Symmetries, safety, & self-supervision

Barry M. Dillon

September 23, 2021

Institute for Theoretical Physics University of Heidelberg

Portoroz 2021: Physics of the flavourful universe

hep-ph/2108.04253

BMD, Gregor Kasieczka, Hans Olischlager, Tilman Plehn, Peter Sorrenson, and Lorenz Vogel

UNIVERSITÄT HEIDELBERG Zukunft. Seit 1386.

1. Background

2. Learning jet representations

3. Results

4. Outlook

Introduction

- 1. Machine-learning already plays an important role in particle physics analyses
 - \star jet tagging
 - * model-agnostic new physics searches
 - \star unfolding
 - \star detector simulation
 - * . . .
- 2. Trust issues.. Interpretability? Reliance on simulation?

Introduction

- 1. Machine-learning already plays an important role in particle physics analyses
 - ★ jet tagging
 - * model-agnostic new physics searches
 - * unfolding
 - * detector simulation

* . . .

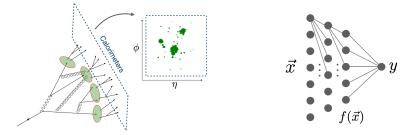
2. Trust issues.. Interpretability? Reliance on simulation?

3. Self-supervision

Incorporate prior physics knowledge in neural networks w/o simulation

- 4. Improved performance in jet-tagging
 - + many new opportunities for future research

Neural network maps kinematical data to a predicted label



- simulations provide training data $\{\vec{x}_i\}$ and truth-labels $\{y'_i\}$
- · neural network is optimised to minimise a loss function

$$\mathcal{L}_i = y'_i \log(y_i) + (1 - y'_i) \log(1 - y_i)$$

- loss function is minimised when QCD and top jets are well-separated in y
- · predicted label is a new observable used to tag top-jets

Neural networks don't explicitly learn the invariances associated with jets

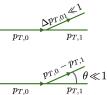
 \star no idea what features the network learns (...simulation artefacts?..)

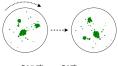
Neural networks don't explicitly learn the invariances associated with jets

 \star no idea what features the network learns (...simulation artefacts?..)

What do we want the network to learn?

- rotational invariance
- translational invariance
- IR safety
- Collinear safety





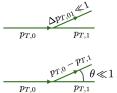
 $f(R\vec{x}) = f(\vec{x}) = y$

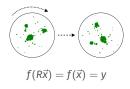
Neural networks don't explicitly learn the invariances associated with jets

 \star no idea what features the network learns (...simulation artefacts?..)

What do we want the network to learn?

- rotational invariance
- translational invariance
- IR safety
- Collinear safety





Standard solution: Pre-processing & high-level observables

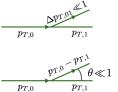
 \star prevents the network learning from low-level raw data

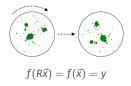
Neural networks don't explicitly learn the invariances associated with jets

 \star no idea what features the network learns (...simulation artefacts?..)

What do we want the network to learn?

- rotational invariance
- translational invariance
- IR safety
- Collinear safety





Standard solution: Pre-processing & high-level observables

* prevents the network learning from low-level raw data

Better solution: networks learn these invariances from the raw data

Optimising observables / representations

Key idea

Reframe the definition of our observables as an optimisation problem to be solved with machine-learning

What do we fundamentally want from observables?

- 1. invariance to certain transformations / augmentations of the jets
- 2. discriminative within the space of jets

Optimising observables / representations

Key idea

Reframe the definition of our observables as an optimisation problem to be solved with machine-learning

What do we fundamentally want from observables?

- 1. invariance to certain transformations / augmentations of the jets
- 2. discriminative within the space of jets
- * Contrastive-learning

map raw jet data to a new representation / observables

* Self-supervision

neural networks are optimised without truth-labels

ightarrow can run directly on expt. data

1. Background

2. Learning jet representations

3. Results

4. Outlook

arXiv:2002.05709, Google Brain: simCLR, T. Chen, S. Kornblith, M. Norouzi, G. Hinton

Dataset: mixture of top-jets and QCD-jets

From the dataset of jets $\{x_i\}$ define:

- positive-pairs: $\{(x_i, x'_i)\}$ where x'_i is an augmented version of x_i
- negative-pairs: $\{(x_i, x_j)\} \cup \{(x_i, x_i')\}$ for $i \neq j$

Augmentation: any transformation (e.g. rotation) of the original jet

arXiv:2002.05709, Google Brain: simCLR, T. Chen, S. Kornblith, M. Norouzi, G. Hinton

Dataset: mixture of top-jets and QCD-jets

From the dataset of jets $\{x_i\}$ define:

- positive-pairs: {(x_i, x'_i)} where x'_i is an augmented version of x_i
- negative-pairs: $\{(x_i, x_j)\} \cup \{(x_i, x_i')\}$ for $i \neq j$

Augmentation: any transformation (e.g. rotation) of the original jet

Train a network to map to a new representation space, $f(\vec{x}_i) = \vec{z}_i, f : \mathcal{J} \to \mathcal{R}$

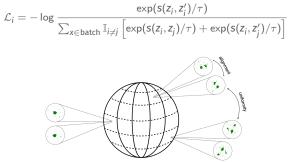
Optimise for:

- 1. alignment: positive-pairs close together in $\mathcal{R} \rightarrow \mathsf{invariance}$ to augmentations
- 2. uniformity: negative-pairs far apart in $\mathcal{R} \rightarrow \mathsf{discriminative}$ power

