$K \rightarrow \pi \bar{\nu} \nu$ and ϵ_{κ} : SM and Beyond

Martin Gorbahn (University of Liverpool) Based on work with J. Brod, F. Bishara, E. Stamou U. Moldanazarova 1911.06822, 2104.10930, 2105.02868

Portoroz, 2021 September 23

Content

Updated Standard Model Prediction for

• $K \to \pi \bar{\nu} \nu$

► *€*K

- New Physics
 - Renormalisation for generic theories
 - Mathematica code for results

$K \to \pi \, \bar{\nu} \, \nu$

Rare Kaon Decays: CKM Structure

Using the GIM mechanism, we can eliminate either $V_{cs}^* V_{cd}$ or $V_{us}^* V_{ud} \rightarrow - V_{cs}^* V_{cd} - V_{ts}^* V_{td}$ Z-Penguin and Boxes (high virtuality): power expansion in: A_c - $A_u \varpropto 0 + O(m_c^2/M_W^2)$ γ /g-Penguin (expand in mom.): A_c - A_u \propto O(Log(m_c²/m_u²)) $\mathrm{Im}V_{ts}^*V_{td} = -\mathrm{Im}V_{cs}^*V_{cd} = \mathcal{O}(\lambda^5)$ $\mathrm{Im}V_{us}^*V_{ud}=0$ $\operatorname{Re}V_{us}^*V_{ud} = -\operatorname{Re}V_{cs}^*V_{cd} = \mathcal{O}(\lambda^1)$ $\operatorname{Re}V_{ts}^*V_{td} = \mathcal{O}(\lambda^5)$

• $K \rightarrow \pi \bar{\nu} \nu$ (from Z & Boxes): Clean and suppressed

$K \rightarrow \pi \bar{\nu} \nu$ at M_W

- Below the charm: Only Q_{ν} , ME from K_{l3}
- semi-leptonic (s
 [¯]
 ^{γμ} u_L)(v
 ^{γμ} ℓ_L) operator: χ PT gives small contribution (10% of charm contribution)

Leading Effective Hamiltonian for $\mu < m_c$

SM: $\nu\bar{\nu}$ are only invisibles \Rightarrow no γ -Penguin \Rightarrow

$$\mathcal{H}_{\text{eff}} = \frac{\sqrt{2}\alpha G_{\text{F}}}{\pi \sin^2 \theta_w} \sum_{\ell=e,\mu,\tau} (\lambda_c X^{\ell} + \lambda_t X_t) (\bar{s}_L \gamma_\mu d_L) (\bar{v}_{\ell L} \gamma^\mu v_{\ell L}) + \text{h.c.}$$

generated by highly virtual particles + tiny light quark contribution \Rightarrow clean & CKM suppressed ($\lambda_i = V_{is}^* V_{id}$).

 $\lambda \simeq V_{us}$ and updated values from [2105.02868]

$K \rightarrow \pi \nu \bar{\nu}$ Branching Ratios

Matrix elements from K_{ℓ3} including strong and em iso-spin breaking [0705.2025] κ₊, κ_L, Δ_{EM}

 $\kappa_{+} = \frac{s_{w}^{-2}\lambda^{8}\alpha(M_{Z})^{2}}{7.5248 \cdot 10^{-9}} \times 0.5173(25) \times 10^{-10}, \, \Delta_{EM} = -0.003$

indirect CP violation contribution given by r_{ε_κ}

$$\mathsf{Br}_{\mathcal{K}^+} = \kappa_+ (1 + \Delta_{\mathsf{EM}}) \left[\left(\frac{\mathsf{Im}\lambda_t}{\lambda^5} X_t \right)^2 + \left(\frac{\mathsf{Re}\lambda_c}{\lambda} \left(P_c + \delta P_{c,u} \right) + \frac{\mathsf{Re}\lambda_t}{\lambda^5} X_t \right)^2 \right].$$

$$\mathsf{Br}_{\kappa_{L}} = \kappa_{L} r_{\epsilon_{\kappa}} \left(\frac{\mathsf{Im}\lambda_{t}}{\lambda^{5}} X_{t} \right)^{2}, \quad \kappa_{L} = \frac{s_{w}^{-2} \lambda^{8} \alpha (M_{Z})^{2}}{7.5248 \cdot 10^{-9}} \times 2.231(13) \times 10^{-10}$$

