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In this talk:

- A brief remainder of Four Tops at the LHC:

- Graphical models for Bayesian Inference of Four tops
- Modelling the data

- Numerical Inference

- Results for a specific benchmark

- Conclusions
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Four tops at the LHC

An increasingly sensitive SM benchmark  to be explored at the LHC, with huge experimental effort and impressive 

results. Recent results in monolepton + 2LOS (ATLAS coll., ATLAS-CONF-2021-013, CMS coll., arxiv:1906.02805) 

and 2LSS + multilepton (ATLAS coll., arxiv:2007.14858. and CMS coll., arxiv:1908.06463)

Correspondingly, state of the art calculations and improvement of SM predictions (see R. Frederix, D. Pagani, M. 

Zaro, arxiv:1711.02116)

A theoretically well motivated (but perhaps more importantly,  still allowed) window to BSM effects (see e.g.  G. 

Banelli, E. Salvioni, J. Serra, T. Theil, A. Weiler, arxiv:2010.05915, E. Alvarez, A. Juste, M. S., T. Vazquez Schroeder, 

arxiv:2011.06514 and Luc Darmé, Benjamin Fuks, Fabio Maltoni, arxiv:2104.09512).
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Already a very populated partonic final state
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We only see top decays
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And ISR+FSR 
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Theoretical calculations are really challenging

From R. Frederix, D. Pagani, M. Zaro, arxiv:1711.02116:

NLO corrections are large + Mixed corrections are comparable to pure QCD. 

→ Theoretical calculations are expensive and necessary.

Large, accidental cancelations of (N)LO terms which involve QCD+EW couplings. Clear scale dependence 
of the accidental cancellations.

→ Hard to assert how BSM would change these cancellations. Need for very expensive simulations for 
each BSM model? (See Benjamin Fuks’ talk about the subtleties of using EFTs!)
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Four tops at the LHC

An increasingly sensitive SM benchmark  to be explored at the LHC, with huge experimental effort and impressive 
results. Recent results in monolepton + 2LOS (ATLAS coll., ATLAS-CONF-2021-013, CMS coll., arxiv:1906.02805) 
and 2LSS + multilepton (ATLAS coll., arxiv:2007.14858. and CMS coll., arxiv:1908.06463)

Correspondingly, state of the art calculations and improvement of SM predictions (see R. Frederix, D. Pagani, M. 
Zaro, arxiv:1711.02116)

A theoretically well motivated (but perhaps more importantly,  still allowed) window to BSM effects (among many 
examples, NP: 2105.03372,1910.09581,1906.09703, 
1805.108351804.05598,1611.05032,1206.3064,1203.5862, 1112.3778,1107.46161101.1294, 
1008.3562,hep-ph/9507411,  EFT: 2104.09512, 2011.15060,2010.05915,1708.05928,1010.6304
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Four tops in the 2LSS+multilepton channel

Signal and irreducible backgrounds (mainly tt̄Z, tt̄H and specially tt̄W± + heavy-flavour) are of the same 

order of magnitude.

Reduced complexity of the multijet final state compared to single lepton. Added complexity of other 

source of MET.

Still very challenging! 
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Four tops in the 2LSS+multilepton channel

CMS measures something along the lines of the SM cross-section:

While ATLAS measures      

It’s still compatible with SM predictions but the central value is roughly twice as expected
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Four tops in the 2LSS+multilepton channel

The main sources of uncertainty are:

High multiplicities final states are challenging to simulate.

Misaligned charge + Fake/non-prompt leptons need to be estimated with data-driven techniques.

Charge asymmetric + High b-jet multiplicity discrepancies are addressed by using a Normalization Factor 

for tt̄W±: NF
tt̄W=1.6±0.3 for ATLAS and 1.3±0.2 for CMS.

Also… not a whole lot of events (~ 300 events for 140fb-1)
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Four tops in the 2LSS+multilepton channel

What can we do? 

Improving on our knowledge of 4-top and its irreducible backgrounds would be ideal. However, obtaining 

the tt̄W± +HF and 4-top cross-sections, and kinematical distributions, to a higher precision is a daunting 

task.

