

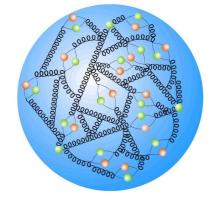
Scaling dimensions of fixed charge operators

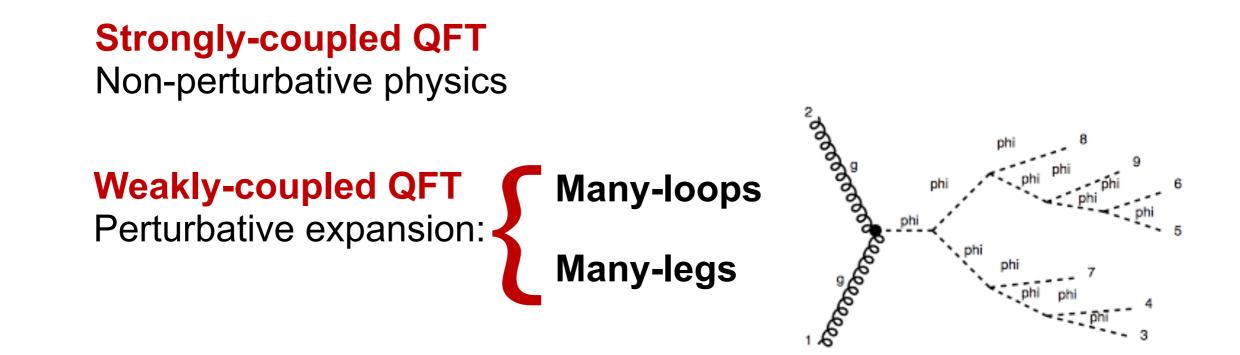
Oleg Antipin

Portoroz 2021

Portoroz - September 24, 2021

Towards Solving QFT



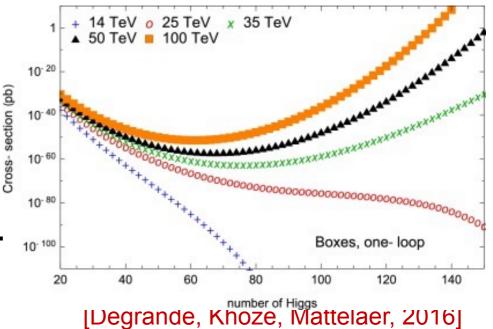


Rapid growth of the number of Feynman diagrams, with the number of loops/ external legs

The perturbative expansion diverges factorially.

Possible violation of perturbative unitarity in SM [§] multi-boson production processes at E≈100 TeV.

Semiclassical approach is useful



Perturbative loop expansion: semiclassical approach Consider the two-point function in the U(1) complex scalar model

$$S = \int d^4x \, \left[\partial \bar{\phi} \partial \phi + \frac{\lambda_0}{4} \left(\bar{\phi} \phi \right)^2 \right]$$

Rescale the field as $\phi \rightarrow \phi/\sqrt{\lambda_0}$:

$$\langle \bar{\phi}(x_f)\phi(x_i)\rangle \equiv \frac{\int D\phi D\bar{\phi}\,\bar{\phi}(x_f)\phi(x_i)e^{-S}}{\int D\phi D\bar{\phi}\,e^{-S}} = \frac{1}{\lambda_0} \frac{\int D\phi D\bar{\phi}\,\bar{\phi}(x_f)\phi(x_i)e^{-\frac{S}{\lambda_0}}}{\int D\phi D\bar{\phi}\,e^{-\frac{S}{\lambda_0}}}$$

Ordinary loop expansion with λ_0 the loop counting parameter. For $\lambda_0 \ll 1$ the path integral is dominated by the extrema of S.

Evaluate via a saddle point expansion by expanding the action around the stationary configuration $\phi_0 = 0$

$$S = S(\phi_0) + \frac{1}{2}(\phi - \phi_0)^2 S''(\phi_0) + \dots$$

 ϕ_0 is the solution of the classical EOM

Large charge expansion: Semiclassical approach

```
Rattazzi et al '19
```

The operator $\phi(\bar{\phi})$ carries U(1) charge +1 (-1).

