

Lepton Flavor Violation at the LHC

Olcyr Sumensari

IJCLab (Orsay)

In collaboration with A. Angelescu and D. Faroughy [2002.05684]

Portorož 2021: Physics of the Flavorful Universe

24/09/21

Laboratoire de Physique des 2 Infinis

Outline

- I. Motivation
- II. How to probe LFV at high- p_{τ} ?
- **III. Numerical results**
 - Flavor vs. LHC (@tree-level)
 - Going beyond tree-level
- **IV. Summary**

Motivation

• Flavor physics observables can probe physics at very high-energy scales. Combined effort of exp. and theory (LQCD) to constantly improve precision.

$$\Delta F = 2$$
 $\mathcal{L} \supset \frac{1}{\Lambda^2} (\bar{s}_L \gamma^\mu d_L) (\bar{s}_L \gamma_\mu d_L) \implies \Lambda \gtrsim 10^3 \text{ TeV}$

 However, the sensitivity of flavor physics depends importantly on the flavor structure of the New Physics (NP) couplings – which is unknown!

e.g.,

$$\Upsilon \to \tau \tau$$
 $\mathcal{L} \supset \frac{1}{\Lambda^2} (\bar{b}_L \gamma^\mu b_L) (\bar{\tau}_L \gamma_\mu \tau_L) \implies \Lambda \gtrsim 100 \text{ GeV}$

Low-energy observables provide *poor constraints* if *quark-flavor violation* is *suppressed*; LHC can be very useful in this case!

• Combining low- and high-energy probes of NP is therefore fundamental!

[Cirigliano et al. '12,'18], [Faroughy et al. '16] and many following works!

Lepton Flavor Violation (LFV)

• LFV is a very clean probe of New Physics:

Forbidden in the SM by an **accidental symmetry**: $U(1)_e \times U(1)_\mu \times U(1)_\tau$

... which **must be broken** (neutrinos oscillate)! But LFV rates are **unobservable** if there is not new dynamics beyond m_{ν_i} (since $\Delta m_{\nu_i}^2 \ll m_W^2$).

Lepton Flavor Violation (LFV)

• LFV is a very clean probe of New Physics:

Forbidden in the SM by an **accidental symmetry**: $U(1)_e \times U(1)_\mu \times U(1)_\tau$

... which **must be broken** (neutrinos oscillate)! But LFV rates are **unobservable** if there is not new dynamics beyond m_{ν_i} (since $\Delta m_{\nu_i}^2 \ll m_W^2$).

• Experimental prospects are very promising:

Leptonic probes: Belle-II, COMET, Mu2E, MEG2...

 $\begin{array}{cccc} \mu \to e\gamma & \mu \to 3e \\ \hline \tau \to e\gamma & \tau \to 3\mu \\ \tau \to \mu\gamma & \dots \end{array} \begin{array}{cccc} \mu N \to eN \\ B_{(s)} \to K^{(*)}e\mu \end{array} \begin{array}{cccc} K_L \to \mu e & K^+ \to \pi^+ \mu e \\ D \to e\mu & \tau \to \mu\pi \end{array} \end{array}$

Hadronic probes: NA62, KOTO, BES-III, LHCb, Belle-II...

Lepton Flavor Violation (LFV)

• LFV is a very clean probe of New Physics:

Forbidden in the SM by an **accidental symmetry**: $U(1)_e \times U(1)_\mu \times U(1)_\tau$

... which **must be broken** (neutrinos oscillate)! But LFV rates are **unobservable** if there is not new dynamics beyond m_{ν_i} (since $\Delta m_{\nu_i}^2 \ll m_W^2$).

• Experimental prospects are very promising:

Leptonic probes: Belle-II, COMET, Mu2E, MEG2...

LHC can be helpful here!

$$\begin{array}{cccc} \mu \rightarrow e\gamma & \mu \rightarrow 3e \\ \tau \rightarrow e\gamma & \tau \rightarrow 3\mu \\ \tau \rightarrow \mu\gamma & \dots \end{array} \qquad \begin{array}{cccc} \mu N \rightarrow eN & K_L \rightarrow \mu e & K^+ \rightarrow \pi^+ \mu e \\ D \rightarrow e\mu & \tau \rightarrow \mu\pi \\ \end{array} \\ B_{(s)} \rightarrow K^{(*)} e\mu & B_{(s)} \rightarrow e\mu & B_{(s)} \rightarrow \mu\tau & \dots \end{array}$$

Hadronic probes: NA62, KOTO, BES-III, LHCb, Belle-II...

<u>This talk</u>: Constraining **LFV** with $pp \rightarrow \ell_i \ell_j$ at high- p_{τ}

Lepton Flavor Universality (LFU)

See review by Gligorov

A further motivation...

 R_{1}

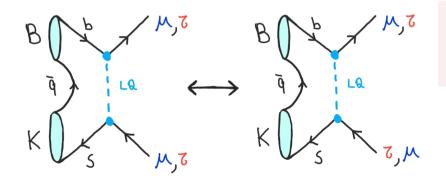
• Several **discrepancies** have been observed in *b***-hadron** decays :

[LHCb, B-factories]

 Ψ

See also:

• LFU violation ↔ Lepton Flavor Violation?

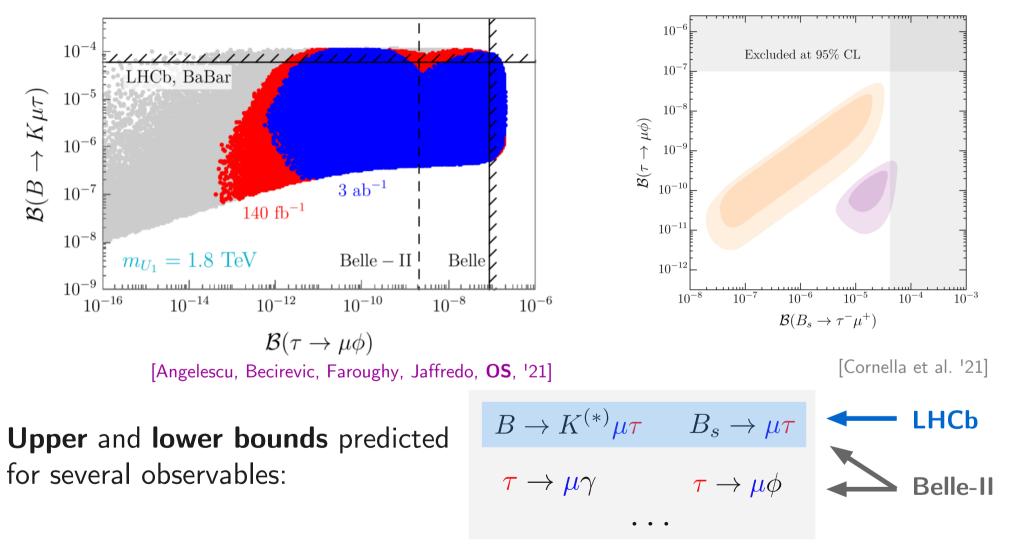


Large effects in $b \rightarrow s \mu \tau$ is a prediction of the viable New Physics explanations!

