Mirror Matter:

some physical and astrophysical implications

Zurab Berezhiani

University of L'Aquila and LNGS

Portotoz 2021, 21-24 Sept. 2021

Contents

(1) Introduction: Dark Matter from a Parallel World
(2) Chapter I: Neutrino - mirror neutrino mixings
(3) Chapter II: neutron - mirror neutron mixing
(4) Chapter IV: $n-n^{\prime}$ and Neutron Stars

Introduction

Everything can be explained by the Standard Model !
... but there should be more than one Standard Models

Bright \& Dark Sides of our Universe

Mirror Matter: some physical and astrophysical implications

Zurab Berezhiani

- $\Omega_{B} \simeq 0.05$
- $\Omega_{D} \simeq 0.25$
- $\Omega_{\wedge} \simeq 0.70$
- $\Omega_{R}<10^{-3}$
observable matter: electron, proton, neutron!
dark matter: WIMP? axion? sterile ν ? ... dark energy: Λ-term? Quintessence?
relativistic fraction: relic photons and neutrinos

Matter - dark energy coincidence: $\Omega_{M} / \Omega_{\Lambda} \simeq 0.45$, $\left(\Omega_{M}=\Omega_{D}+\Omega_{B}\right)$ $\rho_{\Lambda} \sim$ Const., $\quad \rho_{M} \sim a^{-3} ; \quad$ why $\quad \rho_{M} / \rho_{\Lambda} \sim 1 \quad$ - just Today?

Antrophic explanation: if not Today, then Yesterday or Tomorrow.
Baryon and dark matter Fine Tuning: $\Omega_{B} / \Omega_{D} \simeq 0.2$ $\rho_{B} \sim a^{-3}, \rho_{D} \sim a^{-3}$: why $\rho_{B} / \rho_{D} \sim 1$ - Yesterday Today \& Tomorrow?

Baryogenesis requires BSM Physics: (GUT-B, Lepto-B, AD-B, EW-B ...)
Dark matter requires BSM Physics: (Wimp, Wimpzilla, sterile ν, axion, ...)

Different physics for B-genesis and DM?
Not very appealing: looks as Fine Tuning

Visible vs. Dark matter: $\quad \Omega_{D} / \Omega_{B} \sim 1$?

Mirror Matter: some physical and astrophysical implications

Visible matter from Baryogenesis $B(B-L) \& C P$ violation, Out-of-Equilibrium $\rho_{B}=n_{B} m_{B}, \quad m_{B} \simeq 1 \mathrm{GeV}, \quad \eta=n_{B} / n_{\gamma} \sim 10^{-9}$ η is model dependent on several factors: coupling constants and CP-phases, particle degrees of freedom, mass scales and out-of-equilibrium conditions, etc.

- Sakharov 1967

Dark matter: $\rho_{D}=n_{X} m_{X}$, but $m_{X}=$?, $\quad n_{X}=$? n_{X} is model dependent: DM particle mass and interaction strength (production and annihilation cross sections), freezing conditions, etc.

- Axion
- Neutrinos
- Sterile ν^{\prime}
- Mirror baryons
- WIMP
- WimpZilla
- $m_{a} \sim 10^{-5} \mathrm{eV} \quad n_{a} \sim 10^{4} n_{\gamma}-\mathrm{CDM}$
- $m_{\nu} \sim 10^{-1} \mathrm{eV} \quad n_{\nu} \sim n_{\gamma}-\operatorname{HDM}(\times)$
- $m_{\nu^{\prime}} \sim 10 \mathrm{keV} \quad n_{\nu^{\prime}} \sim 10^{-3} n_{\nu}$-WDM
- $m_{B^{\prime}} \sim 1 \mathrm{GeV} \quad n_{B^{\prime}} \sim n_{B}-$???
- $m_{X} \sim 1 \mathrm{TeV} \quad n_{X} \sim 10^{-3} n_{B}$ - CDM
- $m_{X} \sim 10^{14} \mathrm{GeV}, n_{X} \approx 10^{-14} n_{B \equiv} \mathrm{CDM}$

Dark Matter from a Parallel World

Our observable particles: (Best of the possible Worlds) $G=S U(3) \times S U(2) \times U(1)(+$ SUSY ? + GUT ? ... $)$
electron, nucleons (quarks), neutrinos, gluons, Higgs
QED photon/long range, QCD gluons/confining, Weak $W, Z /$ short range ... matter vs. antimatter ($C P+B / B-L$ violation ...)
... existence of nuclei, atoms, molecules life.... Homo Sapiens !
Dark matter: a parallel sector ? (Best of the possible Dark Worlds ...) $G^{\prime}=S U(3)^{\prime} \times S U(2)^{\prime} \times U(1)^{\prime} ?(+$ SUSY ? GUT '? Seesaw ?)
... dark matter ($C P+B^{\prime} / B^{\prime}-L^{\prime}$ violation ...) ?
... existence of dark nuclei, atoms, molecules ... life ... Homo Aliens ?

Call it Yin-Yang (in chinise, dark-bright) duality
describes a philosophy how opposite forces are actually complementary, interconnected and interdependent in the natural world, and how they give rise to each other as they interrelate to one another.

$S U(3) \times S U(2) \times U(1)+S U(3)^{\prime} \times S U(2)^{\prime} \times U(1)^{\prime}$

Mirror Matter: some physical and astrophysical implications

Zurab Berezhiani

Summary

Introduction:

Dark Matter from a Parallel World

Chapter
Neutrino - mirror neutrino mixings

Chapter II: neutron - mirror neutron mixing

Chapter IV: $n-n^{\prime}$ and Neutron Stars

Regular world
Elementary Particles

Mirror world
291วitis 9 vistnemigla

- Two identical gauge factors, e.g. $S U(5) \times S U(5)^{\prime}$, with identical field contents and Lagrangians: $\quad \mathcal{L}_{\text {tot }}=\mathcal{L}+\mathcal{L}^{\prime}+\mathcal{L}_{\text {mix }}$
- Mirror sector $\left(\mathcal{L}^{\prime}\right)$ is dark - or perhaps grey? $\left(\mathcal{L}_{\text {mix }} \rightarrow\right.$ portals $)$
- MM is similar to standard matter, (asymmetric/dissipative/atomic) but realized in somewhat different cosmological conditions ($T^{\prime} / T \ll 1$)
- $G \rightarrow G^{\prime}$ symmetry $\left(Z_{2}\right.$ or $\left.Z_{2}^{L R}\right)$: no new parameters in \mathcal{L}^{\prime} spont. broken?
- Cross-interactions between O \& M particles
$\mathcal{L}_{\text {mix }}:$ new operators - new parameters! dimited only by experiment! a c

