on gX/mX for large mX .
In the opposite limit, the bounds are avoided when gX

is small enough (see Fig. 5 of [97]). It is, however, al-
ways possible to take the decoupling limit, namely large
mX and small gX , without conflicting the muoquark so-
lution of muon anomalies. We expect X to have negligi-
ble e↵ects in flavor physics through suppressed penguins,
which decouple in the same limit.1

The symmetry breaking scalar � develops a VEV
h�i = v� related to the X mass by v� =

p
2mX/3gX

or 14TeV for the benchmark point. Taking M
2
1,3 > 0

and small cross-quartic couplings, guarantees that S1,3
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We can directly relate the potential parameters for the
Higgs VEV v = hHi; v�; the masses of the radial modes
mh, m�; and the mixing angle, which has to satisfy ✓ ⌧ 1

1 A U(1)B�3Lµ
model with vector-like quarks and X as the main

mediator of b ! sµ
+
µ
� anomaly cannot reconcile the Bs meson-

mixing constraints with the high-pT dimuon tails [97].

• Mixing between real scalars  and .h ϕ

• From  we have  and .(g − 2)μ gX ∼ 10−4 mX ∈ [10,200] MeV

X → νμν̄μ

ϕ → XX
h → inv
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Type A Type B Type C

RK(⇤) , b ! sµµ S3 S3 heavy X

(g � 2)µ S1/R2 light X S1/R2

TABLE I. Three types of muoquark models, which can ad-
dress the muon anomalies for a variety of lepton-flavored
U(1)X gauge groups. For each model class, a field respon-
sible for addressing a corresponding anomaly, is listed. The
an R2 muoquark with SM charges (3, 2, 7/6) can be used as
an alternative to S1 for addressing the (g � 2)µ.

III. ALTERNATIVE MODELS

We now turn our focus to alternative models for the
muon and B-decay anomalies, in some of which the
U(1)B�3Lµ

symmetry is exchanged for other U(1)X sym-
metries. These models o↵er di↵erent scenarios of phe-
nomenological interest.

A. The scenarios for muon anomalies

U(1)B�3Lµ
is only one example of many possible

lepton-flavored gauge extensions of the SM, under which
leptoquarks become muoquarks. Variations of the model
can use di↵erent choices of U(1)X symmetry to ensure
the leptoquarks coupling exclusively to second genera-
tion leptons and fall into three classes shown in Table I
based on what mediators are responsible for the RK(⇤)

and (g � 2)µ anomalies. Below we give some specific ex-
amples of these variations:

Type A — As a showcase example, we trade the
U(1)B�3Lµ

for a U(1)Lµ�L⌧
gauge symmetry to obtain an

extension of the leptoquark model of Ref. [71]. The lepto-
quarks are assigned charge �1 under the symmetry, such
that they still couple exclusively to 2nd generation lep-
tons. The minimal type-I seesaw realization of the neu-
trino mass with the U(1)Lµ�L⌧

-breaking scalar of charge
+1 predicts the two-zero minor structure CR, which
shows some tension in fitting ✓23 and

P
i
m⌫i

[76], thus
more elaborate model building may be needed [133].4

The muoquark solution of the muon anomalies dis-
cussed above applies equally to this model. The main
phenomenological di↵erence is that the gauge vector X

does not couple to quarks and is less constrained at col-
liders. Thus, the X field can more easily elude cur-
rent experimental bound (see Fig. 2 of [43]). For exam-
ple, constraints from neutrino trident production requires
mX & 60 (200) GeV for gX ⇠ 0.1 (0.3). Again, X and �
can simply be decoupled in the limit of the large v� and

4 We will not explore these constructions in any detail here but
merely reiterate the point that a charge-1 scalar is poten-
tially problematic since it enables a baryon-number-violating
dimension-5 operator.

FIG. 3. Allowed parameter space for the light X solution to
the (g � 2)µ anomaly in the U(1)B�3Lµ

model. The shaded
regions are excluded by various experiments, while the region
between the black lines is preferred by (g � 2)µ. The upper
(lower) plot uses kinetic mixing "BX = gX ("BX = gX/10).

small gauge coupling. This scenario belongs to Type A
class of models as explained in Table I.
Type B — A second avenue to address (g �2)µ arises

in this model, invoking a light U(1)Lµ�L⌧
gauge boson X

as a mediator running in the loop [40, 43, 134]. The dis-
crepancy between the experiment and the SM prediction
can be resolved with mX ⇠ 20 MeV and gauge coupling
gX ⇠ 5 · 10�4, nestling snugly in the window allowed
by current experimental constraints, such as CCFR and
Borexino [43, 44]. In fact, even the future DUNE experi-
ment is not expected to cover the entire window [44]. In
this scenario, S1 is entirely superfluous to the anomalies
and can be removed from the model altogether. Addi-
tionally, the small allowed region for X mass and cou-
plings gives a sharp prediction for the U(1)Lµ�L⌧

sector.
We have checked that the small gauge coupling and as-
sociated small kinetic mixing are stable under radiative
corrections. The RK(⇤) anomaly in this scenario is still
explained by a tree-level mediation of S3, and with a
similar allowed parameter space as before.

The U(1)Lµ�L⌧
-breaking VEV, v�, is given as v� =

p
2mX/|q�|gX ⇠ 60 GeV/|q�| while the cross-quartic

coupling induces mixing between real scalars h and �.
This scenario has a chance to leave observable imprints
in the overall Higgs couplings or in the invisible Higgs
decays (h ! XX) if the cross quartic in Eq. (3) is large
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Type B — A second avenue to address (g �2)µ arises

in this model, invoking a light U(1)Lµ�L⌧
gauge boson X

as a mediator running in the loop [40, 43, 134]. The dis-
crepancy between the experiment and the SM prediction
can be resolved with mX ⇠ 20 MeV and gauge coupling
gX ⇠ 5 · 10�4, nestling snugly in the window allowed
by current experimental constraints, such as CCFR and
Borexino [43, 44]. In fact, even the future DUNE experi-
ment is not expected to cover the entire window [44]. In
this scenario, S1 is entirely superfluous to the anomalies
and can be removed from the model altogether. Addi-
tionally, the small allowed region for X mass and cou-
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sector.
We have checked that the small gauge coupling and as-
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corrections. The RK(⇤) anomaly in this scenario is still
explained by a tree-level mediation of S3, and with a
similar allowed parameter space as before.
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-breaking VEV, v�, is given as v� =
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coupling induces mixing between real scalars h and �.
This scenario has a chance to leave observable imprints
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decays (h ! XX) if the cross quartic in Eq. (3) is large

• This scenario has a chance to leave observable imprints in the overall Higgs 
couplings or in the invisible Higgs decays.
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λΦH, λΦ