[Glashow et al. '14], [Becirevic, OS, Zukanovich, '16], [Angelescu, Becirevic, Faroughy, **OS**, '18], [Bordone et al. '18], [Di Luzio et al. '18], [Crivellin et al. '20]

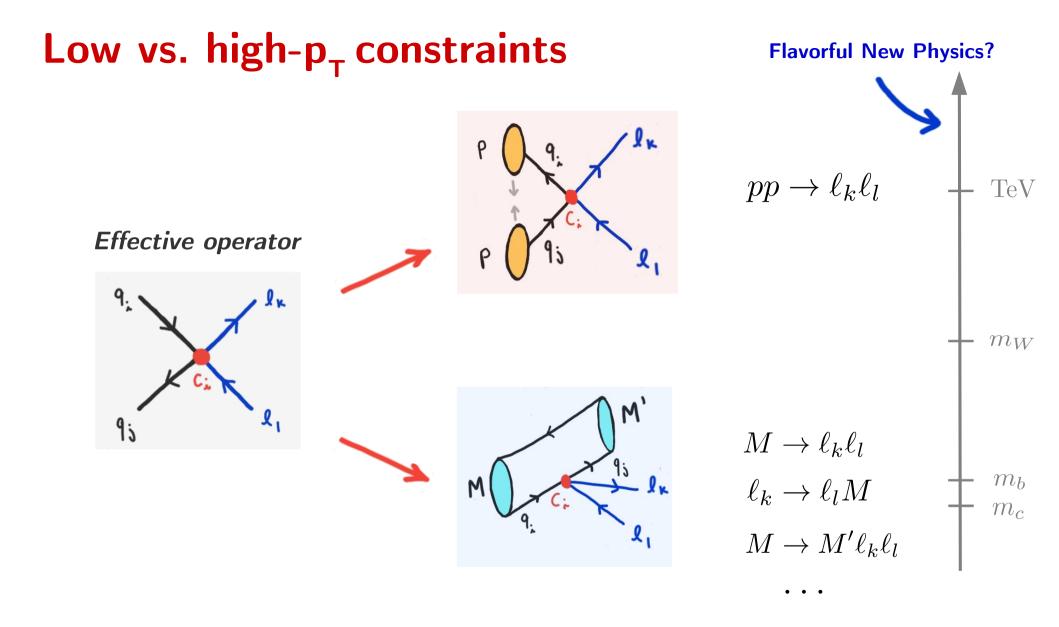
From *B*-anomalies to LFV

Example: $U_1 = (\mathbf{3}, \mathbf{1}, 2/3)$ LQ



Can we indirectly probe the same transitions at ATLAS and CMS?

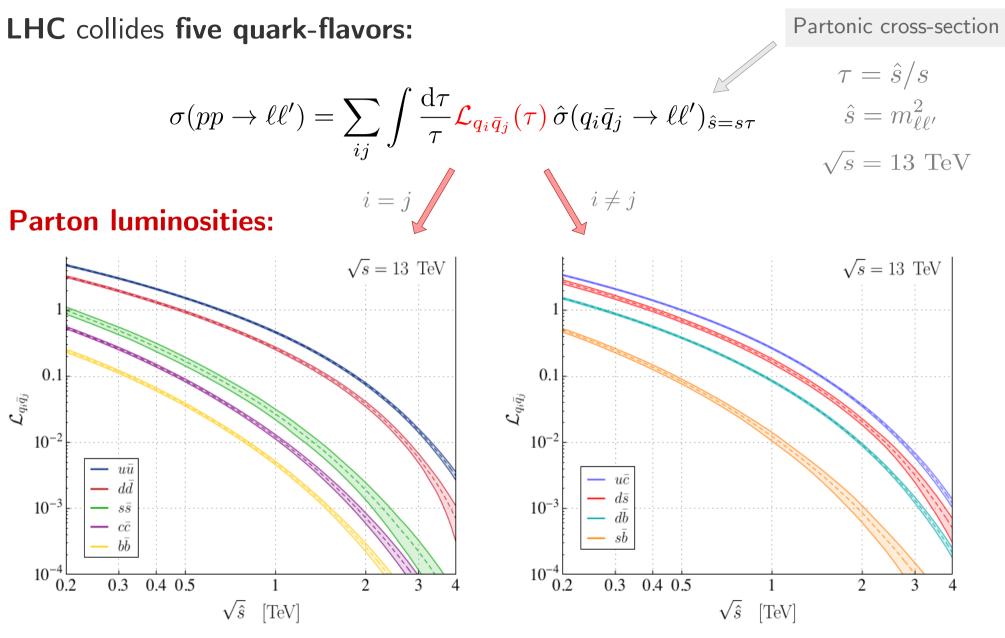
How to probe flavor at high- p_{T} ?



High- p_{τ} searches (CMS and ATLAS) can probe the same operators constrained by flavor-physics experiments (NA62, KOTO, BES-III, LHCb, Belle-II...).

see [Cirigliano et al. '12,'18], [Faroughy et al. '16], [Greljo et al. '17, '18], , [Fuentes-Martin et al., '20], [Marzocca et al., '20], [Angelescu et al. '20]...

i) LHC is a flavorful experiment



[PDF4LHC15_nnlo_mc]

ii) Energy helps precision

Dimension-6 operators:

$$\mathcal{L}_{\mathrm{eff}} \supset \frac{C_{\mathrm{eff}}}{\Lambda^2} \mathcal{O}^{(6)} \stackrel{(\sqrt{s} \ll \Lambda)}{\Longrightarrow} \hat{\sigma} \propto \frac{\hat{s}}{\Lambda^4} |C_{\mathrm{eff}}|^2 + \dots$$

Energy-growth can partially overcome heavy-flavor PDF suppression.