$S U(3) \times S U(2) \times U(1) \quad$ vs. $\quad S U(3)^{\prime} \times S U(2)^{\prime} \times U(1)^{\prime}$

Two possible parities: with and without chirality change

Mirror Matter: some physical and astrophysical implications

Zurab Berezhiani

Summary
Introduction: Dark Matter from a Parallel World

Fermions and anti-fermions :

$$
\begin{aligned}
& q_{L}=\binom{u_{L}}{d_{L}}, \quad \ell_{L}=\binom{\nu_{L}}{e_{L}} ; \quad u_{R}, d_{R}, \quad e_{R} . \\
& \begin{array}{cc}
\bar{q}_{R}=\binom{\bar{u}_{R}}{\bar{d}_{R}}, & \bar{\ell}_{R}=\binom{\bar{\nu}_{R}}{\bar{e}_{R}} ; \\
\mathrm{B}=-1 / 3 & \bar{u}_{L}, \bar{d}_{L}, \\
\bar{e}_{L} \\
=-1 & \mathrm{~B}=-1 / 3 \\
\mathrm{~L}=-1
\end{array}
\end{aligned}
$$

$\downarrow C P$

Twin Fermions/anti-fermions :

$$
\begin{array}{lcll}
q_{L}^{\prime}=\binom{u_{L}^{\prime}}{d_{L}^{\prime}}, & \ell_{L}^{\prime}=\binom{\nu_{L}^{\prime}}{e_{L}^{\prime}} ; & u_{R}^{\prime}, d_{R}^{\prime}, & e_{R}^{\prime} \\
\mathrm{B}^{\prime}=-1 / 3 & \mathrm{~L}^{\prime}=-1 & \mathrm{~B}^{\prime}=-1 / 3 & \mathrm{~L}^{\prime}=-1
\end{array}
$$

- Sign of baryon asymmetry (BA)?

Mirror Matter: some physical and astrophysical implications

Ordinary BA is positive: $\quad \mathcal{B}=\operatorname{sign}\left(n_{b}-n_{\bar{b}}\right)=1$ - as produced by (unknown) baryogenesis a la Sakharov!

Sign of mirror BA, $\mathcal{B}^{\prime}=\operatorname{sign}\left(n_{b^{\prime}}-n_{b^{\prime}}\right)$, is a priori unknown!
Imagine a baryogenesis mechanism separately acting in O and M sectors!

- without involving cross-interactions in $\mathcal{L}_{\text {mix }}$
E.g. EW baryogenesis or leptogenesis $N \rightarrow \ell \phi$ and $N^{\prime} \rightarrow \ell^{\prime} \phi^{\prime}$
$Z_{2}: \rightarrow Y_{u, d, e}^{\prime}=Y_{u, d, e} \quad$ i.e. $\mathcal{B}^{\prime}=-1$
- O and M sectors are CP-identical in same chiral basis! $\mathrm{O}=$ left, $\mathrm{M}=\mathrm{left}$
$Z_{2}^{L R}: \rightarrow Y_{u, d, e}^{\prime}=Y_{u, d, e}^{*} \quad$ i.e. $\mathcal{B}^{\prime}=1$
- O sector in L-basis is identical to M sector in R -basis! $\mathrm{O}=$ left, $\mathrm{M}=$ right

In the absence of cross-interactions in $\mathcal{L}_{\text {mix }}$ we cannot measure sign of $B A$ or chirality in weak interactions of M sector - so all remains academic ...
But switching on cross-interactions, violating B and B^{\prime} - but conserving say $B+B^{\prime}$ as e.g. neutron-mirror neutron $\left(n-n^{\prime}\right)$ mixing: $\epsilon \bar{n} n^{\prime}+$ h.c. $Z_{2}^{L R} \rightarrow \mathcal{B}^{\prime}=1 \quad \rightarrow \quad n^{\prime} \rightarrow n \quad \mathrm{M}$ matter $\rightarrow \mathrm{O}$ matter
$Z_{2} \rightarrow \mathcal{B}^{\prime}=-1 \quad \rightarrow \quad \bar{n}^{\prime} \rightarrow \bar{n} \quad \mathrm{M}$ (anti)matter $\rightarrow \mathrm{O}$ antimatter

- All you need is ... M world colder than ours !

For a long time M matter was not considered as a real candidate for DM: naively assuming that exactly identical microphysics of O \& M worlds implies also their cosmologies are exactly identical :

- $T^{\prime}=T, \quad g_{*}^{\prime}=g_{*} \quad \rightarrow \quad \Delta N_{\nu}^{\text {eff }}=6.15 \quad$ vs. $\Delta N_{\nu}^{\text {eff }}<0.5$ (BBN)
- $n_{B}^{\prime} / n_{\gamma}^{\prime}=n_{B} / n_{\gamma}\left(\eta^{\prime}=\eta\right) \quad \rightarrow \quad \Omega_{B}^{\prime}=\Omega_{B} \quad$ vs. $\Omega_{B}^{\prime} / \Omega_{B} \simeq 5$ (DM)

But all is OK if : Z.B., Dolgov, Mohapatra, 1995 (broken Z_{2}) Z.B., Comelli, Villante, 2000 (exact Z_{2})
A. after inflation M world was born colder than O world, $T_{R}^{\prime}<T_{R}$
B. any interactions between M and O particles are feeble and cannot bring two sectors into equilibrium in later epochs
C. two systems evolve adiabatically (no entropy production): $T^{\prime} / T \simeq$ const
$T^{\prime} / T<0.5$ from BBN, but cosmological limits $T^{\prime} / T<0.2$ or so.
$x=T^{\prime} / T \ll 1 \quad \Longrightarrow \quad$ in O sector $75 \% \mathrm{H}+25 \%{ }^{4} \mathrm{He}$ $\Longrightarrow \quad$ in M world $\quad 25 \% \mathrm{H}^{\prime}+75 \%{ }^{4} \mathrm{He}^{\prime}$

For broken Z_{2}, DM can be compact H^{\prime} atoms or n^{\prime} with $m \simeq 5 \mathrm{GeV}$ or (sterile) mirror neutrinos $m \sim$ few keV Z.B Dolgov, Mohapatra, 1995

Brief Cosmology of Mirror World

Mirror Matter: some physical and astrophysical implications

- CMB \& (linear) structure formation epoch

Since $x=T^{\prime} / T \ll 1$, mirror photons decouple before M-R equality: $z_{\mathrm{dec}}^{\prime} \simeq x^{-1} z_{\mathrm{dec}} \simeq 1100\left(T / T^{\prime}\right)$
After that (and before M -reionization) M matter behaves as collisionless CDM and $T^{\prime} / T<0.2$ is consistent with Planck, BAO, Ly- α etc.