Similarity measure in \mathcal{R} : $s(z_i, z_j) = \frac{z_i \cdot z_j}{|z_i| |z_i|}$

 \Rightarrow defined on unit-hypersphere

Contrastive loss:



JetCLR \rightarrow code at https://github.com/bmdillon/JetCLR

The training procedure:

- **1.** sample batch of jets, x_i
- 2. create an augmented batch of jets, x'_i
- 3. forward-pass both through the network
- 4. compute the loss & update weights

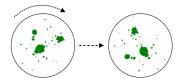
The training procedure:

- 1. sample batch of jets, *x_i*
- 2. create an augmented batch of jets, x'_i
- 3. forward-pass both through the network
- 4. compute the loss & update weights

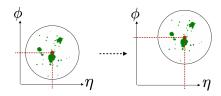
rotations

translations

Angles sampled from $[0, 2\pi]$



Translation distance sampled randomly



The training procedure:

- **1.** sample batch of jets, x_i
- 2. create an augmented batch of jets, x'_i
- 3. forward-pass both through the network
- 4. compute the loss & update weights

collinear splittings

some constituents randomly split,

$$p_{T,a} + p_{T,b} = p_T, \quad \eta_a = \eta_b = \eta$$
$$\phi_a = \phi_b = \phi$$

low p_T smearing

 (η, ϕ) co-ordinates are re-sampled:

$$\begin{split} \eta' &\sim \mathcal{N}\left(\eta, \frac{\Lambda_{\text{soft}}}{p_{\text{T}}}r\right) \\ \phi' &\sim \mathcal{N}\left(\phi, \frac{\Lambda_{\text{soft}}}{p_{\text{T}}}r\right). \end{split}$$

The training procedure:

- **1.** sample batch of jets, x_i
- 2. create an augmented batch of jets, x'_i
- 3. forward-pass both through the network
- 4. compute the loss & update weights

permutation invariance

Transformer-encoder network

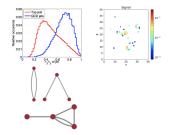
- based on 'self-attention' mechanism
- output invariant to constituent ordering

more info. in additional slides

Quality measure of observables

Benchmark representations:

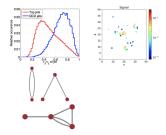
- raw constituent data
- jet images
- Energy Flow Polynomials (Thaler et al: arXiv:1712.07124)



Quality measure of observables

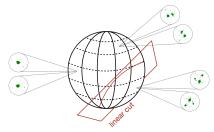
Benchmark representations:

- raw constituent data
- jet images
- Energy Flow Polynomials (Thaler et al: arXiv:1712.07124)



Compare these using a Linear Classifier Test (LCT)

- \star use top-tagging as a test
- * linear cut in the observable space
- supervised uses simulations
- * measures:
 - ϵ_{S} true positive rate
 - ϵ_b false positive rate



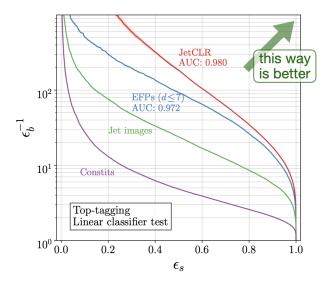
1. Background

2. Learning jet representations

3. Results

4. Outlook

Linear classifier test results

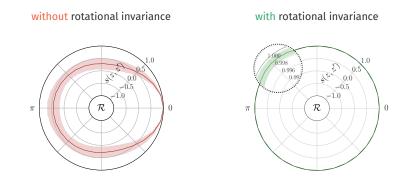


Where does the performance come from?

Augmentation	$\epsilon_b^{-1}(\epsilon_s=0.5)$	AUC
none	15	0.905
translations	19	0.916
rotations	21	0.930
soft+collinear	89	0.970
all combined (default)	181	0.980

- soft + collinear has the biggest effect
 translations + rotations also significant in final combination
- * also not very sensitive to S/B

Invariances in representation space



*
$$S(z, z') = \frac{z \cdot z'}{|z||z'|}$$
, $z = f(\vec{x})$, $z' = f(R(\theta)\vec{x})$

 \Rightarrow The network $f(\vec{x})$ is approx rotationally invariant

1. Background

2. Learning jet representations

3. Results

4. Outlook

Summary & outlook

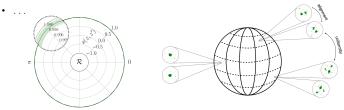
Self-supervision allows for:

- 1. data-driven definition of observables
- 2. invariance to pre-defined symmetries/augmentations
- 3. high discriminative power

An example: JetCLR (contrastive learning of jet observables)

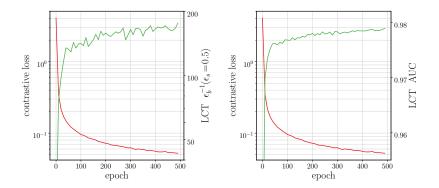
Outlook:

- incorporating particle-ID
- application beyond jet-tagging
- anomaly-detection



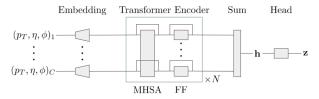
LCT - performance vs epochs

Performance as a function of training time / epochs



The network

We use a transformer-encoder network \rightarrow permutation invariance



The attention mechanism captures correlations between constituents by allowing each constituent to assign attention weights to every other constituent.

