Contribution ID: 36 Type: not specified

A new potential B-flavour anomaly in $B_{d,s} \to K^{*0} \bar{K}^{*0}$

Tuesday, 21 September 2021 15:45 (25 minutes)

In the context of the recently measured non-leptonic decays $B_d \to K^{*0} \bar{K}^{*0}$ and $B_s \to K^{*0} \bar{K}^{*0}$ we analyse the anatomy of the $L_{K^{*0} \bar{K}^{*0}}$ observable that compares the longitudinal components of both decays. This observable is cleaner than the longitudinal polarisation fraction as it is afflicted only at subleading order in a $1/m_b$ expansion by the theoretical uncertainties arising in the transverse components entering the polarisation fraction.

We find for the SM prediction $L_{K^*\bar{K}^*}=19.5^{+9.3}_{-6.8}$, which implies a 2.6σ tension with respect to the most recent data, pointing to a deficit in the $b\to s$ transition of the non-leptonic decay versus the corresponding $b\to d$ transition. We discuss potential New Physics explanations for this deviation at the level of the Weak Effective Theory and we identify that the two Wilson coefficients $calC_4$ and $calC_{8g}$ can play a central role in explaining this possible anomaly.

Primary authors: CRIVELLIN, Andreas (Universitaet Zuerich (CH)); NOVOA-BRUNET, Martin (IJCLab); MATIAS, Joaquim (Universitat Autonoma de Barcelona); ALGUERO, Marcel (IFAE); DESCOTES-GENON, Sebastien (IJCLab)

Presenter: NOVOA-BRUNET, Martin (IJCLab)

Session Classification: BSM

Track Classification: Flavor