- Cosmic dawn: M world is colder (and helium dominated), the first M star can be formed earlier and reionize M sector ($z_{r}^{\prime} \simeq 20$ or so vs $z_{r} \simeq 10$).
- EDGES 21 cm at $z \simeq 17$?

Heavy first M stars $\left(M \sim 10^{3 \div 5} M_{\odot}\right)$ as seeds of central BH - Quasars?

- Galaxy halos? if $\Omega_{B}^{\prime} \simeq \Omega_{B}, \mathrm{M}$ matter makes $\sim 20 \%$ of DM , forming dark disk, while $\sim 80 \%$ may come from other type of CDM (WIMP?) But perhaps 100% ? if $\Omega_{B}^{\prime} \simeq 5 \Omega_{B}:-M$ world is helium dominated, and the star formation and evolution can be much faster. Halos could be viewed as mirror elliptical galaxies dominated by BH and M stars, with our matter forming disks inside.
Maybe not always: Galaxies with missing DM, or too many DM, etc. ?
Because of $T^{\prime}<T$, the situation $\Omega_{B}^{\prime} \simeq 5 \Omega_{B}$ becomes plausible in baryogenesis. So, M matter can be dark matter (as we show below)

CMB and LSS power spectra

Mirror Matter: some physical and astrophysical implications

Zurab Berezhiani

Summary

Introduction:
Dark Matter from a Parallel World

Chapter I:

Neutrino - mirror neutrino mixings

Chapter II
neutron - mirror neutron mixing

Chapter IV:
$n-n^{\prime}$ and Neutron Stars

ZB, Ciarcelluti, Comelli, Villante, 2003

$$
z_{\mathrm{dec}}^{\prime} \simeq x^{-1} z_{\mathrm{dec}} \simeq 1100\left(T / T^{\prime}\right)
$$

\longleftarrow imprint of $\Delta N_{\text {eff }}$
imprint of M -baryon oscillations

Acoustic oscillations and Silk damping scales: $x=0.5,0.3,0.2$ $x<0.2: \quad$ Galaxies with $M<10^{8 \div 9} M_{\odot}$ will be damped

Can Mirror stars be progenitors of gravitational Wave bursts GW150914 etc. ?

Mirror Matter: some physical and astrophysical implications

Introduction: Dark Matter from a Parallel World

Chapter I: Neutrino - mirror neutrino mixings

Chapter II
neutron - mirror neutron mixing

Chapter IV: $n-n^{\prime}$ and Neutron Stars

Picture of Galactic halos as mirror ellipticals (Einasto density profile?), O matter disk inside (M stars, M neutron stars and $\mathrm{BH}=$ Machos) Microlensing limits: $f \sim 20-40 \%$ for $M=1-10 M_{\odot}$, $f \sim 100 \%$ is allowed for $M=20-200 M_{\odot}$

GW events without any optical counterpart

Massive BH compact binaries, $M \sim 10-100 M_{\odot}$

Can such objects be formed from MM?

M matter: 25 \% Hydrogen vs 75 \% Helium: M stars more compact, less opaque, less mass loses by stellar wind and evolving much faster. Appropriate for forming such BH binaries, $\mathrm{BH}-\mathrm{Ns}$ and NS-NS binaries? And perhaps large seeds for central BH in overdense regions?

Experimental and observational manifestations

Mirror Matter: some physical and astrophysical implications
A. Cosmological implications. $T^{\prime} / T<0.2$ or so, $\Omega_{B}^{\prime} / \Omega_{B}=1 \div 5$. Mass fraction: $\mathrm{H}^{\prime}-25 \%$, $\mathrm{He}^{\prime}-75 \%$, and few $\%$ of heavier $\mathrm{C}^{\prime}, \mathrm{N}^{\prime}, \mathrm{O}$ ' etc. - Mirror baryons as asymmetric/collisional/dissipative/atomic dark matter: M hydrogen recombination and M baryon acoustic oscillations?

- Easier formation and faster evolution of stars: Dark matter disk? Galaxy halo as mirror elliptical galaxy? Microlensing ? Neutron stars? Black Holes? Binary Black Holes? Central Black Holes?
B. Direct detection. M matter can interact with ordinary matter e.g. via kinetic mixing $\epsilon F^{\mu \nu} F_{\mu \nu}^{\prime}$, etc. Mirror helium as most abundant mirror matter particles (the region of DM masses below 5 GeV is practically unexplored). Possible signals from heavier nuclei $\mathrm{C}, \mathrm{N}, \mathrm{O}$ etc.
C. Oscillation phenomena between ordinary and mirror particles.

The most interesting interaction terms in $\mathcal{L}_{\text {mix }}$ are the ones which violate B and L of both sectors. Neutral particles, elementary (as e.g. neutrino) or composite (as the neutron or hydrogen atom) can mix with their mass degenerate (sterile) twins: matter disappearance (or appearance) phenomena can be observable in laboratories.
In the Early Universe, these B and/or L violating interactions can give primordial baryogenesis and dark matter genesis, with $\Omega_{B}^{\prime} / \Omega_{B}=1 \div 5$.

Possible portals to Mirror World: $\quad \mathcal{L}_{\text {mix }}$
can be limited (only) by experiment/cosmology !

Mirror Matter: some physical and astrophysical implications

Zurab Berezhiani

Summary

- Kinetic mixing of photons $\epsilon F^{\mu \nu} F_{\mu \nu}^{\prime}$ Makes mirror matter nanocharged ($q \sim \epsilon$)
$\epsilon<5 \times 10^{-8}$ (EXP) $\quad \epsilon<10^{-9}$ (COSM) (Exact Z_{2})
GUT: $\frac{1}{M^{2}}\left(\Sigma G^{\mu \nu}\right)\left(\Sigma^{\prime} G_{\mu \nu}^{\prime}\right) \quad \epsilon \sim\left(\frac{M_{G U T}}{M}\right)^{2}$
Portal for DM detection, can induce DM capture by stars/planest, can induce galactic magnetic fields Z.B., Dolgov, Tkachev, 2013
- Higgs-Higgs ${ }^{\prime}$ coupling $\lambda\left(\phi^{\dagger} \phi\right)\left(\phi^{\prime \dagger} \phi^{\prime}\right) \quad \lambda<10^{-7}(\mathrm{COSM})$ SUSY: $\quad W \sim \frac{1}{M}\left(\phi_{1} \phi_{2}\right)\left(\phi_{1}^{\prime} \phi_{2}^{\prime}\right)+F / D$ - terms, $\quad \lambda \sim M_{\text {SUSY }} / M$ SUSY Twin Higgs $\lambda S\left(\phi_{1} \phi_{2}+\phi_{1}^{\prime} \phi_{2}^{\prime}-\Lambda^{2}\right)+\ldots \quad$ global $S U(4)$ $\left\langle\phi^{\prime}\right\rangle \gg\langle\phi\rangle \quad$ Higgs $=\mathrm{PGB} \quad$ ZB 05, Falkowksi Pokorski Schmalz 06