Strategy:

Recast LFV **di-lepton searches** and look for **NP effects** in the **tails** of the **invariant mass-distribution** (where *S/B* is large).

Caveat: EFT must be valid $(\sqrt{s} \ll \Lambda)$; Otherwise, use explicit UV model.

$$\frac{90}{10^6} \int_{(s = 13 \text{ TeV}, 36.1 \text{ fb}^{-1})}^{4TLAS} \int_{(s = 13 \text{ TeV}, 36.1 \text{ fb}^{-1})}^{Data} \int_{(s = 13 \text{ fb}^{-1})}^{$$

 $pp \rightarrow \mu \tau$

LFV limits from LHC

Effective Field Theory

(i,j,k,l = flavor indices)

Dim-6 operators:

$$\mathcal{L} = \sum_{\alpha} \frac{C_{\alpha}}{v^2} \mathcal{O}_{\alpha}$$

	Eff. coeff.	Operator	SMEFT
	$C_{V_{LL}}^{ijkl}$	$\left(\overline{q}_{Li}\gamma_{\mu}q_{Lj} ight)\left(ar{\ell}_{Lk}\gamma^{\mu}\ell_{Ll} ight)$	$\mathcal{O}_{lq}^{(1)}, \mathcal{O}_{lq}^{(3)}$
Vector	$C_{V_{RR}}^{ijkl}$	$\left(\overline{q}_{Ri}\gamma_{\mu}q_{Rj} ight)\left(\overline{\ell}_{Rk}\gamma^{\mu}\ell_{Rl} ight)$	$\mathcal{O}_{ed}, \mathcal{O}_{eu}$
	$C_{V_{LR}}^{ijkl}$	$\left(\overline{q}_{Li}\gamma_{\mu}q_{Lj} ight)\left(ar{\ell}_{Rk}\gamma^{\mu}\ell_{Rl} ight)$	${\cal O}_{qe}$
	$C_{V_{RL}}^{ijkl}$	$\left(\overline{q}_{Ri}\gamma_{\mu}q_{Rj} ight)\left(\overline{\ell}_{Lk}\gamma^{\mu}\ell_{Ll} ight)$	$\mathcal{O}_{lu},\mathcal{O}_{ld}$
Scalar	$C_{S_R}^{ijkl}$	$\left(\overline{q}_{Ri}q_{Lj}\right)\left(\overline{\ell}_{Lk}\ell_{Rl}\right)+ ext{h.c.}$	\mathcal{O}_{ledq}
	$C_{S_L}^{ijkl}$	$\left(\overline{q}_{Li}q_{Rj} ight)\left(ar{\ell}_{Lk}\ell_{Rl} ight)+ ext{h.c.}$	$\mathcal{O}_{lequ}^{(1)}$
Tensor	C_T^{ijkl}	$(\overline{q}_{Li}\sigma_{\mu\nu}q_{Rj})(\overline{\ell}_{Lk}\sigma^{\mu\nu}\ell_{Rl}) + \text{h.c.}$	$\mathcal{O}_{lequ}^{(3)}$

Effective Field Theory

(i,j,k,l =flavor indices)

Dim-6 operators:

$$\mathcal{L} = \sum_{\alpha} \frac{C_{\alpha}}{v^2} \, \mathcal{O}_{\alpha}$$

	Eff. coeff.	Operator	SMEFT
	$C_{V_{LL}}^{ijkl}$	$ig(\overline{q}_{Li} \gamma_\mu q_{Lj} ig) ig(\overline{\ell}_{Lk} \gamma^\mu \ell_{Ll} ig)$	$\mathcal{O}_{lq}^{(1)}, \mathcal{O}_{lq}^{(3)}$
Vector	$C_{V_{RR}}^{ijkl}$	$\left(\overline{q}_{Ri}\gamma_{\mu}q_{Rj} ight)\left(\overline{\ell}_{Rk}\gamma^{\mu}\ell_{Rl} ight)$	$\mathcal{O}_{ed}, \mathcal{O}_{eu}$
	$C_{V_{LR}}^{ijkl}$	$\left(\overline{q}_{Li}\gamma_{\mu}q_{Lj} ight)\left(ar{\ell}_{Rk}\gamma^{\mu}\ell_{Rl} ight)$	${\cal O}_{qe}$
	$C_{V_{RL}}^{ijkl}$	$\left(\overline{q}_{Ri}\gamma_{\mu}q_{Rj} ight)\left(\overline{\ell}_{Lk}\gamma^{\mu}\ell_{Ll} ight)$	$\mathcal{O}_{lu},\mathcal{O}_{ld}$
Scalar	$C_{S_R}^{ijkl}$	$\left(\overline{q}_{Ri}q_{Lj} ight)\left(\overline{\ell}_{Lk}\ell_{Rl} ight)+ ext{h.c.}$	\mathcal{O}_{ledq}
	$C_{S_L}^{ijkl}$	$ig(\overline{q}_{Li} q_{Rj} ig) ig(\overline{\ell}_{Lk} \ell_{Rl} ig) + ext{h.c.}$	$\mathcal{O}_{lequ}^{(1)}$
Tensor	C_T^{ijkl}	$\left(\overline{q}_{Li}\sigma_{\mu\nu}q_{Rj}\right)\left(\overline{\ell}_{Lk}\sigma^{\mu\nu}\ell_{Rl}\right) + \text{h.c.}$	$\mathcal{O}_{lequ}^{(3)}$

Partonic cross-section:

 $\hat{\sigma}$

Overall factors (no interference!):

$$(q_i \bar{q}_j \to \ell_k^- \ell_l^+) = \frac{\hat{s}}{144\pi v^4} \sum_{\alpha} M_\alpha |C_\alpha|^2$$

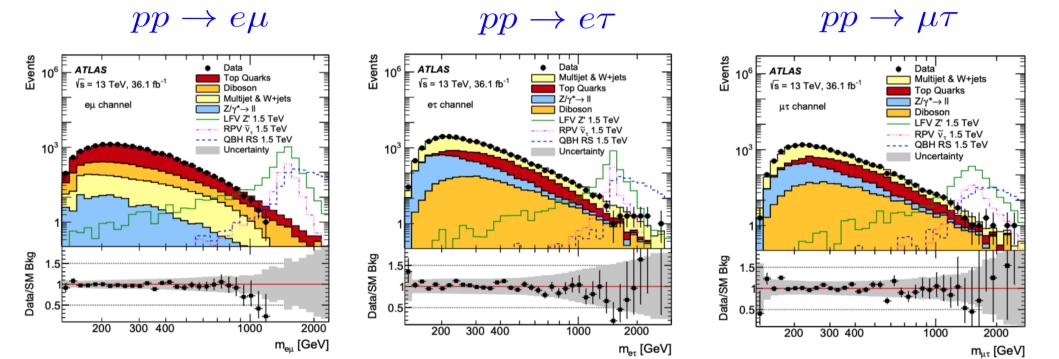
Energy enhancement!

$$M_{\alpha} = \begin{cases} 1, & \alpha = V_{X,Y} \\ \frac{3}{4}, & \alpha = S_X \\ 4, & \alpha = T \end{cases}$$

Limits on different operators are related via the M_{α} coefficients.

