DARK MATTER AND STRUCTURE FORMATION

Matteo Viel Physics of the flavourful Universe Portorož 21-09-2021

Euclid Flagship Simulation

- Dark Matter (DM) is the main ingredient at core the of the formation structure through process, gravity.
- It shapes the physical properties of astrophysical objects from small to large masses and influences growth the of perturbations.
- Both linear and nonlinear scales could be used to infer fundamental properties of the DM.
- Different redshift regimes are typically addressed.
- Baryon physics?
- Non-linearities?

Dark Energy **Accelerated Expansion**

Dark Ages

Development of Galaxies, Planets, etc.

icture form

hierarchi

about 400 million yrs.

Big Bang Expansion

13.77 billion years

<u>The standard ACDM model - I: CMB</u>

Parameter	Planck TT, TE, EE+lowP	
$\overline{\Omega_{ m b}}h^2$	0.02225 ± 0.00016	
$\Omega_{\rm c} h^2$	0.1198 ± 0.0015	
$100\theta_{MC}$	1.04077 ± 0.00032	primar
τ	0.079 ± 0.017	param
$\ln(10^{10}A_{\rm s})$	3.094 ± 0.034	
$n_{\rm s}$	0.9645 ± 0.0049	
H_0	67.27 ± 0.66	Τ
$\Omega_{\rm m}$	0.3156 ± 0.0091	derive
σ_8	0.831 ± 0.013	param
$10^9 A_{\rm s} e^{-2\tau}$	1.882 ± 0.012	T

- Planck spectacular confirmation of a 6 parameter model. FRWL metric + linear perturbations of hot plasma (Thomson scattering).
- Non baryonic and baryonic matter fluids required at 80 and $140\sigma.$
- Rich structure full of information on (but not only!) our Universe at z~1100.
- WIMP models constrained from energy injection in the IGM, which modifies reionisation history.

The standard ΛCDM model - II: LSS

- Large Scale Structure (LSS) is a tracer of the underlying matter (cold? total?) density field.
- Different redshifts, scales, systematics compared to CMB.
- Most used: galaxies red. space distortions, weak lensing.
- Difficulties: physics not linear any more. Galaxies are a biased tracer.
- Note: modelling galaxies as points is pointless.

 $\delta_{\text{tracer}} = F(\mathbf{x}, z, environment?, physics?, luminosity? etc.) \times \delta_{CDM}$

Simplest theory to quantitatively address hierarchical structure formation is offered by the Press-Schechter formalism -> to use this on real data need to understand galaxy/DM halo connection

Filtering of P(k)
$$\sigma^2(R) = \frac{1}{2\pi^2} \int_0^\infty k^3 P(k) \tilde{W}^2(kR) \frac{dk}{k}$$
 Key physical quantity $\nu \equiv \delta_c / [D(z)\sigma(M)]$

Universal Mass Function for DM haloes

$$n(M, z) dM = A \left(1 + \frac{1}{\nu^{2q}} \right) \sqrt{\frac{2}{\pi}} \frac{\bar{\rho}}{M} \frac{d\nu'}{dM} \exp\left(- \frac{\nu'^2}{2} \right) dM$$

$$b(M, z) = 1 + \frac{\nu^2(M, z) - 1}{\delta_c}$$

DM correlation Function

$$\xi_{\rm hh}(r,z) = b^2(M,z)\xi_{\rm mm}(r,z)$$

M)]

The standard ACDM model - V: Non-linearities

- Bound subhaloes with total mass <10% of the host, most massive ~1%, less centrally concentrated than smooth component.
- Tidal (due to tidal stripping) and fundamental streams (due to cold initial conditions).

Wang+20

Note that in principle there could be WIMPS that behave like warm dark matter: WIMPS generated in non-thermal scenarios (Lin+01) or two WIMPS one-stable and one long-lived and coupled to photons (Profumo+05)

Loose bounds on dark matter mass an properties

Small scales controversies?

- 1) Too big to fail problem
- 2) Missing satellite problem
- 3) Cusp-core problem
- 4) Amplitude of power spectrum too low?

Note that baryonic physics (e.g. galactic feedback) could also solve the tension. Contrived to have DM perfectly mimicking baryons (different z-evolution?)

non-CDM at small scales: Power Spectrum

linear $\stackrel{\textcircled{3}}{\triangleleft}$ 10° • Cut-off in the spectrum at small power scales due to DM physics: thermal non-zero velocities, coupling with radiation, dark charged dark matter, dark scalar self-interactions, matter etc.