Non-SUSY version of twin-Higgs Chacko et al, 2005

- Common Peccei-Quinn symmetry: $\quad Z_{2} \& U(1)_{\mathrm{PQ}}$ @ PeV scale axion $m_{a} \sim 10 \mathrm{MeV}$ (axidragon) Z.B., Gianfagna, Giannotti 2000 another version: asymmetric $S U(5) \times S U(5)$ Rubakov 1998

Physics of the Flavorfull Universe

Mirror Matter: some physical and astrophysical implications

Zurab Berezhiani

Summary

- Chiral family gauge symmetry $\operatorname{SU}(3)_{H} \quad$ ZB and Chkareuli 82 $f_{L}\left(q_{L}, \ell_{L}\right) \sim 3, f_{L}^{c}\left(u_{L}^{c}, d_{L}^{c}, e_{L}^{c}\right) \sim 3-(\overline{5}, 3)+(10,3)$ in $S U(5) \times S U(3)_{H}$
Fermion mass generation requires $S U(3)_{H}$ breaking: $\frac{\chi}{M} H f_{L} f_{L}^{C}+$ h.c. $Y_{f}=\langle\chi\rangle / M \quad 3 \times 3=6+\overline{3} \quad \rightarrow \quad \chi=\overline{6}, 3$
$U(3)_{H} \rightarrow U(2)_{H} \rightarrow U(1)_{H} \rightarrow I \quad\langle\chi\rangle=\left(\begin{array}{ccc}0 & \chi_{12} & 0 \\ -\chi_{12} & 0 & \chi_{23} \\ 0 & -\chi_{23} & \chi_{33}\end{array}\right)$
Operators $\frac{\chi}{M} H f_{L} f_{L}^{c}+$ h.c. obtained integrating out heavy fermions. Automatic global symmetry $U(1)_{H}=U(1)_{P Q} \quad$ ZB, $83-85$
- axion with flavor and lepton violating couplings (axion=familon=majoron) rich phenomenology ZB + Khlopov 90-91

SUSY: natural "quark-squark" alignment: Yukawa-SSB (F-terms) $\tilde{m}^{2}=m_{S}^{2}\left(1+Y^{\dagger} Y+\ldots\right), \quad A=m_{S} Y \quad$ viable SUSY @ TeV scale ZB 96, Anselm and ZB 96, ZB and Rossi, 2000 coined as MFV in D'Ambrosio Giudice Isidori 2002 F-terms $\left(S U(3)_{H}=\right.$ global). D-term problem if $S U(3)_{H}$ is local

Gauge Flavor Symmetry as a portal

Mirror sector \rightarrow automatic cancellation of $\mathrm{SU}(3)_{H}$ anomaly:

$$
f_{L}, f_{L}^{c} \sim 3, \quad f_{L}^{\prime}, f_{L}^{\prime c} \sim \overline{3}
$$

if M -sector right-handed, $Z_{2}^{L R}=Z_{2} \times C P$

$$
\text { in SUSY: flavons } \chi_{L} \sim \overline{6}, 3+\text { mirror flavons } \bar{\chi}_{L} \sim 6, \overline{3}
$$

$$
W=\frac{\chi_{L}}{M} H f_{L} f_{L}^{c}+\frac{c \bar{h} i_{L}}{M} H^{\prime} f_{L}^{\prime} f_{L}^{\prime c}
$$

$S U(3)_{H}$ D-terms are vanishing by mirror symmetry: $\langle\chi\rangle=\langle\bar{\chi}\rangle$
MFV @ work achieved ZB 96, Z.B. and Rossi, 2000
valid both for exact mirror $\left\langle\phi^{\prime}\right\rangle=\langle\phi\rangle$ or $\left\langle\phi^{\prime}\right\rangle \neq\langle\phi\rangle$ (e.g. twin Higgs) makes viable SUSY @ TeV scale

Flavor gauge bosons @ TeV scale: DM direct detection $\pi^{0} \rightarrow \pi^{0 \prime}, K^{0} \rightarrow K^{0 \prime}, e \bar{\mu} \rightarrow e^{\prime} \bar{\mu}^{\prime}$ etc. \quad Z.B., Belfatto 2019

Chapter I

Chapter I

Introduction:

Dark Matter from a Parallel World

Chapter I:
Neutrino - mirror neutrino mixings

Neutrino - mirror neutrino mixings

$\mathrm{B}-\mathrm{L}$ violation in O and M sectors: Active-sterile mixing

Mirror Matter: some physical and astrophysical implications

- $\frac{A}{M}(\ell \phi)(\ell \phi)(\Delta L=2)$ - neutrino (seesaw) masses $m_{\nu} \sim v^{2} / M$ M is the (seesaw) scale of new physics beyond EW scale.

- Neutrino -mirror neutrino mixing - (active - sterile mixing)
L and L^{\prime} violation: $\frac{A}{M}(\ell \phi)(\ell \phi), \frac{A}{M}\left(\ell^{\prime} \phi^{\prime}\right)\left(\ell^{\prime} \phi^{\prime}\right)$ and $\frac{B}{M}(\ell \phi)\left(I \ell^{\prime} \phi^{\prime}\right)$

Mirror neutrinos naturally sterile neutrinos: $\left\langle\phi^{\prime}\right\rangle /\langle\phi\rangle \sim 10 \div 10^{2}$ ZB and Mohapatra 95, ZB, Dolgov and Mohapatra 96

Co-leptogenesis: B-L violating interactions between O and M worlds

Mirror Matter: some physical and astrophysical implications
L and L^{\prime} violating operators $\frac{1}{M}(\ell \phi)(\ell \phi)$ and $\frac{1}{M}(\ell \phi)\left(\ell^{\prime} \phi^{\prime}\right)$ lead to processes $\ell \phi \rightarrow \bar{\ell} \bar{\phi}(\Delta L=2)$ and $\ell \phi \rightarrow \bar{\ell}^{\prime} \bar{\phi}^{\prime}\left(\Delta L=1, \Delta L^{\prime}=1\right)$

After inflation, our world is heated and mirror world is empty: but ordinary particle scatterings transform them into mirror particles, heating also mirror world.