$K \rightarrow \pi \nu \bar{\nu}$ in the Standard Model

2105.02868 Standard Model Prediction

$$\begin{array}{rcl} \mathsf{BR}(K^+ \to \pi^+ \nu \bar{\nu}) &=& 7.73(16)_{SD}(25)_{LD}(54)_{para.} \times 10^{-11} \,, \\ \mathsf{BR}(K_L \to \pi^0 \nu \bar{\nu}) &=& 2.59(6)_{SD}(2)_{LD}(28)_{para.} \times 10^{-11} \,. \end{array}$$

$$\begin{split} 10^{11} \times \mathcal{B}_{+} &= 7.73 \pm 0.12_{X_{t}^{\text{OCD}}} \pm 0.01_{X_{t}^{\text{EW}}} \pm 0.11_{P_{c}} \pm 0.24_{\delta P_{cu}} \pm 0.04_{\kappa_{+}} \\ &\pm 0.13_{\lambda} \pm 0.46_{A} \pm 0.18_{\bar{p}} \pm 0.03_{\bar{\eta}} \pm 0.05_{m_{t}} \pm 0.15_{m_{c}} \pm 0.05_{\alpha_{s}} \, . \\ 10^{11} \times \mathcal{B}_{L} &= 2.59 \pm 0.06_{X_{t}^{\text{OCD}}} \pm 0.01_{X_{t}^{\text{EW}}} \pm 0.02_{\kappa_{L}} \\ &\pm 0.16_{\bar{\eta}} \pm 0.22_{A} \pm 0.04_{\lambda} \pm 0.02_{m_{t}} \end{split}$$

- ► NA62 collaboration BR($K^+ \to \pi^+ \nu \bar{\nu}$) = (10.6^{+3.4}_{-3.4}|_{stat} ± 0.9_{syst}) × 10⁻¹¹
- ▶ JPARC-KOTO has $BR(K_L \rightarrow \pi^0 \nu \bar{\nu}) \le 3.0 \times 10^{-9}$

CP violation in $K \rightarrow \pi \pi$

• Experimental definition using
$$\eta_{ij} = \frac{\langle \pi^i \pi^j | K_L \rangle}{\langle \pi^i \pi^j | K_S \rangle}$$

 $\epsilon_K = (2\eta_{+-} + \eta_{00})/3$, $\epsilon' = (\eta_{+-} - \eta_{00})/3$

•
$$\epsilon_{\rm K}$$
 theory expression $\epsilon_{\rm K} \simeq \frac{\langle (\pi \pi)_{l=0} | K_L \rangle}{\langle (\pi \pi)_{l=0} | K_S \rangle} =$

$$e^{i\phi_{\epsilon}}\sin\phi_{\epsilon}\frac{1}{2}\arg\left(\frac{-M_{12}}{\Gamma_{12}}\right) = e^{i\phi_{\epsilon}}\sin\phi_{\epsilon}\left(\frac{\mathrm{Im}(M_{12})^{Dis}}{\Delta M_{K}} + \xi\right)$$

$$\begin{array}{l} \langle K^{0}|H^{|\Delta S|=2}|\bar{K}^{0}\rangle \rightarrow \mathrm{Im}(M_{12})^{Dis}, \ \frac{\mathrm{Im}\langle (\pi\pi)_{l=0}|K^{0}\rangle}{\mathrm{Re}\langle (\pi\pi)_{l=0}|K^{0}\rangle} \rightarrow \xi \ \phi_{\varepsilon} \equiv \arctan\frac{\Delta M_{K}}{\Delta\Gamma_{K}/2} \\ & \blacktriangleright \ \frac{2}{3}f_{K}^{2}M_{K}^{2}\hat{B}_{K} = \langle \bar{K}^{0}|Q^{|\Delta S=2|}|K^{0}\rangle u^{-1}(\mu_{\mathrm{had}}) \end{array}$$

$$\blacktriangleright Q_{S2} = (\overline{s}_L \gamma_\mu d_L) \otimes (\overline{s}_L \gamma^\mu d_L)$$

Kaon Mixing: CKM Structure

Where $\lambda_i = V_{id}V_{is}^*$, $\lambda \equiv |V_{us}| \sim 0.2$ and we eliminated either: $\lambda_u = -\lambda_c - \lambda_t$ or $\lambda_c = -\lambda_u - \lambda_t$.