*see [Angelescu, Faroughy, OS. '20] for matching to the SMEFT.

Experimental searches



[ATLAS. 1807.06573]

Our results: $\mu \tau$

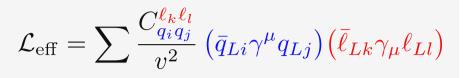
e.g.,

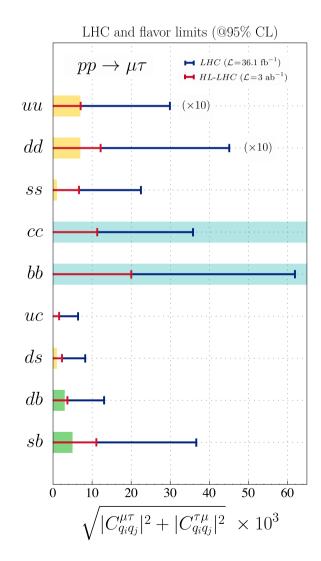
$$\mathcal{L}_{\text{eff}} = \sum \frac{C_{q_i q_j}^{\ell_k \ell_l}}{v^2} \left(\bar{q}_{Li} \gamma^{\mu} q_{Lj} \right) \left(\bar{\ell}_{Lk} \gamma_{\mu} \ell_{Ll} \right)$$