- These processes should be out-of-equilibrium
- Violate baryon numbers in both worlds, $B-L$ and $B^{\prime}-L^{\prime}$
- Violate also CP, given complex couplings

Green light to celebrated conditions of Sakharov

Co-leptogenesis:
Z.B. and Bento, PRL 87, 231304 (2001)

Mirror Matter: some physical and astrophysical implications

Zurab Berezhian

Summary

Introduction: Dark Matter from a Parallel World

Chapter
Neutrino - mirror neutrino mixings

Chapter II:
neutron - mirror neutron mixing

Chapter IV: $n-n^{\prime}$ and Neutron Stars

Operators $\frac{1}{M}(I \bar{\phi})(I \bar{\phi})$ and $\frac{1}{M}(I \bar{\phi})\left(I^{\prime} \bar{\phi}^{\prime}\right)$ via seesaw mechanism heavy RH neutrinos N_{j} with Majorana masses $\frac{1}{2} M g_{j k} N_{j} N_{k}+$ h.c.

Complex Yukawa couplings $Y_{i j} I_{i} N_{j} \bar{\phi}+Y_{i j}^{\prime} l_{i}^{\prime} N_{j} \bar{\phi}^{\prime}+$ h.c.
Z_{2} (Xerox) symmetry $\rightarrow Y^{\prime}=Y$,
$Z_{2}^{L R}$ (Mirror) symmetry $\rightarrow Y^{\prime}=Y^{*}$

Co-leptogenesis: Mirror Matter as Dark Anti-Matter

Z.B., arXiv:1602.08599

Mirror Matter: some physical and astrophysical implications

Zurab Berezhiani

Summary
Introduction: Dark Matter from a Parallel World

Chapter I:
Neutrino - mirror neutrino mixings

Hot O World \longrightarrow Cold M World

$$
\begin{align*}
& \underset{\oplus}{\oplus} \underset{\oplus}{\boldsymbol{\oplus}} \boldsymbol{\oplus} \quad \frac{d n_{\mathrm{BL}}}{d t}+(3 H+\Gamma) n_{\mathrm{BL}}=\Delta \sigma n_{\mathrm{eq}}^{2} \\
& \frac{d n_{\mathrm{BL}}^{\prime}}{d t}+\left(3 H+\Gamma^{\prime}\right) n_{\mathrm{BL}}^{\prime}=\Delta \sigma^{\prime} n_{\mathrm{eq}}^{2} \\
& \sigma(I \phi \rightarrow \bar{l} \bar{\phi})-\sigma(\bar{I} \bar{\phi} \rightarrow I \phi)=\Delta \sigma \\
& \Theta \\
& \sigma\left(I \phi \rightarrow \bar{I}^{\prime} \bar{\phi}^{\prime}\right)-\sigma\left(\bar{I} \bar{\phi} \rightarrow I^{\prime} \phi^{\prime}\right)=-\left(\Delta \sigma+\Delta \sigma^{\prime}\right) / 2 \quad \rightarrow \quad 0 \quad(\Delta \sigma=0) \\
& \sigma\left(I \phi \rightarrow I^{\prime} \phi^{\prime}\right)-\sigma\left(\bar{I} \bar{\phi} \rightarrow \bar{I}^{\prime} \bar{\phi}^{\prime}\right)=-\left(\Delta \sigma-\Delta \sigma^{\prime}\right) / 2 \rightarrow \Delta \sigma \tag{0}
\end{align*}
$$

$\Delta \sigma=\operatorname{Im} \operatorname{Tr}\left[g^{-1}\left(Y^{\dagger} Y\right)^{*} g^{-1}\left(Y^{\prime \dagger} Y^{\prime}\right) g^{-2}\left(Y^{\dagger} Y\right)\right] \times T^{2} / M^{4}$ $\Delta \sigma^{\prime}=\Delta \sigma\left(Y \rightarrow Y^{\prime}\right)$

Mirror $\left(Z_{2}^{L R}\right): \quad Y^{\prime}=Y^{*} \quad \rightarrow \quad \Delta \sigma^{\prime}=-\Delta \sigma \quad \rightarrow \quad B>0, B^{\prime}<0$ $\operatorname{Xerox}\left(Z_{2}\right): \quad Y^{\prime}=Y \quad \rightarrow \quad \Delta \sigma^{\prime}=\Delta \sigma=0 \quad \rightarrow \quad B, B^{\prime}=0$ If $k=\left(\frac{\Gamma}{H}\right)_{T=T_{R}} \ll 1$, neglecting Γ in eqs $\rightarrow \quad n_{B L}=n_{B L}^{\prime}$ $\Omega_{B}^{\prime}=\Omega_{B} \simeq 10^{3} \frac{J M_{P P} T_{R}^{3}}{M^{4}} \simeq 10^{3} \mathrm{~J}\left(\frac{T_{R}}{10^{11} \mathrm{GeV}}\right)^{3}\left(\frac{10^{13} \mathrm{GeV}}{M}\right)^{4}$

Mirror Matter: some physical and astrophysical implications

Zurab Berezhiani

Summary

Introduction: Dark Matter from a Parallel World

Chapter I:

Neutrino - mirror neutrino mixings

Chapter II

neutron - mirror neutron mixing

Chapter IV: $n-n^{\prime}$ and Neutron Stars

If $k=\left(\frac{\Gamma_{2}}{H}\right)_{T=T_{R}} \sim 1$, Boltzmann Eqs.

$$
\frac{d n_{\mathrm{BL}}}{d t}+(3 H+\Gamma) n_{\mathrm{BL}}=\Delta \sigma n_{\mathrm{eq}}^{2} \quad \frac{d n_{\mathrm{BL}}^{\prime}}{d t}+\left(3 H+\Gamma^{\prime}\right) n_{\mathrm{BL}}^{\prime}=\Delta \sigma n_{\mathrm{eq}}^{2}
$$

should be solved with Γ :

$D(k)=\Omega_{B} / \Omega_{B}^{\prime}, \quad x(k)=T^{\prime} / T$ for different $g_{*}\left(T_{R}\right)$ and Γ_{1} / Γ_{2}.
So we obtain $\Omega_{B}^{\prime}=5 \Omega_{B}$ when $m_{B}^{\prime}=m_{B}$ but $n_{B}^{\prime}=5 n_{B}$

- the reason: mirror world is colder

Chapter II

Mirror Matter:
some physical and astrophysical implications

Zurab Berezhiani

Summary
Introduction
Dark Matter from
a Parallel World
Chapter I
Neutrino - mirror neutrino mixings

Chapter II:

neutron - mirror neutron mixing

Chapter IV:

$n-n^{\prime}$ and
Neutron Stars

Chapter II

Neutron - mirror neutron mixing

B violating operators between O and M particles in $\mathcal{L}_{\text {mix }}$

Mirror Matter: some physical and astrophysical implications

Zurab Berezhiani

Summary
Introduction: Dark Matter from a Parallel World

Chapter I:
Neutrino - mirror neutrino mixings

Chapter II: neutron - mirror neutron mixing

Ordinary quarks $u, d \quad($ antiquarks $\bar{u}, \bar{d})$ Mirror quarks $u^{\prime}, d^{\prime} \quad\left(\right.$ antiquarks $\left.\bar{u}^{\prime}, \bar{d}^{\prime}\right)$