Dvorkin+13 Cyr-Racine+16 [ETHOS]

DM drag opacity

non-CDM at small scales: Power Spectrum II

Murgia, Merle, Viel, Totzauer, Schneider 2017

Full CLASS Boltzmann calculation compared to phenomenological formula

Standard approach

New general approach

$$T(k) = [1 + (\alpha k)^{2\nu}]^{-5/
u} \quad \Rightarrow \quad T(k) = [1 + (\alpha k)^{\beta}]^{\gamma}$$

Simple parametrization proposed works well for:

- sterile neutrinos from scalar decays
- sterile neutrinos resonantly produced
- mixed models
- fuzzy dark matter
- ETHOS models

Viel+05,08,13 - Irsic, MV+16,+17

 $P_{3D,\text{dark matter}} \rightarrow P_{1D,\text{Ly}\alpha \text{ flux}}$

- Intergalactic medium: filaments density low (outside at galaxies) - distances spanned 0.1-100 Mpc/h
- Lyman-alpha forest its the main manifestation of the IGM
- High redshift observable, 1Dprojected power
- Tight constraints on: thermal warm dark matter sterile neutrinos ultralight boson dark matter
- Results: masses typically advocated to solve the small scale crisis are at odds with Lyman-alpha forest. Impact on formation structure not from distinguishable LCDM. Cosmic web is cold.
- Mixed C+W Dark matter? Redshift dependence? Note: <u>other astro signatures</u>

M _{thermal WDM} > 3.5 keV (2σ C.L.)

This lower limit is derived under some assumptions:

- Bayesian analysis with LCDM ref model
- Resolution corrections
- Still somewhat partial covering of Reionization models

however...

Impressive quantitative test of structure formation before galaxy form!!!

<u>DM-Dark Radiation interactions from the Intergalactic Medium</u>

 $[\Gamma_{\rm DR-DM} \propto a_{\rm dark} T^n]$

 $\xi = T_{\rm DR}/T_{\gamma}$

•Multi-observable approach

•N-body sims designed to explore the parameter space

Interaction Strength

•Novel likelihood methods that exploit the small scale features in the power spectrum

Final bounds on physical parameters: $\Delta N_{\rm eff} < 0.23$ $a_{\rm dark} \xi^4 < 30 \, {\rm Mpc}^{-1}$

Amount of DR

$$\begin{split} \nabla_{\mu}\nabla^{\mu}\phi &= m^{2}\phi, \quad G_{\mu\nu} = 8\pi G T_{\mu\nu}, \\ T^{\phi}_{\mu\nu} &= g_{\mu\nu} \left(-\frac{1}{2}\partial_{\rho}\phi\partial^{\rho}\phi - \frac{1}{2}m^{2}\phi^{2} \right) + \partial_{\mu}\phi\partial_{\nu}\phi. \\ ds^{2} &= -(1+2\Phi)dt^{2} + a(t)^{2}(1-2\Phi)dx^{2}. \\ \phi &= \frac{1}{\sqrt{2m}} \left(\varphi e^{-imt} + \varphi^{*}e^{imt}\right) \\ i\left(\dot{\varphi} + \frac{3}{2}H\varphi\right) &= -\frac{\partial^{2}\varphi}{2a^{2}m} + m\Phi\varphi. \\ \rho_{\phi} &= m\varphi\varphi^{*}, \quad v_{i} &\equiv \frac{\partial_{i}\{\arg(\varphi)\}}{am} = -\frac{i}{2am} \left(\frac{\partial_{i}\varphi}{\varphi} - \frac{\partial_{i}\varphi^{*}}{\varphi^{*}}\right) \\ \dot{v}_{i} + Hv_{i} + \frac{v_{j}\partial_{j}v_{i}}{a} &= -\frac{\partial_{i}\Phi}{a} + \frac{1}{2a^{3}m^{2}}\partial_{i} \left(\frac{\partial^{2}\sqrt{\rho\phi}}{\sqrt{\rho\phi}}\right) \\ \dot{\rho}_{\phi} + 3H\rho_{\phi} + \frac{\partial_{i}(\rho\phi v_{i})}{a} = 0. \end{split}$$

Hui+16 for a review, Mocz & Succi 15 for SPH implementation, Marsh+15, Nori&Baldi 18

Scalar Dark Matter

KG and Einstein equations

Energy momentum tensor for the scalar field

Metric

Oscillating field

Dropping higher order and averaging over one oscillating period: Schrodinger type eq.

Defining density and velocities of the fluid

Euler eq. NOTE the pressure term

Continuity

Scalar Dark Matter - II

Schive+ 14

- baryon might be an issue (Blum+17,+19).

Kobayashi, Murgia+17 Murgia+18

- Use of the mass function to reproduce number of a satellites in the range [20,60] for a MW halo in agreement with observations
- Linear P(k) only input for obtaining both these constraints
- Little room to solve the small scale crisis unless F~0.2 and mass 1.e-23,1.e-22

Perturbers in strong lensing systems

Dark and highly concentrated sub halo discovered Gravitational lens system SDSSJ0946+006 [Vegetti+10,+12] - see also Ostdiek+21

Note: even more unlikely in WDM scenarios!