SMEFT:
$$\mathcal{O}_{lq}^{(1)}$$
 , $\mathcal{O}_{lq}^{(3)}$

Our results: $\mu\tau$

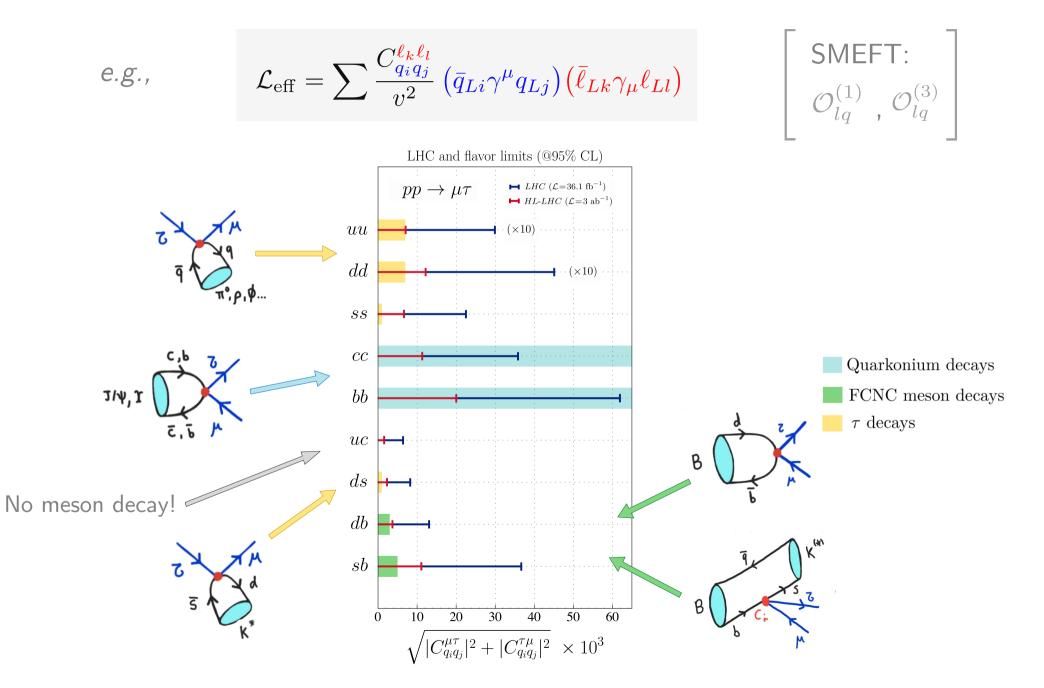
e.g.,



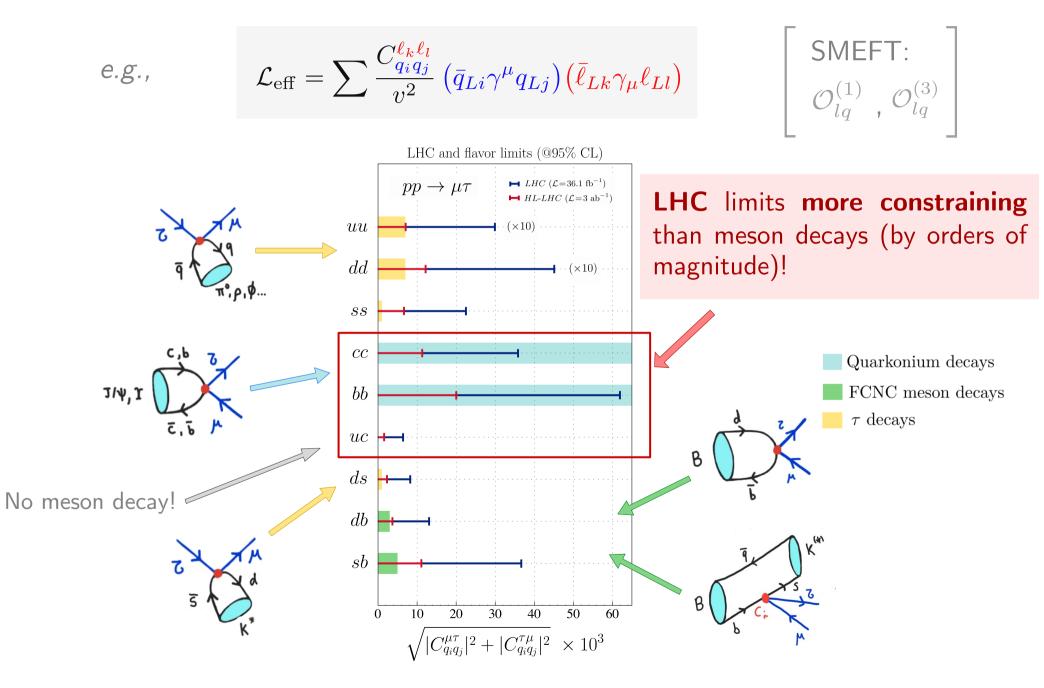


SMEFT: $\mathcal{O}_{lq}^{(1)}$, $\mathcal{O}_{lq}^{(3)}$

Our results: $\mu\tau$

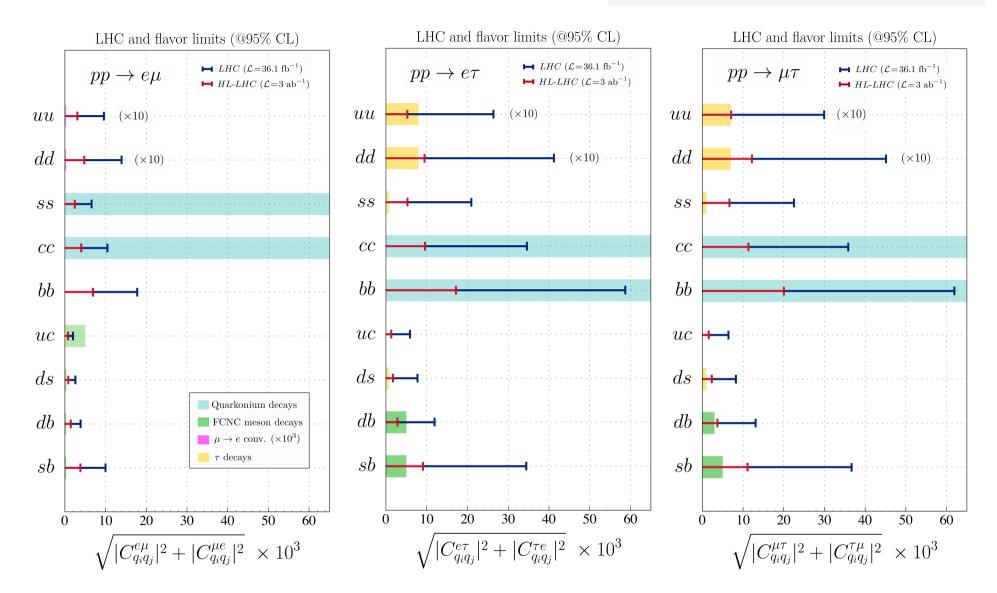


Our results: $\mu\tau$



Our results: *e*μ, *e*τ, μτ

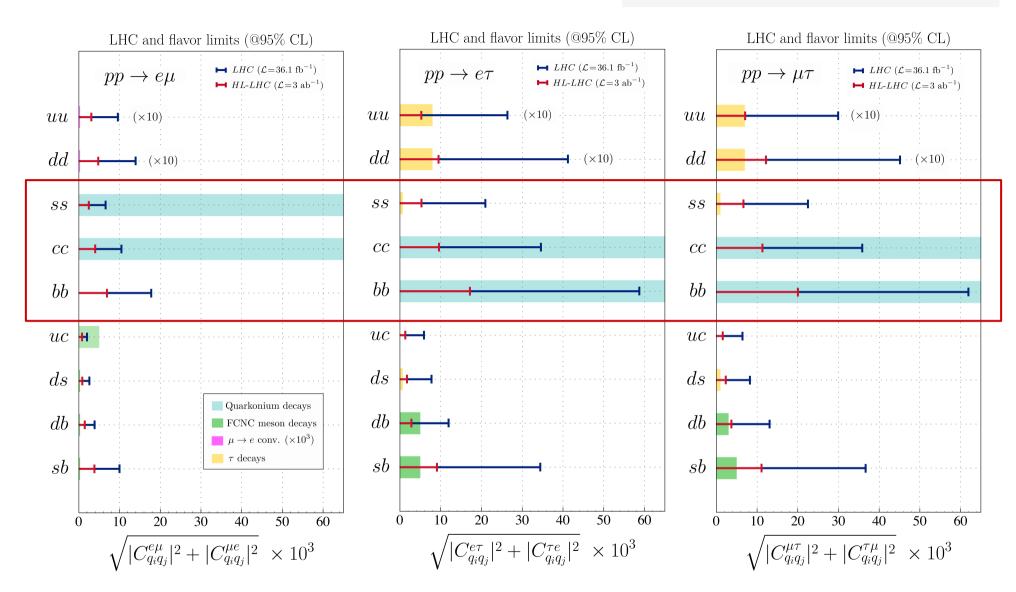
 $O_{V_{r\,r}}^{ijkl} = \left(\bar{q}_{Li}\gamma^{\mu}q_{Lj}\right)\left(\bar{\ell}_{Lk}\gamma_{\mu}\ell_{Ll}\right)$



11

Our results: *e*μ, *e*τ, μτ

 $O_{V_{LL}}^{ijkl} = \left(\bar{q}_{Li}\gamma^{\mu}q_{Lj}\right)\left(\bar{\ell}_{Lk}\gamma_{\mu}\ell_{Ll}\right)$



Similar conclusions: **LHC data** is **more constraining** for **flavor-conserving** transitions (*ss*, *cc* and *bb*), as well as for the **charm sector** (*cu*).

• High- p_{τ} limits can be easily rescaled from vector to scalar/tensor eff. coefficients

- numerical overall factors for the cross-sections (see previous slides).

• Flavor observables can change significantly though:

- High-p_τ limits can be easily rescaled from vector to scalar/tensor eff. coefficients

 numerical overall factors for the cross-sections (see previous slides).
- Flavor observables can change significantly though:
 - *i.* QCD (+EW) RGE effects: [Gonzaléz-Alonso et al., '17]

e.g., $C_{S_L}(2 \text{ GeV}) \approx 2.1 C_{S_L}(1 \text{ TeV}) - 0.5 C_T(1 \text{ TeV})$

ii. Chiral-enhancement at low-energies:

*keeping only two eff. coeffs. for illustration!

$$e.g., \qquad \mathcal{B}(D^0 \to \mu^- e^+) = \frac{\tau_{D^0} f_D^2 m_{D^0}}{64\pi v^4} m_{\mu}^2 \beta_{\mu}^2 \left| C_{V_{LL}}^{uce\mu} + \frac{m_{D_0}^2}{m_{\mu} m_c} C_{S_L}^{uce\mu} \right|^2$$

- High-p_τ limits can be easily rescaled from vector to scalar/tensor eff. coefficients

 numerical overall factors for the cross-sections (see previous slides).
- Flavor observables can change significantly though:
 - *i.* QCD (+EW) RGE effects: [Gonzaléz-Alonso et al., '17]

e.g., $C_{S_L}(2 \text{ GeV}) \approx 2.1 C_{S_L}(1 \text{ TeV}) - 0.5 C_T(1 \text{ TeV})$

ii. Chiral-enhancement at low-energies:

*keeping only two eff. coeffs. for illustration!