- Neutron -mirror neutron mixing - (Active - sterile neutrons)

$$
\frac{1}{M^{5}}(u d d)(u d d) \quad \& \quad \frac{1}{M^{5}}(u d d)\left(u^{\prime} d^{\prime} d^{\prime}\right)
$$

Oscillations $n \rightarrow \bar{n} \quad(\Delta B=2)$
Oscillations $n \rightarrow \bar{n}^{\prime} \quad\left(\Delta B=1, \Delta B^{\prime}=-1\right) \quad B+B^{\prime}$ is conserved

Neutron- antineutron mixing

Mirror Matter: some physical and astrophysical implications

Majorana mass of neutron $\epsilon\left(n^{T} C n+\bar{n}^{T} C \bar{n}\right)$ violating B by two units comes from six-fermions effective operator $\frac{1}{M^{5}}(u d d)(u d d)$

It causes transition $n(u d d) \rightarrow \bar{n}(\bar{u} \bar{d} \bar{d})$, with oscillation time $\tau=\epsilon^{-1}$ $\varepsilon=\langle n|(u d d)(u d d)|\bar{n}\rangle \sim \frac{\Lambda_{Q \mathrm{QDD}}^{6}}{M^{5}} \sim\left(\frac{100 \mathrm{TeV}}{M}\right)^{5} \times 10^{-25} \mathrm{eV}$
Key moment: $n-\bar{n}$ oscillation destabilizes nuclei: $(A, Z) \rightarrow(A-1, \bar{n}, Z) \rightarrow(A-2, Z / Z-1)+\pi ' s$

Present bounds on ϵ from nuclear stability

$\varepsilon<1.2 \times 10^{-24} \mathrm{eV}$	\rightarrow	$\tau>1.3 \times 10^{8} \mathrm{~s}$	Fe, Soudan 2002
$\varepsilon<2.5 \times 10^{-24} \mathrm{eV}$	\rightarrow	$\tau>2.7 \times 10^{8} \mathrm{~s}$	O, SK 2015
$\varepsilon<7.5 \times 10^{-24} \mathrm{eV}$	\rightarrow	$\tau>0.9 \times 10^{8} \mathrm{~s}$	direct limit free n

Neutron - mirror neutron mixing

Mirror Matter: some physical and astrophysical implications

Effective operator $\frac{1}{M^{5}}(u d d)\left(u^{\prime} d^{\prime} d^{\prime}\right) \quad \rightarrow \quad$ mass mixing $\epsilon n C n^{\prime}+$ h.c. violating B and B^{\prime} - but conserving $\quad B-B^{\prime}$

$\epsilon=\langle n|(u d d)\left(u^{\prime} d^{\prime} d^{\prime}\right)\left|\bar{n}^{\prime}\right\rangle \sim \frac{\Lambda_{\mathrm{QCD}}^{6}}{M^{5}} \sim\left(\frac{1 \mathrm{TeV}}{M}\right)^{5} \times 10^{-10} \mathrm{eV}$
Key observation: $n-\bar{n}^{\prime}$ oscillation cannot destabilise nuclei: $(A, Z) \rightarrow(A-1, Z)+n^{\prime}\left(p^{\prime} e^{\prime} \bar{\nu}^{\prime}\right)$ forbidden by energy conservation (In principle, it can destabilise Neutron Stars)
For $m_{n}=m_{n^{\prime}}, n-\bar{n}^{\prime}$ oscillation can be as fast as $\epsilon^{-1}=\tau_{n \bar{n}^{\prime}} \sim 1 \mathrm{~s}$ without contradicting experimental and astrophysical limits. (c.f. $\tau>10 \mathrm{yr}$ for neutron - antineutron oscillation)

Neutron disappearance $n \rightarrow \bar{n}^{\prime}$ and regeneration $n \rightarrow \bar{n}^{\prime} \rightarrow n$ can be searched at small scale 'Table Top' experiments

Neutron - mirror neutron oscillation probability

$$
H=\left(\begin{array}{cc}
m_{n}+\mu_{n} \mathbf{B} \sigma & \epsilon \\
\epsilon & m_{n}+\mu_{n} \mathbf{B}^{\prime} \sigma
\end{array}\right)
$$

The probability of $n-n$ ' transition depends on the relative orientation of magnetic and mirror-magnetic fields. The latter can exist if mirror matter is captured by the Earth

$$
\begin{aligned}
& P_{B}(t)=p_{B}(t)+d_{B}(t) \cdot \cos \beta \\
& p(t)=\frac{\sin ^{2}\left[\left(\omega-\omega^{\prime}\right) t\right]}{2 \tau^{2}\left(\omega-\omega^{\prime}\right)^{2}}+\frac{\sin ^{2}\left[\left(\omega+\omega^{\prime}\right) t\right]}{2 \tau^{2}\left(\omega+\omega^{\prime}\right)^{2}} \\
& d(t)=\frac{\sin ^{2}\left[\left(\omega-\omega^{\prime}\right) t\right]}{2 \tau^{2}\left(\omega-\omega^{\prime}\right)^{2}}-\frac{\sin ^{2}\left[\left(\omega+\omega^{\prime}\right) t\right]}{2 \tau^{2}\left(\omega+\omega^{\prime}\right)^{2}} \\
& \text { where } \omega=\frac{1}{2}|\mu B| \text { and } \omega^{\prime}=\frac{1}{2}\left|\mu B^{\prime}\right| ; \tau \text { - oscillation time } \\
& A_{B}^{\text {det }}(t)=\frac{N_{-B}(t)-N_{B}(t)}{N_{-B}(t)+N_{B}(t)}=N_{\text {collis }} d_{B}(t) \cdot \cos \beta \leftarrow \text { assymetry }
\end{aligned}
$$

Earth mirror magnetic field via the electron drag mechanism

Earth can accumulate some, even tiny amount of mirror matter due to Rutherford-like scattering of mirror matter due to photon-mirror photon kinetic mixing.
Rotation of the Earth drags mirror electrons but not mirror protons (ions) since the latter are much heavier.
Circular electric currents emerge which can generate magnetic field. Modifying mirror Maxwell equations by the source (drag) term, one gets $B^{\prime} \sim \epsilon^{2} \times 10^{15} \mathrm{G}$ before dynamo, and even larger after dynamo.

Such mechanism can also induce cosmological magnetic fields Z.B., Dolgov, Tkachev, 2013

Experimental Strategy

Mirror Matter: some physical and astrophysical implications

Zurab Berezhiani

Summary

Introduction: Dark Matter from a Parallel World

Chapter I:
Neutrino - mirror neutrino mixings

Chapter II: neutron - mirror neutron mixing

To store neutrons and to measure if the amount of the survived ones depends on the magnetic field applied.