Maybe reduce Monte Carlo dependency by learning from the Signal Region directly using semi- or 

unsupervised techniques.
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Learning four tops

We will focus on the 2LSS++ channel and consider only four tops and tt̄W±. tt̄Z and tt̄H could be included 

easily.

In this channel, we have roughly 1/1 events. 

Let’s focus on the technique more than in the simulation dataset.
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Learning four tops

We can resume our goal as the following:

Consider our imperfect simulations of the (known) physical processes as prior knowledge and 
update our knowledge using the measured data → Bayesian framework
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Learning four tops

As seen in E. Alvarez, D. A. Faroughy, J. F. Kamenik, R. Morales, A. Szynkman in arxiv:1611.05032, 

N
b 

and N
j
 are the low level observables that drive the discriminatory power.

Let’s focus on those! Keep things simple. 

We consider a probabilistic mixture model → each event is generated by one of underlying the 

physical processes.

Because we cannot observe this assignment, it is a latent parameter z.
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Modelling four tops

For event n, we measure N
j
 = j

n
 and N

b
 = b

n
. 

We want to model p(j
n
,b

n
) as a mixture of two processes: background (tt̄W±) and signal (four tops). This is 

achieved by writing the likelihood as:
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Modelling four tops

p(z
n
=four tops) is the probability of an event originating from a four tops hard process

→ S/(S+B) = π
1

 ; p(z
n
=tt̄W±) = π

0
 = 1 - π

1
.

p(j
n
, b

n
|z

n
=t) are the probability mass functions we would ideally obtain from simulation

→ (j, b) ~ Multinomial(γ
t,(j,b)

) where γ
t,(j,b)

 is a matrix of dimension 2x(d
j
xd

b
-1)
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Modelling four tops

However, we do not really know any of these parameters. 

(Roughly) Frequentist approach: obtain the best parameters using a ML fit.

(Roughly) Bayesian approach: treat these parameters as random variables with prior probability 

distributions that need to be updated with the data as encoded in the likelihood (Bayes theorem)
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Modelling four tops

Posterior = Likelihood x Prior / Evidence
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Modelling four tops

p({γ
t,(j,b)

,π
t
}|j, b) = [Σ

m
 p(j, b|γ

m,(j,b)
, z=m)π

m
] x p({γ

t,(j,b)
,π

t
}) / p(j,b)
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Modelling four tops

But there is a problem: We have a 2x(djxdb-1)+1 parameters to infer. But we have one measurement per 

event →  We do not have enough information to disentangle! 

We can solve this by assuming conditional independence between N
j
,N

b
. That is:

p(j, b|z=t) = p(j|z=t)p(b|z=t) = Multi(𝛼
t
)Multi(𝛽

t
)
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Modelling four tops

We are assuming that the correlations between N
j
 and N

b
 come from the fact that there is a mixture of 

processes. We need to learn this mixture to learn the correlations. If supervised, it would be Naive Bayes.

This is very different from:

p(j, b|z=t)p(t) = p(j|z=t)p(b|z=t)p(t) ≠ p(j)p(b)
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Modelling four tops

The likelihood is now:

p(j,b) = Σ
t
p(j|z=t)p(b|z=t)p(t) = Σ

t
 π

t
𝛼

t,j
𝛽

t,b

Which implies an specific covariance matrix between j and b

C
j,b

 = Σ
t,t’

 (π
t
𝛿

t,t’
-π

t
π

t’
)𝛼

t,j
𝛽

t’,b
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Modelling four tops

We go from 2x(d
j
xd

b
-1)+1 → 2x(d

j
+d

b
-2)+1 parameters 

So now Bayes theorem looks like...

p({𝛼
t,j

,𝛽
t,b

,π
t
}|j, b) = [Σ

m
 π

m
𝛼

m,j
𝛽

m,b
] x p(π

m’
)∏

m’
p(𝛼

m’,j
)p(𝛽

m’,b
) / p(j,b)

27



Modelling four tops

We need to specify the priors. We consider the conjugate prior of the Multinomial: the Dirichlet.