Then $\phi^n(\bar{\phi}^n)$ carries U(1) charge +n(-n)

Consider the two-point function $\langle \bar{\phi}^n \phi^n \rangle$

$$\langle \bar{\phi}^{n}(x_{f})\phi^{n}(x_{i})\rangle \equiv \frac{1}{\lambda_{0}^{n}} \frac{\int D\phi D\bar{\phi} \,\bar{\phi}^{n}(x_{f})\phi^{n}(x_{i})e^{-\frac{S}{\lambda_{0}}}}{\int D\phi D\bar{\phi} \,e^{-\frac{S}{\lambda_{0}}}}$$

 ϕ^n and $\overline{\phi}^n$ can be brought up in the exponent, obtaining $\phi \to \phi \sqrt{Q}$

$$\lambda_0^n \langle \bar{\phi}^n(x_f) \phi^n(x_i) \rangle = \frac{\int D\phi D\bar{\phi} \ e^{-\frac{1}{\lambda_0} \left[\int \partial \bar{\phi} \partial \phi + \frac{1}{4} \left(\bar{\phi} \phi \right)^2 - \lambda_0 n \left(\ln \bar{\phi}(x_f) + \ln \phi(x_i) \right) \right]}{\int D\phi D\bar{\phi} \ e^{-\frac{1}{\lambda_0} \left[\int \partial \bar{\phi} \partial \phi + \frac{1}{4} \left(\bar{\phi} \phi \right)^2 \right]}}$$

n counts number of the external legs and 1/n is our expansion parameter.

Goal to compute:

$$\Delta_{\phi^n} = n(d/2 - 1) + \gamma_{\phi_n}(\lambda n)$$

Large charge expansion: Semiclassical approach

$$\lambda_0^n \langle \bar{\phi}^n(x_f) \phi^n(x_i) \rangle = \frac{\int D\phi D\bar{\phi} \ e^{-\frac{1}{\lambda_0} \left[\int \partial \bar{\phi} \partial \phi + \frac{1}{4} \left(\bar{\phi} \phi \right)^2 - \lambda_0 n \left(\ln \bar{\phi}(x_f) + \ln \phi(x_i) \right) \right]}{\int D\phi D\bar{\phi} \ e^{-\frac{1}{\lambda_0} \left[\int \partial \bar{\phi} \partial \phi + \frac{1}{4} \left(\bar{\phi} \phi \right)^2 \right]}}$$

The dependence on λ_0 and *n* shows that we can perform the path integral via a saddle point expansion around the stationary points of

$$S_{eff} \equiv \int d^d x [\partial \bar{\phi} \partial \phi + \frac{1}{4} (\bar{\phi} \phi)^2] - n \lambda_0 \left(\log \bar{\phi}(x_f) + \log \phi(x_i) \right).$$

in the limit of small λ_0 , while keeping $\lambda_0 n$ fixed. The result is organized as a 't Hooft expansion in coupling λn . The conformal dimension of ϕ^n takes the form

$$\Delta_{\phi^n} = \sum_{k=-1} \frac{1}{n^k} \Delta_k(\lambda n)$$

where Δ_k is the (k + 1)-loop correction in the saddle point expansion.

200

Reorganizing perturbative expansion

For a well-defined limit need to introduce 't Hooft coupling ${\cal A}$

- Large- N_c : Planar limit : $A_c \equiv g^2 N_c = fixed$
- Large- N_f : Bubble diagrams : $A_f \equiv g^2 N_f = fixed$
- Large-charge expansion : $A_Q \equiv gQ = fixed$ this talk

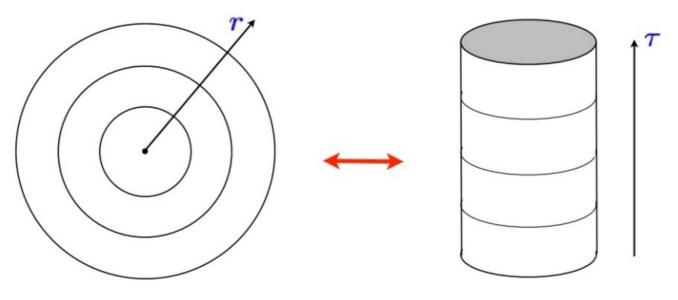
Then we have

$$observable \sim \sum_{l=loops} g' P_l(N) = \sum_k \frac{1}{N^k} F_k(\mathcal{A})$$

 $N = \{N_c, N_f, Q\}$

Weyl map to the cylinder

$$\mathbb{R}^d \to \mathbb{R} \times S^{d-1}$$
$$r = Re^{\tau/R}$$



R is the radius of the sphere.

The eigenvalues of the dilation charge operator (the scaling dimensions) become the energy spectrum on the cylinder (eigenvalues of Hamiltonian).

$$\mathbf{E} = \mathbf{\Delta} / \mathbf{R}$$

State-operator correspondence: States and operators are in 1-to-1 correspondence.