- Fill the Trap with the UCN
- Close the valve
- Wait for $T_{S}(300 \mathrm{~s} . .$.
- Open the valve
- Count the survived Neutrons

10

Repeat this for different orientation and values of Magnetic field. $N_{B}\left(T_{S}\right)=N(0) \exp \left[-\left(\Gamma+R+\overline{\mathcal{P}}_{B} \nu\right) T_{S}\right]$

$$
\frac{N_{B 1}\left(T_{S}\right)}{N_{B 2}\left(T_{S}\right)}=\exp \left[\left(\overline{\mathcal{P}}_{B 2}-\overline{\mathcal{P}}_{B 1}\right) \nu T_{S}\right]
$$

So if we find that:
$A\left(B, T_{S}\right)=\frac{N_{B}\left(T_{S}\right)-N_{-B}\left(T_{S}\right)}{N_{B}\left(T_{S}\right)+N_{-B}\left(T_{S}\right)} \neq 0 \quad E\left(B, b, T_{S}\right)=\frac{N_{B}\left(T_{S}\right)}{N_{b}\left(T_{S}\right)}-1 \neq 0$

A and E are expected to depend on magnetic field

Mirror Matter: some physical and astrophysical implications

Zurab Berezhiani

Summary

Introduction: Dark Matter from a Parallel World

Chapter I: Neutrino - mirror neutrino mixings

Chapter II: neutron - mirror neutron mixing

Chapter IV: $n-n^{\prime}$ and Neutron Stars
E.g. assume $B^{\prime}=0.12$ Gauss

Experiments

Mirror Matter: some physical and astrophysical implications

Zurab Berezhiani

Summary

Introduction: Dark Matter from a Parallel World

Chapter I: Neutrino - mirror neutrino mixings

Chapter II: neutron - mirror neutron mixing

Chapter IV: $n-n^{\prime}$ and Neutron Stars

8 experiment were done at ILL/PSI, $3+1$ by PSI group, $2+1$ by Serebrov group with 190 I beryllium plated trap for UCN New experiments are underway at PSI, ILL and ORNL

Exp. limits on $n-n^{\prime}$ oscillation time - ZB et al, Eur. Phys. J. C. 2018

Mirror Matter: some physical and astrophysical implications Zurab Berezhiani

Summary
Introduction: Dark Matter from a Parallel World

Chapter I: Neutrino - mirror neutrino mixings

Chapter II:
neutron - mirror neutron mixing

Chapter IV:
$n-n^{\prime}$ and
Neutron Stars

Free Neutrons: Where to find Them ?

Neutrons are making $1 / 7$ fraction of baryon mass in the Universe.

But most of neutrons bound in nuclei
$n \rightarrow \bar{n}^{\prime}$ or $n^{\prime} \rightarrow \bar{n}$ conversions can be seen only with free neutrons.
Free neutrons are present only in

- Reactors and Spallation Facilities (experiments are looking for)
- In Cosmic Rays ($n-n^{\prime}$ can reconcile TA and Auger experiments)
- During BBN epoch (fast $n^{\prime} \rightarrow \bar{n}$ can solve Lithium problem)
- Transition $n \rightarrow \bar{n}^{\prime}$ can take place for (gravitationally) Neutron Stars - conversion of NS into mixed ordinary/mirror NS

Chapter IV

Mirror Matter:

Zurab Berezhiani

Summary
Introduction:

Chapter I
Neutrino - mirror
neutrino mixings
Chapter II:
neutron - mirror neutron mixing
Chapter IV: $n-n^{\prime}$ and Neutron Stars

Chapter IV

$n-n^{\prime}$ and Neutron Stars

 (and Mirror Neutron stars)Z.B., Biondi, Mannarelli, Tonelli, arXiv:2012.15233
Z.B., arXiv:2106.11203

Neutron Stars: $n-n^{\prime}$ conversion

Mirror Matter: some physical and astrophysical implications

Zurab Berezhiani

Summary

Introduction: Dark Matter from a Parallel World

Chapter I:
Neutrino - mirror neutrino mixings

Chapter II
neutron - mirror neutron mixing

Chapter IV: $n-n^{\prime}$ and Neutron Stars

Two states, n and n^{\prime}

$$
H=\left(\begin{array}{cc}
m_{n}+V_{n}+\mu_{n} \mathbf{B} \sigma & \varepsilon \\
\varepsilon & m_{n}^{\prime}+V_{n}^{\prime}-\mu_{n} \mathbf{B}^{\prime} \sigma
\end{array}\right)
$$

$$
\begin{aligned}
& n_{1}=\cos \theta n+\sin \theta n^{\prime}, \quad n_{2}=\sin \theta n-\cos \theta n^{\prime}, \quad \theta \simeq \frac{\epsilon}{V_{n}-V_{n}^{\prime}} \\
& V_{n}=2 \pi a n_{b} / m_{n} \simeq \xi a_{3} \times 125 \mathrm{MeV} \quad \xi=n_{b} / n_{s}\left(n_{s}=0.16 / \mathrm{fm}^{3}\right) \\
& E_{F} \simeq \xi^{2 / 3} \times 60 \mathrm{MeV}, \quad\left(V_{n}^{\prime}<V_{n}, \quad E_{F}^{\prime}<E_{F}^{\prime}\right) \\
& n n \rightarrow n n^{\prime} \text { with rate } \Gamma=2 \theta^{2} \eta\langle\sigma v\rangle n_{b}, \quad \sigma=4 \pi a^{2}
\end{aligned}
$$

$$
\frac{d N_{1}(t)}{d t}=-\Gamma N_{1} \quad \frac{d N_{2}(t)}{d t}=\Gamma N_{1} \quad N_{1}+N_{2}=\text { Const. }
$$

$$
\tau_{\epsilon}=\Gamma^{-1}=\epsilon_{15}^{-2} a_{R}\left(\frac{M}{1.5 M_{\odot}}\right)^{2 / 3} \times 10^{15} \mathrm{yr}
$$

$$
\dot{\mathcal{E}}=\Gamma E_{F} N_{b}=\epsilon_{15}^{2}\left(\frac{M}{1.5 M_{\odot}}\right) \times 10^{31} \mathrm{erg} / \mathrm{s} \quad \text { NS heating - surface } \mathrm{T}
$$