Tension with CDM is not significantly reduced if the perturber is assumed to be a line-of-sight structure, rather than a subhalo.

5.0

-0.2

Reference	Probe	$\frac{\frac{m_{\rm th}}{\rm keV}}{95\%}$ c.l.
this work	see Section 3	6.048
Birrer et al. (2017)	Grav. Imaging	2.0
V18 (Original)	Grav. Imaging	0.3
R19 (Original)	Grav. Imaging	0.26
Gilman et al. (2019a)	Flux Ratios	3.1, 4.4
Gilman et al. (2019b)	Flux Ratios	5.2
Hsueh et al. (2019)	Flux Ratios	5.6
Banik et al. (2018, 2019)	Stellar streams	4.6, 6.3
Alvey et al. (2020)	Dwarf spheroidals	0.59, 0.41
Viel et al. (2005)	Lyman- α	0.55
Viel et al. (2006)	Lyman- α	2.0
Seljak et al. (2006)	Lyman- α	2.5
Iršič et al. (2017)	Lyman- α	3.5, 5.3
M18 (Original)	Lyman- α	2.7, 3.6
Polisensky & Ricotti (2011)	MW satellites	2.3
Kennedy et al. (2014)	MW satellites	1.3, 5.0
Jethwa et al. (2017)	MW satellites	2.9
Nadler et al. (2019b)	MW satellites	3.26
Nadler et al. (2020a)	MW satellites	6.5
Nadler et al. (2021)	MW satellites	9.7
N20 (Original)	& Flux Ratios MW satellites	2.02, 3.99

Thermal WDM lower limit

Flux power spectrum

Sub-halo mass function

Joint analysis

Could DM produce radiation?

Dark matter decay can produce continuum or line emission. An X-ray line was claimed to be detected at 3.5 keV in galaxy clusters.

Decay of a sterile neutrino of mass 7 keV?

Strongly excluded by non-detection from the MW halo [30Ms observations].

^Lhalo \propto ^Mhalo

Dark matter annihilation, for example of SUSY WIMPS, could produce continuum or line radiation in the γ -ray range. Possibly detection as an excess at 1 - 10 GeV towards the Galactic bulge. Luminosity biased to high-density (i.e. low-mass?) halos/subhalos

$$L_{halo} \propto \rho_{halo} M_{halo}$$

Could DM produce radiation? - II

Full baryonic physics

3 times more luminous than DM only

- Smooth halo is the dominant contributor to the annihilation flux (sub-haloes contribute <4%).
- contraction, sub haloes less luminous in gamma rays.
- are stronger.

• Full physics DM halo more concentrated due to baryon adiabatic

• Subhaloes much less important than earlier works (e.g. Springel+08) - sub haloes are less concentrated, tidal effects

• All but the very brightest objects will be unresolved with the Fermi-LAT. These brightest objects are predicted to be ~ 30 kpc away and to have mass ~ 6 × $10^8 M_{\odot}$ in the full-physics case.

Future of DM indirect searches

- large/medium scales:

 - theories

- small/very small scale structures:
 - cold vs warm DM models

 - self interaction

- interaction with baryons and/or radiation - weak lensing observable - galaxy clustering also with perturbation

- phase-space density constraints - also via strong lensing and substructures and mass function observations - streams, gaps in strong lensing arcs

21cm Intensity Mapping perspectives: ETHOS vs WDM

More than a simple cutoff to be explored at small scales

21cm at cosmic dawn (z=10-30) HERA power spectrum measurements Could provide such a test and allow to discriminate between different DM Models

Very high redshift regime, close to linear, is promising to probe DM nature

Munoz+2021

 M_{\star}) and ultra-faint Dwarfs (10²-10⁵ M_{\star})

Hydro simulation in LCDM with feedabck predict cored profile for bright dwarfs 10^7-10^9 M_{*}, and cuspy for classical (10^5-10^7

Galaxy Rotation Curves

Average mass profile around bright galaxies

- Points are average mass profiles around clusters and bright galaxies Obtained with weak lensing
- Millennium simulation match well
- Galaxy abundance matching only free parameter in the fit

CMB constraints on WIMPs

Planck collaboration 2018

 $p_{\rm ann} \equiv f_{\rm eff} \frac{\langle \sigma v_{\prime}}{m_{\chi}}$

Primordial Black Holes

$$P_{\text{CDM}}(k,z) = D^2(z) \left(T_{\text{ad}}^2(k) P_{\text{ad}} + \right)$$

Afshordi, McDonald, Spergel 03

 $+ T_{iso}^2(k)P_{iso}$

k [h/Mpc]

Murgia, Scelfo, MV, Raccanelli, PRL, 2019

Primordial Black Holes - II

Primordial Black Holes - III