Works at the conformal fixed point

Minimal scaling dimension

Conformal invariance: $\langle \bar{\phi}^n(x_f)\phi^n(x_i)\rangle_{flat} = \frac{1}{|x_f - x_i|^{2\Delta_{\phi^n}}}$

$$\langle \bar{\phi}^n(x_f)\phi^n(x_i)\rangle_{cylinder} = e^{-E_{\phi^n}(\tau_f-\tau_i)}$$

$$E_{\phi^n} = \Delta_{\phi^n} / R_{\rm s}$$

 By computing the ground state energy on the cylinder we compute the minimal scaling dimension operators carrying the charge Q

Effective action

We introduce polar coordinates for the field $\phi = \frac{\rho}{\sqrt{2}} e^{i\chi}$, $\bar{\phi} = \frac{\rho}{\sqrt{2}} e^{-i\chi}$

$$\langle \psi_n | e^{-HT} | \psi_n \rangle = \mathcal{Z}^{-1} \int_{\rho=f}^{\rho=f} D\rho D\chi e^{-S_{\text{eff}}}$$

$$S_{\text{eff}} = \int d\tau \int d\Omega \left[\frac{1}{2} (\partial \rho)^2 + \frac{1}{2} \rho^2 (\partial \chi)^2 + \frac{m^2}{2} \rho^2 + \frac{\lambda}{16} \rho^4 + i \frac{n}{R^{d-1}\Omega} \dot{\chi} \right].$$

- The term in red fixes the charge of initial and final states to n.
- A mass term appears m² = (^{d-2}/_{2R})², stemming from R the radius of the sphere.
- Ω is the solid angle in d 1 dimensions.

Leading order: $S = S(\phi_0) + \frac{1}{2}(\phi - \phi_0)^2 S''(\phi_0) + ...$

$$\phi = \frac{\rho}{\sqrt{2}} e^{i\chi} \qquad \qquad \bar{\phi} = \frac{\rho}{\sqrt{2}} e^{-i\chi}$$

The classical solution of the EOM with minimal energy is spatially homogeneous and reads

$$\rho = f = \text{const.}, \qquad \chi = -i\mu\tau$$

Superfluid phase with homogeneous charge density

where

$$(\mu^2 - m^2) = \frac{\lambda}{4}f^2$$
 EOM
 $\mu f^2 R^{d-1}\Omega_{d-1} = n \quad \left(\frac{n}{\text{vol.}} = \mu f^2\right)$ Noether charge

Action evaluated on this classical trajectory gives Δ_{-1} term in

$$\Delta_{\phi^n} = \sum_{k=-1} \frac{1}{n^k} \Delta_k(\lambda n)$$

Leading order: Δ_{-1}

 Δ_{-1} is given by the effective action evaluated on the classical trajectory at the fixed point

$$\frac{4\Delta_{-1}}{\lambda_* n} = \frac{3^{\frac{2}{3}} \left(x + \sqrt{-3 + x^2}\right)^{\frac{1}{3}}}{3^{\frac{1}{3}} + \left(x + \sqrt{-3 + x^2}\right)^{\frac{2}{3}}} + \frac{3^{\frac{1}{3}} \left(3^{\frac{1}{3}} + \left(x + \sqrt{-3 + x^2}\right)^{\frac{2}{3}}\right)}{\left(x + \sqrt{-3 + x^2}\right)^{\frac{1}{3}}}$$

where $x \equiv \frac{6\lambda_* n}{16\pi^2}$.

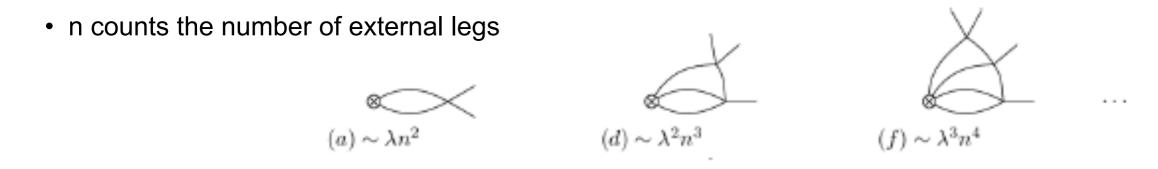
$$\frac{\Delta_{-1}}{\lambda_*} = \begin{cases} n \left[1 + \frac{1}{2} \left(\frac{\lambda_* n}{16\pi^2} \right) - \frac{1}{2} \left(\frac{\lambda_* n}{16\pi^2} \right)^2 + \mathcal{O}\left(\frac{(\lambda_* n)^3}{(4\pi)^6} \right) \right] & \lambda_* n \ll (4\pi)^2 \\ \frac{8\pi^2}{\lambda_*} \left[\frac{3}{4} \left(\frac{\lambda_* n}{8\pi^2} \right)^{4/3} + \frac{1}{2} \left(\frac{\lambda_* n}{8\pi^2} \right)^{2/3} + \mathcal{O}\left(1 \right) \right] & \lambda_* n \gg (4\pi)^2 \end{cases}$$

Quantum physics "classicalizes" in the presence of large quantum numbers.