Mixed Neutron Stars: TOV and $M-R$ relations

Mirror Matter: some physical and astrophysical implications

Zurab Berezhiani

Summary
Introduction: Dark Matter from a Parallel World

Chapter I:
Neutrino - mirror neutrino mixings

Chapter II:
neutron - mirror neutron mixing

Chapter IV: $n-n^{\prime}$ and Neutron Stars

$$
\begin{aligned}
& g_{\mu \nu}=\operatorname{diag}\left(-g_{t t}, g_{r r}, r^{2}, r^{2} \sin ^{2} \theta\right) \quad g_{t t}=e^{2 \phi}, g_{r r}=\frac{1}{1-2 m / r} \\
& T_{\mu \nu}=T_{\mu \nu}^{1}+T_{\mu \nu}^{2}=\operatorname{diag}\left(\rho g_{t t}, p g_{r r}, p r^{2}, p r^{2} \sin ^{2} \theta\right) \\
& \rho=\rho_{1}+\rho_{2} \& p=p_{1}+p_{2}, \quad p_{\alpha}=F\left(\rho_{\alpha}\right) \\
& \frac{d m}{d r}=4 \pi r^{2} \rho \rightarrow \frac{d m_{1,2}}{d r}=4 \pi r^{2} \rho_{1,2} \quad m=m_{1}+m_{2} \\
& \frac{d \phi}{d r}=-\frac{1}{\rho+p} \frac{d p}{d r} \rightarrow \frac{d p_{1} / d r}{\rho_{1}+p_{1}}=\frac{d p_{2} / d r}{\rho_{2}+p_{2}} \\
& \frac{d p}{d r}=(\rho+p) \frac{m+4 \pi p r^{3}}{2 m r-r^{2}} \\
& \left(m_{1} \neq 0, m_{2}=0\right)_{\text {in }} \rightarrow\left(m_{1}=m_{2}\right)_{\text {fin }} \quad r \rightarrow \frac{r}{\sqrt{2}}, \quad m_{\alpha} \rightarrow \frac{m_{\alpha}}{2 \sqrt{2}}
\end{aligned}
$$

$\sqrt{2}$ rule: $\quad M_{\text {mix }}^{\max }=\frac{1}{\sqrt{2}} M_{\mathrm{NS}}^{\max } \quad R_{\text {mix }}(M)=\frac{1}{\sqrt{2}} R_{\mathrm{NS}}(M)$

Neutron Star transformation

Mirror Matter: some physical and astrophysical implications

Zurab Berezhiani

Summary
Introduction: Dark Matter from a Parallel World

Chapter I:
Neutrino - mirror neutrino mixings

Chapter II:
neutron - mirror neutron mixing

Chapter IV: $n-n^{\prime}$ and Neutron Stars

$$
\frac{d N_{1}(t)}{d t}=-\Gamma N_{1} \quad \frac{d N_{2}(t)}{d t}=\Gamma N_{1}
$$

Initial state $N_{1}=N_{0}, N_{2}=0$

$$
N_{1}+N_{2}=\text { Const. }
$$

final state $N_{1}=N_{2}=N_{0} / 2$

Hybrid stars: in quark matter (color-superconducting phase) transition is not energetically farorable. But in neutron liquid shell it can occur and create the M matter core in the HS interior.

Neutron Stars: observational $M-R$

Mirror Matter: some physical and astrophysical implications

Zurab Berezhiani

Summary

Introduction: Dark Matter from a Parallel World

Chapter I: Neutrino - mirror neutrino mixings

Chapter It: neutron - mirror neutron mixing

Chapter IV: $n-n^{\prime}$ and Neutron Stars

Figure 4
Radius (km)

The combined constraints at the 68% confidence level over the neutron star mass and radius obtained from (Left) all neutron stars in low-mass X-ray binaries during quiescence (Right) all neutron stars with thermonuclear bursts. The light grey lines show mass-relations corresponding to a few representative equations of state (see Section 4.1 and Fig. 7 for detailed descriptions.)

Neutron Stars Evolution to mixed star

Mirror Matter: some physical and astrophysical implications

Zurab Berezhiani

Summary

Introduction:
Dark Matter from a Parailel World

Chapter I:

Neutrino - mirror

 neutrino mixingsChapter II:
neutron - mirror neutron mixing

Chapter IV:
$n-n^{\prime}$ and
Neutron Stars

Neutron Stars: mass distribution

Mirror Matter: some physical and astrophysical implications

Zurab Berezhiani

Summary
Introduction: Dark Matter from a Parallel World

Chapter !:

Neutrino - mirror

 neutrino mixingsChapter II: neutron - mirror neutron mixing

Chapter IV: $n-n^{\prime}$ and Neutron Stars

Neutron Star Mergers

Mirror Matter: some physical and astrophysical implications

Zurab Berezhiani

Summary
Introduction: Dark Matter from a Parallel World

Chapter I: Neutrino - mirror neutrino mixings

Chapter II: neutron - mirror neutron mixing

NS-NS merger and kilonova (GW170817 ?)
r-processes can give heavy *trans-Iron* elements
Mirror NS-NS merger is invisible (GW190425 ? $M_{\text {tot }}=3.4 M_{\odot}$)
But not completely ... if during the evolution they developed small core of normal matter or antimatter (depends on the mirror BA sign)

- their mergers can be origin of antinuclei for AMS-2

Antimatter Cores in Mirror Neutron stars

Mirror Matter: some physical and astrophysical implications

FIG. 1. Positions and energy flux in the $100 \mathrm{MeV}-100 \mathrm{GeV}$ range of antistar candidates selected in 4 FGL-DR2. Galactic coordinates. The background image shows the Fermi 5 -year all-sky photon counts above 1 GeV (image credit: NASA/DOE/Fermi LAT Collaboration).
Antimatter production rate: $\dot{N}_{\bar{b}}=\frac{N_{0}}{\tau_{\epsilon}} \simeq \epsilon_{15}^{2}\left(\frac{M}{M_{\odot}}\right)^{2 / 3} \times 3 \cdot 10^{34} \mathrm{~s}^{-1}$ ISM accretion rate: $\dot{N}_{b} \simeq \frac{(2 G M)^{2} n_{\text {is }}}{v^{3}} \simeq \frac{10^{32}}{v_{100}^{3}} \times\left(\frac{n_{\text {is }}}{1 / \mathrm{cm}^{3}}\right)\left(\frac{M}{M_{\odot}}\right)^{2} \mathrm{~s}^{-1}$ Annihilation γ-flux from the mirror NS as seen at the Earth: $J \simeq \frac{10^{-12}}{v_{100}^{3}}\left(\frac{n_{\mathrm{is}}}{1 / \mathrm{cm}^{3}}\right)\left(\frac{M}{1.5 M_{\odot}}\right)^{2}\left(\frac{50 \mathrm{pc}}{d}\right)^{2} \frac{\mathrm{erg}}{\mathrm{cm}^{2} \mathrm{~s}} \quad d$-distance to source
Alternative: Antistars - Dolgov \& Co. but some difference:

- the surface redshift s expected $\sim 15 \div 30 \%$ for the NS
- which should be absent for antistars (weak gravity)