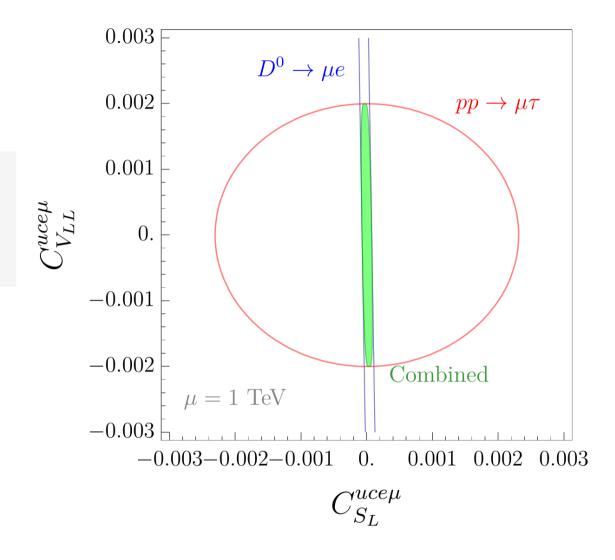
e.g.,
$$\mathcal{B}(D^0 \to \mu^- e^+) = \frac{\tau_{D^0} f_D^2 m_{D^0}}{64\pi v^4} m_{\mu}^2 \beta_{\mu}^2 \left| C_{V_{LL}}^{uce\mu} + \frac{m_{D_0}^2}{m_{\mu} m_c} C_{S_L}^{uce\mu} \right|^2$$

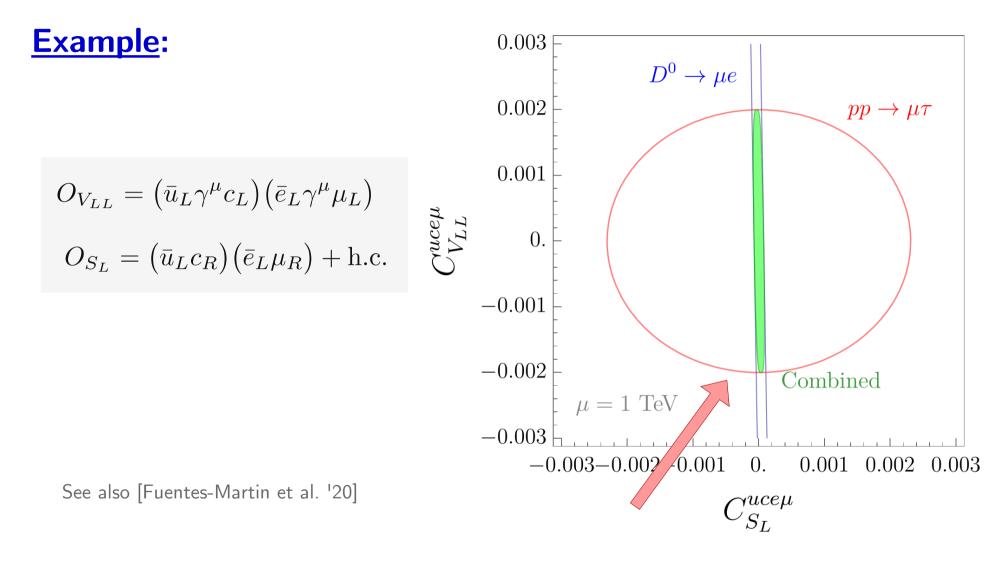
For this example (LHC vs meson decays):				
($O_{V_{LL}} = \left(\bar{u}_L \gamma^\mu c_L\right) \left(\bar{e}_L \gamma^\mu \mu_L\right)$	$O_{S_L} = (\bar{u}_L c_R) (\bar{e}_L \mu_R) + \text{h.c.}$		
High-p _T :	$ C_{V_{LL}}^{uce\mu} \lesssim 2 \times 10^{-3}$	$\label{eq:High-p_t:} \textbf{High-p_t:} C^{uce\mu}_{S_L} \lesssim 2.3 \times 10^{-3}$		
Flavor:	$ C_{V_{LL}}^{uce\mu} \lesssim 5 \times 10^{-3}$	Flavor: $ C_{S_L}^{uce\mu} \lesssim 8 \times 10^{-5}$		

*see [Angelescu, Faroughy, **OS. '20**] for complete expressions in the SMEFT.

Example:

$$O_{V_{LL}} = (\bar{u}_L \gamma^\mu c_L) (\bar{e}_L \gamma^\mu \mu_L)$$
$$O_{S_L} = (\bar{u}_L c_R) (\bar{e}_L \mu_R) + \text{h.c.}$$





LHC data is also very useful to probe specific combinations of Wilson coefficients that are not constrained at low-energies.

General remarks

• Similar similar studies have been performed for other transitions:

$pp \to \ell_i \ell_j$	$pp \to \ell \ell$	$pp ightarrow \ell u$
[Angelescu, Faroughy, OS . '20]	[Greljo et al. '17]	[Greljo et al. '18], [Marzocca et al. '20], [Iguro et al. '20]
	[Fuentes-N	/lartin et al., '20]

- LHC probes are typically less constraining than flavor, but they can be helpful for transitions that are poorly constrained (or unconstrained) at low-energies e.g. $b \rightarrow s\tau\tau$. [See talks by Faroughy and Becirevic]
- Interference with SM amplitude might be present for the lepton flavor conserving modes (*thus, slightly more complicated analysis*).
- EFT validity must be checked in all these analyses (*if not valid, to use concrete models!*).

• <u>Caveat</u>: RGE effects can induce correlations that were not considered in our flavor analysis (*at tree-level*).

