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. Self-supervision

Incorporate prior physics knowledge in neural networks w/o simulation

. Improved performance in jet-tagging

+ many new opportunities for future research



Top-tagging with machine-learning

Neural network maps kinematical data to a predicted label

+ simulations provide training data {X;} and truth-labels {y/}
+ neural network is optimised to minimise a loss function

Li = yilog(yi) + (1 —y;)log(1 — y;)

« loss function is minimised when QCD and top jets are well-separated in y

« predicted label is a new observable used to tag top-jets
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Neural networks don't explicitly learn the invariances associated with jets

% no idea what features the network learns (..simulation artefacts?..)

What do we want the network to learn?

. . . . yas

rotational invariance psSh :

« translational invariance PToO Pra

+ IR safety gt
« Collinear safety 92“ ) f<1

pro pra

Standard solution: Pre-processing & high-level observables
* prevents the network learning from low-level raw data

<Better solution: networks learn these invariances from the raw data >
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Reframe the definition of our observables as an optimisation problem to be
solved with machine-learning
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1. invariance to certain transformations / augmentations of the jets
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Optimising observables / representations

Key idea

Reframe the definition of our observables as an optimisation problem to be
solved with machine-learning

What do we fundamentally want from observables?

1. invariance to certain transformations / augmentations of the jets

2. discriminative within the space of jets

* Contrastive-learning

map raw jet data to a new representation / observables
x Self-supervision

neural networks are optimised without truth-labels

— can run directly on expt. data



2. Learning jet representations



Contrastive learning of jet representations

arXiv:2002.05709, Google Brain: simCLR, T. Chen, S. Kornblith, M. Norouzi, G. Hinton

Dataset: mixture of top-jets and QCD-jets

From the dataset of jets {x;} define:

* positive-pairs: {(x;,x/)} where x/ is an augmented version of x;

+ negative-pairs: {(x;,X;)} U {(x;,x}f)} fori#j

Augmentation: any transformation (e.g. rotation) of the original jet
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arXiv:2002.05709, Google Brain: simCLR, T. Chen, S. Kornblith, M. Norouzi, G. Hinton

Dataset: mixture of top-jets and QCD-jets

From the dataset of jets {x;} define:
* positive-pairs: {(x;,x/)} where x/ is an augmented version of x;

+ negative-pairs: {(x;,X;)} U {(x,»,xj’)} fori#j
Augmentation: any transformation (e.g. rotation) of the original jet

Train a network to map to a new representation space, f(X;) =2, f: J - R

Optimise for:
1. alignment: positive-pairs close together in R — invariance to augmentations

2. uniformity: negative-pairs far apart in R — discriminative power



Contrastive learning of jet representations

Z"-Zj
[z

Similarity measure in R: s(zj,z) =
= defined on unit-hypersphere
Contrastive loss:

exp(s(z;,2;)/7)

L; = —log
> xebatch lizj [EXP(S(Zi-Zj)/T) + eXP(S(Zi-Zf)/T)}

JetCLR — code at https://github.com/bmdillon/JetCLR


https://github.com/bmdillon/JetCLR

Contrastive learning of jet representations

The training procedure:

1.

sample batch of jets, x;

2. create an augmented batch of jets, x/
3.
4. compute the loss & update weights

forward-pass both through the network
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The training procedure:
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2. create an augmented batch of jets, x;
3. forward-pass both through the network
4. compute the loss & update weights

rotations translations

Angles sampled from [0, 27] Translation distance sampled randomly

¢ ¢




Contrastive learning of jet representations

The training procedure:
1. sample batch of jets, x;
2. create an augmented batch of jets, x;
3. forward-pass both through the network
4. compute the loss & update weights

collinear splittings low pr smearing
some constituents randomly split, (n, ¢) co-ordinates are re-sampled:
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Contrastive learning of jet representations

The training procedure:

1.

sample batch of jets, x;

2. create an augmented batch of jets, x/
3.
4. compute the loss & update weights

forward-pass both through the network

permutation invariance

Transformer-encoder network

* based on ‘self-attention’

mechanism

% output invariant to constituent

ordering

more info. in additional slides



Quality measure of observables

Benchmark representations:

+ raw constituent data
+ jetimages

+ Energy Flow Polynomials
(Thaler et al: arXiv:1712.07124)




Quality measure of observables

Benchmark representations:
+ raw constituent data
+ jetimages

+ Energy Flow Polynomials
(Thaler et al: arXiv:1712.07124)

Compare these using a Linear Classifier Test (LCT)

* Uuse top-tagging as a test
% linear cut in the observable space

* supervised - uses simulations (o)™

* measures:

es - true positive rate A
¢p - false positive rate

I




3. Results



Linear classifier test results
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Linear classifier test results

Where does the performance come from?

Augmentation ‘ ¢, (es=05)  AUC
none 15 0.905
translations 19 0.916
rotations 21 0.930
soft+collinear 89 0.970
all combined (default) 181 0.980

% soft + collinear has the biggest effect

translations + rotations also significant in final combination

% also not very sensitive to S/B
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Invariances in representation space

without rotational invariance with rotational invariance

* s(z,z/):ﬁ, z=f(X), Z=f(RO)X)

= The network f(X) is approx rotationally invariant

1



4. Outlook



Summary & outlook

Self-supervision allows for:
1. data-driven definition of observables
2. invariance to pre-defined symmetries/augmentations
3. high discriminative power

An example: JetCLR (contrastive learning of jet observables)

Outlook:
« incorporating particle-1D
- application beyond jet-tagging
- anomaly-detection

12



LCT - performance vs epochs

Performance as a function of training time / epochs

contrastive loss
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The network

We use a transformer-encoder network — permutation invariance

Embedding Transformer Encoder

(pr.m, é)c—(}—i

The attention mechanism
captures correlations between
constituents by allowing each
constituent to assign attention
weights to every other

constituent.
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Equivariance — invariance is similar to Deep-Sets/Energy-Flow-Networks: arXiv:1810.05165, P. T. Komiske, E. M. Metodiev, J. Thaler
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