$\Delta S = 2$ Hamiltonian - Phase (In)Dependence

• Recall
$$\epsilon_K \propto \arg(-M_{12}/\Gamma_{12})$$

- Trick: pull out λ_u^* and $(\lambda_u^*)^2$ from $H^{\Delta S=1}$ and $H^{\Delta S=2}$:
- Rephaseing invariant: $\lambda_i \lambda_j^* = V_{id} V_{is}^* V_{jd}^* V_{js}$

$$\mathcal{H}_{f=3}^{\Delta S=2} = \frac{G_F^2 M_W^2}{4\pi^2 (\lambda_u^*)^2} Q_{S2} \Big\{ f_1 C_1(\mu) + i J \left[f_2 C_2(\mu) + f_3 C_3(\mu) \right] \Big\} + \text{h.c.}$$

- $J = \text{Im}(V_{us}V_{cb}V_{ub}^*V_{cs}^*)$, f_1 , f_2 and f_3 are rephasing invariant
- Real part $f_1 = |\lambda_u|^4$ is unique
- Splitting of $f_2 = 2\text{Re}(\lambda_t \lambda_u^*)$ and $f_3 = |\lambda_u|^2$ not, but expect good convergence for C_2 and C_3 .

Traditional Form

Traditionally the effective Hamiltonian is written as:

$$\mathcal{H}_{t=3}^{\Delta=2} = \frac{G_F^2 M_W^2}{4\pi^2} \Big[\lambda_c^2 C_{S2}^{cc}(\mu) + \lambda_t^2 C_{S2}^{tt}(\mu) + \lambda_c \lambda_t C_{S2}^{ct}(\mu) \Big] Q_{S2} + \text{h.c.}$$

where $f_2 = 2\text{Re}(\lambda_t \lambda_u^*)$, $f_3 = |\lambda_u|^2$ and, using PDG convention and CKM unitarity,

$$C_{S2}^{cc} \equiv C_1, \quad C_{S2}^{ct} \equiv 2C_1 - C_3, \quad C_{S2}^{tt} \equiv C_1 + C_2 - C_3$$

- ► *A_{cu}* denotes amplitude with internal charm and up
- ► $C_1 \leftarrow A_{uu} 2A_{cu} + A_{cc}$ bad short distance behaviour
- C_1 determines ΔM_K via Re M_{12}
- But C_1 contributes to Im M_{12} and hence ϵ_K

Residual scale dependence

QCD corrections to $C_{S2}^{ct} \rightarrow \eta_{ct} = 0.497(47)$ QCD corrections to $C_{S2}^{cc} \rightarrow \eta_{cc} = 1.87(76)$

Im M_{12} without ΔM_K pollution

Using CKM unitarity and the PDG convention we can also write (as used in Lattice [Christ et.al.]):

$$\mathcal{H}_{f=3}^{\Delta=2} = \frac{G_F^2 M_W^2}{4\pi^2} \Big[\lambda_u^2 C_{S2}^{uu}(\mu) + \lambda_t^2 C_{S2}^{tt}(\mu) + \lambda_u \lambda_t C_{S2}^{ut}(\mu) \Big] Q_{S2} + \text{h.c.}$$

► Now real Re M_{12} and Im M_{12} are disentangled $C_{S2}^{uu} \equiv C_1, \quad C_{S2}^{tt} \equiv C_2, \quad C_{S2}^{ut} \equiv C_3$

$$C_3 \leftarrow (A_{tu} - A_{tc} + A_{cc} - A_{cu}) \leftarrow \\ \leftarrow (A_{uu} - 2A_{cu} + A_{cc}) - (A_{tc} - A_{tu} + A_{uu} - A_{cu})$$

 Extract anomalous dimensions and matching from old calculation and incorporate matching from η_{cc}

Residual scale dependence

16/30

SM prediction (1911.06822) using PDG input

$$|\epsilon_{\mathcal{K}}| = \kappa_{\epsilon} C_{\epsilon} \widehat{B}_{\mathcal{K}} |V_{cb}|^2 \lambda^2 \bar{\eta} \times \left[|V_{cb}|^2 (1-\bar{\rho}) \eta_{tt}(x_t) - \eta_{ut}(x_c, x_t) \right]$$

 Improvements 2108.00017 2-loop EW, NNLO μt [Brod, Gorbahn, Stamou, Yu] and μ_{Lattice} [Gorbahn, Jager, Kvedaraitė] matching in progress. Lattice κ_ε