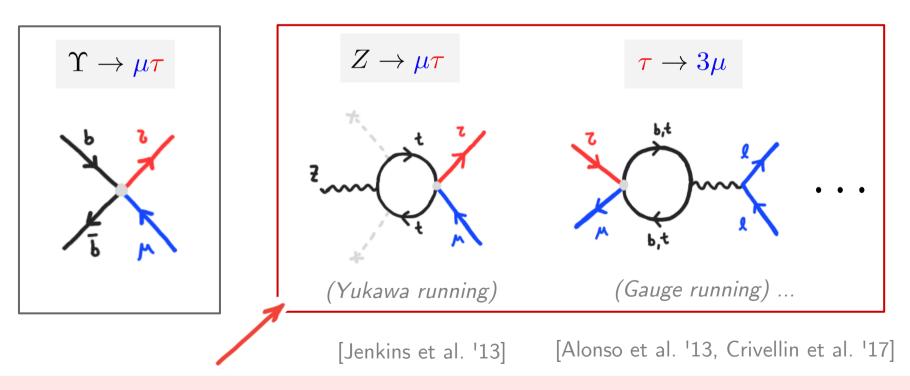
- <u>Caveat</u>: RGE effects can induce correlations that were not considered in our flavor analysis (*at tree-level*).
- For illustration, let us consider a LH operator to 3rd generation quarks:

$$\begin{bmatrix} O_{lq}^{(1)} \end{bmatrix}_{\mathbf{23}33} = (\overline{L}_2 \gamma^{\mu} \underline{L}_3) (\overline{Q}_3 \gamma_{\mu} Q_3) = (\overline{\mu}_L \gamma^{\mu} \tau_L) (\overline{b}_L \gamma_{\mu} b_L) + (\overline{\mu}_L \gamma^{\mu} \tau_L) (\overline{t}_L \gamma_{\mu} t_L) + \dots$$

- <u>Caveat</u>: RGE effects can induce correlations that were not considered in our flavor analysis (*at tree-level*).
- For illustration, let us consider a LH operator to 3rd generation quarks:

$$\begin{bmatrix} O_{lq}^{(1)} \end{bmatrix}_{\mathbf{2333}} = \left(\overline{L}_{\mathbf{2}} \gamma^{\mu} L_{\mathbf{3}} \right) \left(\overline{Q}_{3} \gamma_{\mu} Q_{3} \right)$$

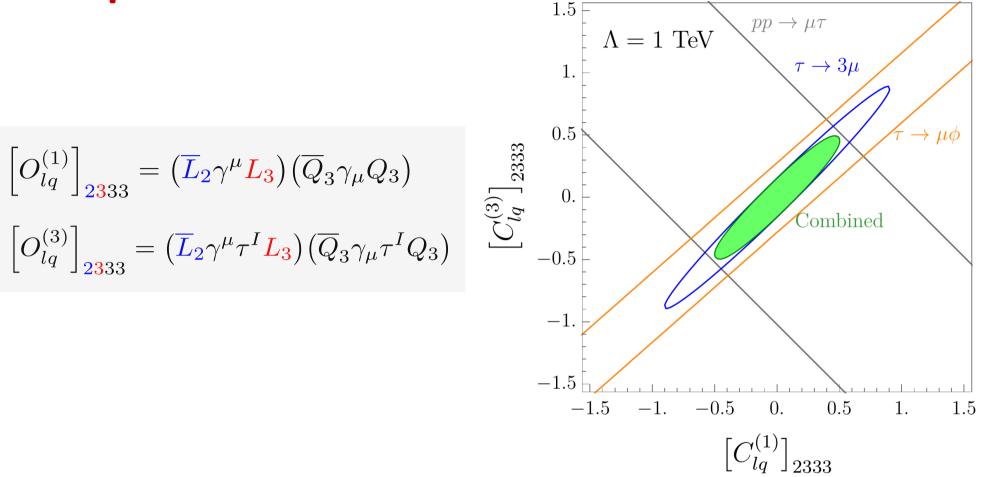
= $\left(\overline{\mu}_{L} \gamma^{\mu} \tau_{L} \right) \left(\overline{b}_{L} \gamma_{\mu} b_{L} \right) + \left(\overline{\mu}_{L} \gamma^{\mu} \tau_{L} \right) \left(\overline{t}_{L} \gamma_{\mu} t_{L} \right) + \dots$



Loop-level flavor constraints can be stronger than the tree-level ones!

Example:

[Ioannis Plakias et al., preliminary]



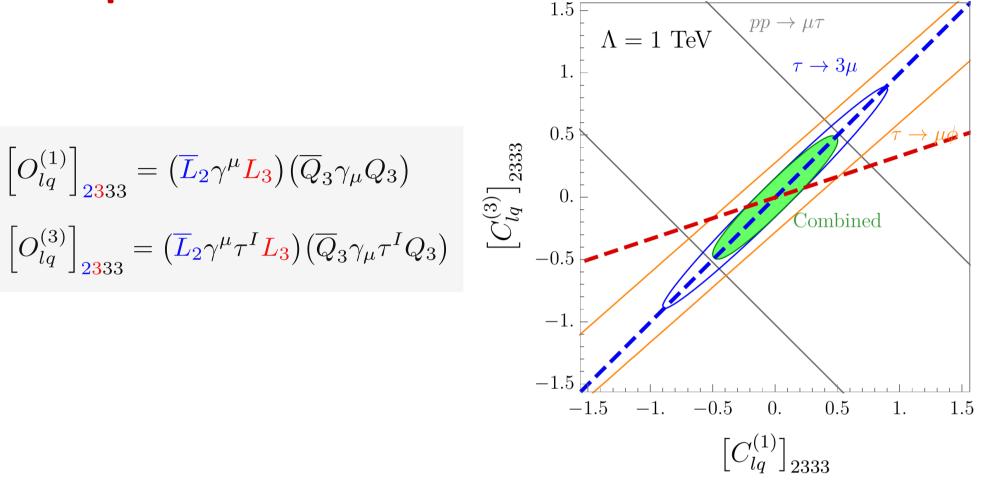
• Weak constraints from Z-pole observables (not shown in the plot).

Most stringent low-energy constraints come from *τ*-decays.

High-p_τ constraints are less stringent <u>but orthogonal</u> to the low-energy ones!