Dir(𝜃|𝜂) = ∏
v
𝜃

v
𝜂v-1/B(𝜂)

We map our prior knowledge to the Dirichlet hyperparameters.

The MC simulations yield estimations on the parameters 𝜃 = π, 𝛼, and 𝛽  → Expected values under the 

prior distribution 
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Modelling four tops

We can fix the expected values given by our MC by parameterizing 𝜂
k
= Σ p

k
 where p

k
 is the parameter 

value estimated through MC simulations and Σ a total scaling factor which encodes our confidence in the 

prior estimations. 

Looking at the mean and variance of a given possible outcome 𝜃
k
:

E[𝜃
v
]𝜂 = p

v
            Var[𝜃

v
]𝜂 = p

v
(1-p

v
)/Σ
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Putting it all together: Generative process

We can understand it using a plate diagram which 
encodes the generative process of the data:

Sample fractions π
0

, π
1

 ~ Dir(ηπ)

For t=1,2:

- Sample light jet multinomials 𝛼
t
~ Dir(η𝛼t)

- Sample b-jet 𝛽
t
 ~ Dir(η𝛽t)

For event n=1,..,N:

- Sample event assignment z
n
 ~ Multi(π

0
, π

1
)

- Sample j
n
 ~ Multi(𝛼

zn
)

- Sample b
n
 ~ Multi(𝛽

zn
)
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Learning four tops

The thing is: we cannot do the inference procedure exactly. The evidence is intractable: a lot of possible 

assignments and thus updates of the prior.
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Learning four tops

The thing is: we cannot do the inference procedure exactly. The evidence is intractable: a lot of possible 

assignments and thus updates of the prior.

Luckily, there is a vast literature on the subject and a lot of techniques. EM+priors for finding the MAP, 

Variational Inference for approximate, fast and analytical inference and Markov Chain Monte Carlos for 

“exact” numerical inference.
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Learning four tops

The thing is: we cannot do the inference procedure exactly. The evidence is intractable: a lot of possible 

assignments and thus updates of the prior.

Luckily, there is a vast literature on the subject and a lot of techniques. EM+priors for finding the MAP, 

Variational Inference for approximate, fast and analytical inference and Markov Chain Monte Carlos for 

“exact” numerical inference.

Our model is so simple (everything is either multinomial or dirichlet!) that we are able to write the latter 

in python without the need to resort to dedicated software (such as pymc, emcee or pyro).
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A simple benchmark

We consider the case with N=500, f
1

=0.30 (roughly a Luminosity of 800 fb-1).

To study our algorithm we use MC samples as “true data” and a smeared version as our “MC” which plays 

the role of prior.

We make an exception for the signal fractions, for which we assume no prior knowledge.
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A simple benchmark

This is the two dimensional distributions
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A simple benchmark

And here are the 1d projections we use.
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Corner plots

For each parameter, we show its 1d histogram and its 2d correlations with every other parameter
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Corner plots

For each parameter, we show its 1d histogram and its 2d correlations with every other parameter

This is a 
particularly 

good example 
where we 

capture 
correlations
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There are a lot of them...
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Grouping parameters together

Now we can compare prior vs posterior
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General observations

From this and other benchmarks:

Good convergence + uncertainty reduction!

N
j
 is easier to fix. N

b
 is harder and π is the hardest. 

N
j 
has a lot of very populated bins. This is not the case for N

b
.

The limitations in  π probably reflect the limitations of our modelling (and the use of a non-informative 

prior). However, once we have N
j
 and N

b
 simulations we can trust, we can obtain π in the usual manner.

As the main problem is obtaining N
j
, this algorithm seems relevant.
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Evaluating our results

To analyse the results of the inference, we consider the log-likelihood ratio of the correct parameters 

given the prior and the posterior probabilities.

In a real application, we do not know the true values. However, this is where the Bayesian framework is 

useful. There is a vast literature on model selection techniques!