New Physics

Heavy New Physics

$$\mathcal{H}_{\mathrm{eff}} \supset rac{C_{lq}^{(1),sd}}{(100\mathrm{TeV})^2} \sum_{\ell=e,\mu,\tau} (\bar{s}_L \gamma_\mu d_L) (\bar{v}_{\ell L} \gamma^\mu v_{\ell L}) + \mathrm{h.c.}$$

• Currently: $1/\sqrt{C_{lq}^{(1),sd}} \simeq 2$ in units of 100TeV @ 2σ

- ▶ 10% measurement: $1/\sqrt{C_{lq}^{(1),sd}} \simeq 4$ in units of 100TeV
- Same light (m \leq v_{ew}) particle content
 - Match onto ΔS = 1 and ΔS = 2 to find correlations in UV models
 - E.g. $K \to \pi \nu \bar{\nu}, \Delta M_K, \ldots$
 - General one-loop result involves effects of symmetry breaking
- Could be extended to extra light degrees of freedom

Field content

Result should depend on Field content and minimal set of couplings

In the SM:

Field	Mass	U(1)
W	mw	1
Z	mz	0
е	0	-1
{u,t}	$\{0, m_t\}$	2/3

CKM mixing and W couplings of Bosons to fermions

https://wellput.github.io/

Consider SM particle content & arbitrary couplings

in[1]:= AppendTo[\$Path, NotebookDirectory[]]; << WellPut`</pre>

This Package is based on the work [2104.10930] Type "wellPutInfo[]" for a description of all available functions.

$$\begin{split} & \text{In}_{|2|>} \text{ SetOptions} \Big[\text{getc, Externals} \rightarrow \Big\{ \Big\{ \text{s}, 0, -\frac{1}{3} \Big\}, \Big\{ d, 0, -\frac{1}{3} \Big\}, \big\{ \forall, 0, 0 \} \Big\}, \\ & \text{Leptons} \rightarrow \{ \{ \mu, 0, -1 \} \}, \text{ Quarks} \rightarrow \Big\{ \Big\{ u, 0, \frac{2}{3} \Big\}, \Big\{ t, \text{mt, } \frac{2}{3} \Big\} \Big\}, \\ & \text{Scalars} \rightarrow \{ \{ h, \text{mh}, 0 \} \}, \text{ ZBosons} \rightarrow \{ \{ Z, \text{mz}, 0 \} \}, \text{ Vectors} \rightarrow \{ \{ W, \text{mw}, 1 \} \} \Big]; \end{split}$$

 $\label{eq:linear} $$ Interpretect $$ Interpr$

$$\frac{e^{l^2} Q_{\nu} g_{W \bar{d}t}^L g_{W \bar{t}s}^L F_V^{\gamma Z}(0, x_W^t)}{m_W^2} + \frac{g_{W \bar{d}t}^L g_{W \bar{t}s}^L g_{W \bar{\nu}\mu}^L g_{W \bar{\mu}\nu}^L F_V^{L,B'Z}(0, x_W^t, 1, 0)}{m_W^2}$$

in[4]:= replaceFunctions[F["VB'Z", L, 0, x, 1, 0]] // TraditionalForm

Out[4]//TraditionalForm=

$$\frac{x (x^2 + x + 3 (x - 2) \log(x) - 2)}{2 (x - 1)^2}$$

21/30

First consider only massive vector case

Idea: Renormalisation via high energy tree-level properties derived in 1903.05116.

Remnants of gauge symmetry

- Massive vector bosons from a spontaneously broken gauge symmetry [Cornwall et.al. 73/74]
- Fix the gauge for massive vector $(\sigma_{V^{\pm}} = \pm i, \sigma_{V} = 1)$ $\mathcal{L}_{\text{fix}} = -\sum_{v} (2\xi_{v})^{-1} F_{\bar{v}} F_{v}, \qquad F_{v} = \partial_{\mu} V_{v}^{\mu} - \sigma_{v} \xi_{v} M_{v} \phi_{v},$
- ▶ BRST invariant field combination $s(...)_{ph} = 0$
- ► STIs from $s \langle T \{ \bar{u}_v(...)_{ph} \} \rangle = 0$ at required order: $\langle T \{ \kappa^{\mu} \underline{V_v^{\mu}} - i\sigma_{\bar{v}} M_v \underline{\phi_v} \} (...)_{ph} \rangle$,