Example:

[Ioannis Plakias et al., preliminary]



• This complementarity is also visible for concrete New Physics models:

e.g., Leptoquarks: $U_1 = (\mathbf{3}, \mathbf{1}, 2/3)$ $S_3 = (\mathbf{\bar{3}}, \mathbf{3}, 1/3)$

NB. LQ propagation effects can relax the high- p_{τ} bounds by 10% – 50% depending on its mass.

Summary and perspectives

- Renewed interest in the *B*-physics anomalies since the latest LHCb results. Viable NP scenarios predict sizable LFV rates in semileptonic transitions.
- Semileptonic effective operators can modify the tails of $pp \rightarrow \ell_i \ell_j$ currently studied at CMS and ATLAS.

PDF suppression can be partially compensated by cross-section energy-growth.

• High- p_{τ} observables are more constraining than flavor observables for quark-flavor conserving operators (*ss*, *cc*, *bb*)! Useful in the charm sector (*cu*) as well.

High- p_{τ} searches are complementary to low-energy experiments!

• Non-resonant high- p_{τ} searches offer plenty of new possibilities for flavor physics!

Combining both approaches is fundamental in the quest for New Physics!

Thank you!

Back-up

	$8:(ar{L}L)(ar{L}L)$		$8:(ar{R}R)(ar{R}R)$		$8:(ar{L}L)(ar{R}R)$
Q_{ll}	$(ar{l}_p\gamma_\mu l_r)(ar{l}_s\gamma^\mu l_t)$	Q_{ee}	$(\bar{e}_p \gamma_\mu e_r) (\bar{e}_s \gamma^\mu e_t)$	Q_{le}	$(\bar{l}_p \gamma_\mu l_r) (\bar{e}_s \gamma^\mu e_t)$
$Q_{qq}^{(1)}$	$(ar{q}_p\gamma_\mu q_r)(ar{q}_s\gamma^\mu q_t)$	Q_{uu}	$(\bar{u}_p \gamma_\mu u_r)(\bar{u}_s \gamma^\mu u_t)$	Q_{lu}	$(\bar{l}_p \gamma_\mu l_r)(\bar{u}_s \gamma^\mu u_t)$
$Q_{qq}^{\left(3 ight)}$	$(\bar{q}_p \gamma_\mu \tau^I q_r) (\bar{q}_s \gamma^\mu \tau^I q_t)$	Q_{dd}	$(ar{d}_p\gamma_\mu d_r)(ar{d}_s\gamma^\mu d_t)$	Q_{ld}	$(\bar{l}_p \gamma_\mu l_r) (\bar{d}_s \gamma^\mu d_t)$
$Q_{lq}^{\left(1 ight)}$	$(\bar{l}_p \gamma_\mu l_r)(\bar{q}_s \gamma^\mu q_t)$	Q_{eu}	$(\bar{e}_p \gamma_\mu e_r) (\bar{u}_s \gamma^\mu u_t)$	Q_{qe}	$(\bar{q}_p \gamma_\mu q_r) (\bar{e}_s \gamma^\mu e_t)$
$Q_{lq}^{\left(3 ight) }$	$(\bar{l}_p \gamma_\mu \tau^I l_r) (\bar{q}_s \gamma^\mu \tau^I q_t)$	Q_{ed}	$(\bar{e}_p \gamma_\mu e_r) (\bar{d}_s \gamma^\mu d_t)$	$Q_{qu}^{(1)}$	$(ar{q}_p\gamma_\mu q_r)(ar{u}_s\gamma^\mu u_t)$
		$Q_{ud}^{\left(1 ight) }$	$(ar{u}_p \gamma_\mu u_r) (ar{d}_s \gamma^\mu d_t)$	$Q_{qu}^{(8)}$	$(\bar{q}_p \gamma_\mu T^A q_r)(\bar{u}_s \gamma^\mu T^A u_t)$
		$Q_{ud}^{(8)}$	$(\bar{u}_p \gamma_\mu T^A u_r) (\bar{d}_s \gamma^\mu T^A d_t)$	$Q_{qd}^{\left(1 ight)}$	$(ar{q}_p\gamma_\mu q_r)(ar{d}_s\gamma^\mu d_t)$
				$Q_{qd}^{(8)}$	$(\bar{q}_p \gamma_\mu T^A q_r) (\bar{d}_s \gamma^\mu T^A d_t)$

$8: (\bar{L}R)(\bar{R}L) + \text{h.c.}$		$8:(\bar{L}R)(\bar{L}R)+{\rm h.c.}$		
Q_{ledq}	$(\bar{l}_p^j e_r)(\bar{d}_s q_{tj})$	$Q_{quqd}^{(1)}$	$(\bar{q}_p^j u_r) \epsilon_{jk} (\bar{q}_s^k d_t)$	
		$Q_{quqd}^{(8)}$	$(\bar{q}_p^j T^A u_r) \epsilon_{jk} (\bar{q}_s^k T^A d_t)$	
		$Q_{lequ}^{(1)}$	$(ar{l}_p^j e_r) \epsilon_{jk} (ar{q}_s^k u_t)$	
		$Q_{lequ}^{(3)}$	$(\bar{l}_p^j \sigma_{\mu\nu} e_r) \epsilon_{jk} (\bar{q}_s^k \sigma^{\mu\nu} u_t)$	

Limits from current (future) LHC data:

$$\sqrt{|C_{q_i q_j}^{\ell_k \ell_l}|^2 + |C_{q_j q_i}^{\ell_l \ell_k}|^2}$$

$$\mathcal{L}_{\text{eff}} = \sum \frac{C_{q_i q_j}^{\ell_k \ell_l}}{v^2} \left(\bar{q}_{Li} \gamma^{\mu} q_{Lj} \right) \left(\bar{\ell}_{Li} \gamma^{\mu} \ell_{Lj} \right)$$

$C_{ m eff} \left(imes 10^3 ight)$	$e\mu$	e au	μτ	
uu	1.0 (0.3)	2.6 (0.5)	3.0 (0.7)	
dd	1.4 (0.5)	4.1 (0.9)	4.5 (1.2)	
88	6.5 (2.4)	21 (5.3)	22 (6.7)	
cc	10 (4.0)	35 (9.5)	36 (11)	
bb	18 (6.8)	59 (17)	62 (21)	
uc	2.0 (0.7)	5.8 (1.2)	6.4 (1.6)	
ds	2.5 (0.9)	7.6 (1.7)	8.2 (2.2)	
db	3.9 (1.4)	12 (2.8)	13 (3.6)	
sb	9.9 (3.7)	34 (9.0)	37 (11)	

[Angelescu, Faroughy, **OS**. '20]