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Introduction

1. Machine-learning already plays an important role in particle physics analyses

? jet tagging
? model-agnostic new physics searches
? unfolding
? detector simulation
? . . .

2. Trust issues.. Interpretability? Reliance on simulation?

3. Self-supervision
Incorporate prior physics knowledge in neural networks w/o simulation

4. Improved performance in jet-tagging
+ many new opportunities for future research
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Top-tagging with machine-learning

Neural network maps kinematical data to a predicted label

• simulations provide training data {~xi} and truth-labels {y′i}
• neural network is optimised to minimise a loss function

Li = y′i log(yi) + (1− y′i ) log(1− yi)

• loss function is minimised when QCD and top jets are well-separated in y
• predicted label is a new observable used to tag top-jets

2



Top-tagging with machine-learning

Neural networks don’t explicitly learn the invariances associated with jets

? no idea what features the network learns (..simulation artefacts?..)

What do we want the network to learn?

• rotational invariance

• translational invariance

• IR safety

• Collinear safety
f (R~x) = f(~x) = y

Standard solution: Pre-processing & high-level observables
? prevents the network learning from low-level raw data

Better solution: networks learn these invariances from the raw data

3



Top-tagging with machine-learning

Neural networks don’t explicitly learn the invariances associated with jets

? no idea what features the network learns (..simulation artefacts?..)

What do we want the network to learn?

• rotational invariance

• translational invariance

• IR safety

• Collinear safety
f (R~x) = f(~x) = y

Standard solution: Pre-processing & high-level observables
? prevents the network learning from low-level raw data

Better solution: networks learn these invariances from the raw data

3



Top-tagging with machine-learning

Neural networks don’t explicitly learn the invariances associated with jets

? no idea what features the network learns (..simulation artefacts?..)

What do we want the network to learn?

• rotational invariance

• translational invariance

• IR safety

• Collinear safety
f (R~x) = f(~x) = y

Standard solution: Pre-processing & high-level observables
? prevents the network learning from low-level raw data

Better solution: networks learn these invariances from the raw data

3



Top-tagging with machine-learning

Neural networks don’t explicitly learn the invariances associated with jets

? no idea what features the network learns (..simulation artefacts?..)

What do we want the network to learn?

• rotational invariance

• translational invariance

• IR safety

• Collinear safety
f (R~x) = f(~x) = y

Standard solution: Pre-processing & high-level observables
? prevents the network learning from low-level raw data

Better solution: networks learn these invariances from the raw data

3



Optimising observables / representations

Key idea

Reframe the definition of our observables as an optimisation problem to be
solved with machine-learning

What do we fundamentally want from observables?

1. invariance to certain transformations / augmentations of the jets

2. discriminative within the space of jets

? Contrastive-learning
map raw jet data to a new representation / observables

? Self-supervision
neural networks are optimised without truth-labels
→ can run directly on expt. data
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Contrastive learning of jet representations

arXiv:2002.05709, Google Brain: simCLR, T. Chen, S. Kornblith, M. Norouzi, G. Hinton

Dataset: mixture of top-jets and QCD-jets

From the dataset of jets {xi} define:

• positive-pairs: {(xi, x′i )} where x′i is an augmented version of xi
• negative-pairs: {(xi, xj)} ∪ {(xi, x′j )} for i 6= j

Augmentation: any transformation (e.g. rotation) of the original jet

Train a network to map to a new representation space, f(~xi) = ~zi, f : J → R

Optimise for:

1. alignment: positive-pairs close together inR→ invariance to augmentations

2. uniformity: negative-pairs far apart inR→ discriminative power
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Contrastive learning of jet representations

Similarity measure inR: s(zi, zj) =
zi·zj
|zi||zj|

⇒ defined on unit-hypersphere

Contrastive loss:

Li = − log
exp(s(zi, z′i )/τ)∑

x∈batch Ii6=j
[
exp(s(zi, zj)/τ) + exp(s(zi, z′j )/τ)

]

JetCLR→ code at https://github.com/bmdillon/JetCLR
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Contrastive learning of jet representations

The training procedure:
1. sample batch of jets, xi
2. create an augmented batch of jets, x′i
3. forward-pass both through the network
4. compute the loss & update weights
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rotations

Angles sampled from [0, 2π]

translations

Translation distance sampled randomly
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Contrastive learning of jet representations

The training procedure:
1. sample batch of jets, xi
2. create an augmented batch of jets, x′i
3. forward-pass both through the network
4. compute the loss & update weights

collinear splittings

some constituents randomly split,

pT,a + pT,b = pT , ηa = ηb = η

φa = φb = φ

low pT smearing

(η, φ) co-ordinates are re-sampled:

η′ ∼ N
(
η,

Λsoft
pT

r
)

φ′ ∼ N
(
φ,

Λsoft
pT

r
)
.
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Contrastive learning of jet representations

The training procedure:
1. sample batch of jets, xi
2. create an augmented batch of jets, x′i
3. forward-pass both through the network
4. compute the loss & update weights

permutation invariance

Transformer-encoder network
? based on ‘self-attention’

mechanism

? output invariant to constituent
ordering

more info. in additional slides

7



Quality measure of observables

Benchmark representations:

• raw constituent data
• jet images
• Energy Flow Polynomials

(Thaler et al: arXiv:1712.07124)

Compare these using a Linear Classifier Test (LCT)

? use top-tagging as a test
? linear cut in the observable space
? supervised - uses simulations
? measures:
εs - true positive rate
εb - false positive rate
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Linear classifier test results
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Linear classifier test results

Where does the performance come from?

Augmentation ε−1
b (εs=0.5) AUC

none 15 0.905
translations 19 0.916
rotations 21 0.930
soft+collinear 89 0.970
all combined (default) 181 0.980

? soft + collinear has the biggest e�ect
translations + rotations also significant in final combination

? also not very sensitive to S/B
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Invariances in representation space

without rotational invariance

0π

−1.0
−0.5

0.0
0.5

1.0

s(
z,
z
′ )

R

with rotational invariance

? s(z, z′)= z·z′
|z||z′| , z = f(~x), z′= f

(
R(θ)~x

)
⇒ The network f(~x) is approx rotationally invariant
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Summary & outlook

Self-supervision allows for:
1. data-driven definition of observables
2. invariance to pre-defined symmetries/augmentations
3. high discriminative power

An example: JetCLR (contrastive learning of jet observables)

Outlook:
• incorporating particle-ID
• application beyond jet-tagging
• anomaly-detection
• . . .
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LCT - performance vs epochs

Performance as a function of training time / epochs
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The network

We use a transformer-encoder network→ permutation invariance

Equivariance → invariance is similar to Deep-Sets/Energy-Flow-Networks: arXiv:1810.05165, P. T. Komiske, E. M. Metodiev, J. Thaler

The attention mechanism

captures correlations between

constituents by allowing each

constituent to assign attention

weights to every other

constituent.
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