• E.g. for
$$(...)_{ph} = \overline{f}_1 f_2$$
 we have
 $y_{\phi_1 \overline{f}_1 f_2}^{L/R} = -i\sigma_{v_1} \frac{1}{M_{v_1}} \left(m_{f_1} g_{v_1 \overline{f}_1 f_2}^{L/R} - g_{v_1 \overline{f}_1 f_2}^{R/L} m_{f_2} \right)$

Identities for d > 4 Green's functions

Setting $v_3 = Z$, $f_2 = d_j$ there are two additional STIs:

$$\begin{split} g_{Z\bar{t}t}^L g_{v_1^+ \bar{t}d_j}^L &= g_{v_1^+ \bar{t}d_j}^L g_{Z\bar{d}_jd_j}^L + \sum_{v_2} g_{Zv_1^+ v_2^-} g_{v_2^+ \bar{t}d_j}^L \\ g_{Z\bar{t}t}^R g_{v_1^+ \bar{t}d_j}^L &= \frac{1}{2} g_{v_1^+ \bar{t}d_j}^L \Big(g_{Z\bar{t}t}^L + g_{Z\bar{d}_jd_j}^L \Big) + \sum_{v_2} \frac{M_{v_1}^2 - M_Z^2}{2M_{v_2}^2} \, g_{Zv_1^+ v_2^-} g_{v_2^+ \bar{t}d_j}^L \end{split}$$

Which can be used to eliminate $g_{Z\bar{t}t}^{L/R}$ from the expression

Generic Vector Interactions

$$\mathcal{L}_{3}^{V} = g_{\nu_{1}\bar{f}_{1}f_{2}}^{L/R} V_{\nu_{1},\mu} \bar{\psi}_{f_{1}} \gamma^{\mu} \mathcal{P}_{L/R} \psi_{f_{2}} + \frac{i}{6} g_{\nu_{1}\nu_{2}\nu_{3}}^{abc} \Big(V_{\nu_{1},\mu} V_{\nu_{2},\nu} \partial^{[\mu} V_{\nu_{3}}^{\nu]} + \dots \Big).$$

In SM, for $K \to \pi \nu \bar{\nu}$ we would need the following:

$$\begin{array}{l} & g_{W^+\bar{u}_jd_k}^L = \frac{e}{s_w \sqrt{2}} V_{jk}, \quad y_{G^+\bar{u}_jd_k}^L = \frac{m_{uj}}{M_W} \frac{e}{s_w \sqrt{2}} V_{jk} \\ & g_{Z\bar{t}_jf_k}^L = \frac{2e}{s_{2w}} \left(T_3^f - Q_f s_w^2 \right) \delta_{jk}, \quad g_{Z\bar{t}_jf_k}^R = -\frac{2e}{s_{2w}} Q_f s_w^2 \delta_{jk} \\ & g_{ZW^+W^-} = \frac{e}{t_w}, \quad g_{ZW^+G^-} = -t_w^2 \frac{e}{t_w}, \quad g_{ZG^+G^-} = \left(1 - \frac{1}{2c_W^2} \right) \frac{e}{t_w} \\ & \text{E.g. we can combine } Z/\gamma \text{-Penguin and Boxes using:} \\ & \sum_Z g_{Z\bar{\ell}\ell}^\sigma g_{Zv_2\bar{v}_1} = -\delta_{\bar{v}_1v_2} g_{\gamma\bar{\ell}\ell}^\sigma g_{\gamma v_2\bar{v}_1} - \sum_{f_3} \left(g_{\bar{v}_1\bar{\ell}f_3}^\sigma g_{v_2\bar{f}_3\ell}^\sigma - g_{v_2\bar{\ell}f_3}^\sigma g_{\bar{v}_1\bar{f}_3\ell}^\sigma \right) \end{array}$$