Because we have a generative model, sanity checks and interpretability are straightforward.
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Conclusions

We are able to model the data with a generative process. Conditional independence (which could be 
broken by systematics!) is a key modelling assumption

This allows us to improve on our Monte Carlo estimations by treating them as prior knowledge which is 
to be updated through event measurements.

We are able to correct the N
j
 distributions properly
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What could we do next?

Tune our Monte Carlo generators on signal regions

Measure the signal cross-section with reduced systematics

Test for NP effects

Adapt to other channels
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Hvala!
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Back-up slides
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From ATLAS 1L+2LOS search

Uncertainties related to the 

background simulations at 

large N
j

47



From ATLAS 1L+2LOS search

Corrected through various 

clever techniques that need 

to trust that the MC 

extrapolates between 

different regions

They introduce additional 

systematics 
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Four tops in the 2LSS+multilepton channel

Let’s look under the hood!

From E. Alvarez, A. Juste, M.S. 

and T. Vazquez Schroeder 

arxiv:2011.06514

Very similar strategies… but 

not exactly the same.
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Learning 4-top

We tried various techniques. LDA, AE, VAEs

4-top or 
tt̄W±
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Learning 4-top

We tried various techniques. LDA, AE, VAEs

4-top or 
tt̄W±

We used a lot of kinematical 
information, mixing N

b
, N

j
 

with p
T

, ΔR and E
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Learning 4-top

We find a latent space with islands: some clustering

We used a lot of kinematical 
information, mixing N

b
, N

j
 

with p
T

, ΔR and E
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Learning 4-top

We find a latent space with islands: some clustering

But the discriminatory power is mainly in 
N

b
 and N

j
 as in E. Alvarez, D. A. Faroughy, J. 

F. Kamenik, R. Morales, A. Szynkman in 
arxiv:1611.05032
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Gibbs sampler

We obtain T “independent” samples of parameters drawn from the posterior. 

Any expected value E
z,π,𝛼,𝛽[f(z,π,𝛼,𝛽)] can be approximated by the mean over the samples Σ

i
 f(z

i
,π

i
,𝛼

i
,𝛽

i
)/T

We can plot the marginalized distributions simply by drawing histograms on the relevant parameters.

We need the conditional distributions of each parameter conditioned on the others p(𝜃
v
|𝜃

\v
) → Really 

simple because we have only Multinomials and Dirichlets.
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Gibbs sampler

To start a given iteration t, we only need the sufficient statistics N(t)
kjb

.

N(t)
k,j,b

 is the number of measurements of j and b assigned to class k. It can be obtained merely by having 
the event class assignments. 

From there we can obtain N = Σ
k
 N

k
 = Σ

k,j
 N(t)

k,j
 = Σ

k,b
 N(t)

k,b
 = Σ

k,j,b
 N(t)

k,j,b

So we start the Gibbs sampler with an initial random event class assignment Z (0) which we’ll then forget 
about later
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Gibbs sampler

So, for iteration t:

In practice you need to burn-in and thin the samples to get more or less independent samples.

Afterwards, you can get a lot of information: corrected distributions p(π,𝛼,𝛽|X), an event-by-event 

probabilistic tagger p(z
n
|x

n
) where we marginalize over π,𝛼,𝛽, etc.
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Variational Inference

Variational Inference is an approximated inference technique which assumes certain factorizations
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It is inherently 
limited to find 

what we need it 
to find!

Distributions 
are too narrow



Machine Learning at the LHC

Although ML algorithms have been a staple of HEP analyses for a long time, there is a current boom of 

semi- and unsupervised algorithms applied to LHC physics (see e.g. M. Feickert, B. Nachman’s Living 

Review, arxiv:2102.02770, the LHC Olympics 2020, arxiv:2101.08320 and The Dark Machines Anomaly 

Score Challenge, arxiv:2105.14027)

Among the many possible applications, these algorithms can enhance LHC analyses by reducing 

systematics of MC simulations and, for BSM searches, reducing the necessary model hypotheses.
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