25/30

Gauge independent result for $K \rightarrow \pi \nu \bar{\nu}$

$$\begin{split} \mathcal{C}_{L\sigma}^{sd\nu} &= \sum_{v_1v_2f_1f_3} \frac{g_{\overline{v}_2\bar{s}f_1}^L g_{v_1\bar{f}_1d}^L}{M_{v_1}^2} g_{v_2\bar{v}f_3}^\sigma g_{\bar{v}_1\bar{f}_3v}^\sigma F_V^{\sigma,B'Z}(x_{v_1}^{f_0}, x_{v_1}^{f_1}, x_{v_2}^{v_1}, x_{v_1}^{f_3}) \\ &+ \sum_{Zv_1v_2f_1f_2} \frac{g_{Z\bar{v}\nu}^\sigma g_{v_1\bar{f}_1d}^L g_{\bar{v}_2\bar{s}f_2}^L}{M_Z^2} \bigg\{ \delta_{f_1f_2} g_{Z\bar{v}_1v_2} F_{V''}^Z(x_{v_1}^{f_0}, x_{v_1}^{f_1}, x_{v_2}^{v_1}) \\ &+ \delta_{v_1v_2} \left[g_{Z\bar{f}_2f_1}^L F_V^Z(x_{v_1}^{f_1}, x_{v_1}^{f_2}) + g_{Z\bar{f}_2f_1}^R F_{V'}^Z(x_{v_1}^{f_1}, x_{v_1}^{f_2}) \right] \bigg\}, \end{split}$$

Extends the Penguin Box Coefficients to generic theories $(X_t \leftrightarrow F_V^{\sigma,B'Z}(0, x_W^t, 1, 0) \& F_{V'}^Z(x, x) = F_{V''}^Z(x, y, 1) = 0)$

Full results includes also scalars and fermion flow in opposite direction in 2104.10930 and on https://wellput.github.io/.

Z' model with flavour off-diagonal couplings

► [1704.06005] for $b \rightarrow s\ell\ell$: vector-like *T* quark charged under spontaneously broken U(1)''

$$\begin{split} & \text{In}[2]:= \text{SetOptions}\Big[\text{getc, Externals} \rightarrow \Big\{\Big\{\text{s, 0, } -\frac{1}{3}\Big\}, \, \Big\{\text{d, 0, } -\frac{1}{3}\Big\}, \, \{\text{v, 0, 0}\}\Big\}, \\ & \text{Leptons} \rightarrow \{\{\mu, 0, -1\}\}, \, \text{Quarks} \rightarrow \{\{u, 0, 2/3\}, \, \{\text{t, Null, } 2/3\}, \, \{\text{T, Null, } 2/3\}\}, \\ & \text{ZBosons} \rightarrow \{\{Z, , 0\}, \, \{"Z'", , 0\}\}, \, \text{Vectors} \rightarrow \{\{W, \text{Null, } 1\}\}, \\ & \text{CouplingRules} \rightarrow \{g["vff", \text{R}, Z, a_{-}, b_{-}] :> 0/; \, a = ! = b, \\ & g["vff", \text{L, }, u, \text{t} \mid \text{T}] \rightarrow 0, \, g["vff", \text{L, }, \text{t} \mid \text{T, u}] \rightarrow 0\}\Big]; \end{split}$$

 $\frac{g_{Wdt}^{L}g_{W\bar{t}s}^{L}g_{W\bar{t}s}^{L}g_{W\bar{t}s}^{L}g_{W\bar{t}y}^{L}F_{V}^{LB'Z}(0, x_{W}^{t}, 1, 0)}{m_{W}^{2}} + \frac{g_{Wdr}^{L}g_{W\bar{t}s}^$

 Exact result reproduces approximation in [1704.06005]

27/30

Conclusions

- Measurement of $K \rightarrow \pi \bar{\nu} \nu$ can be compared with precise theory prediction.
- New formula for ϵ_{κ} allows for better theory control.
- Suppression in the Standard Model gives high sensitivity to new physics.
- Generic one-loop results for renormalisable models of new physics available.

Backup

Comparison with Older Work

- We find $\mathcal{B}^{BGS}_{+} = 7.73(16)_{SD}(25)_{LD}(54)_{para.} \times 10^{-11}$
- Improvements in *m_t* and *α_S* and slightly larger scale variation reduce *X_t*
- Largest difference to 𝔅^{BBGK}₊ = (8.4 ± 1.0) ⋅ 10⁻¹¹ from different parametric (CKM) input
- ▶ Numerical Update by BBGK used $|V_{ub}| = 3.88(29) \cdot 10^{-3}$, $|V_{cb}| = 40.7(1.4) \cdot 10^{-3}$ and $\gamma = (73.2^{+6.3}_{7.0})^{\circ}$ as inputs

	$\bar{ ho}$	$\bar{\eta}$
PDG/BGS 2021	0.141(17)	0.357(11)
BBGK 2015	0.119	0.394

 2-loop EW Calculation by BGS 2010 used CKM fit for Wolfenstein parameters B^{BGS2010}₊ = 7.81(29)_{SD+LD}(75)_{para.} × 10⁻¹¹