Large charge expansion: U(1) complex scalar model For small $\lambda_* n$:

$$\frac{\Delta_{-1}}{\lambda_*} = n \left[1 + \frac{1}{2} \left(\frac{\lambda_* n}{16\pi^2} \right) - \frac{1}{2} \left(\frac{\lambda_* n}{16\pi^2} \right)^2 + \mathcal{O}\left(\frac{(\lambda_* n)^3}{(4\pi)^6} \right) \right]$$

result resums an infinite number of Feynman diagrams!



For large $\lambda_* n$:

$$\frac{\Delta_{-1}}{\lambda_*} = \frac{8\pi^2}{\lambda_*} \left[\frac{3}{4} \left(\frac{\lambda_* n}{8\pi^2} \right)^{4/3} + \frac{1}{2} \left(\frac{\lambda_* n}{8\pi^2} \right)^{2/3} + \mathcal{O}\left(1\right) \right]$$

This is large charge expansion. System in the superfluid phase

Next-to-leading order:
$$\Delta_0$$

 $\Delta_{\phi^n} = \sum_{k=-1} \frac{1}{n^k} \Delta_k(\lambda n) \qquad S = S(\phi_0) + \frac{1}{2} (\phi - \phi_0)^2 S''(\phi_0) + \dots$

 Δ_0 is given by the fluctuation determinant around the classical trajectory

$$\rho(x) = f + r(x), \qquad \chi(x) = -i\mu\tau + \frac{1}{f\sqrt{2}}\pi(x).$$

Goldstone boson of spontaneously broken U(1) and the radial mode

$$S^{(2)} = \int_{-T/2}^{T/2} d\tau \int d\Omega_{d-1} \left[\frac{1}{2} (\partial r)^2 + \frac{1}{2} (\partial \pi)^2 - 2i\mu r \partial_\tau \pi + (\mu^2 - m^2) r^2 \right]$$

$$\omega_{\pm}^{2}(\ell) = J_{\ell}^{2} + 3\mu^{2} - m^{2} \pm \sqrt{4J_{\ell}^{2}\mu^{2} + (3\mu^{2} - m^{2})^{2}}$$

Dispersion relations of the spectrum:

 ℓ labels the eigenvalues of the momentum which have degeneracy n_ℓ

Generalization: O(N) model

- O(2)=U(1) is the Abelian complex scalar model before
- O(N) scalar theory in d= 4-ε dimensions where it features an infrared Wilson-Fisher fixed point

$$\mathcal{S} = \int d^d x \left(\frac{(\partial \phi_i)^2}{2} + \frac{(4\pi)^2 g_0}{4!} (\phi_i \phi_i)^2 \right) \qquad g^*(\epsilon) = \frac{3\epsilon}{8+N} + \mathcal{O}\left(\epsilon^2\right)$$

 $\epsilon = 0$ and N = 4

Standard Model Higgs

Superfluid He⁴, Magnets, Superconductors, ...

 $\epsilon \rightarrow 1$

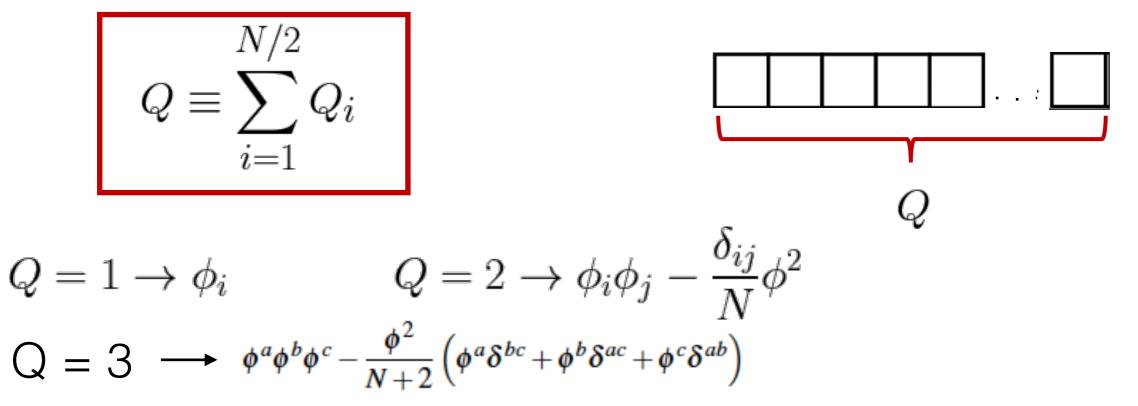
Phys.Rev.D 102, 045011.

• Consider even N: we can fix up to N/2 charges, which is the rank of the O(N) group

Scaling dimension

• We compute the scaling dimension $\Delta_{\vec{Q}}$ of the operators carrying the charges Q_i and having the minimal scaling dimension.

These operators have classical scaling dimension Q and transform in the Q-indices traceless symmetric O(N) representations where



These operators represent anisotropic perturbations in O(N)-invariant systems. $\Delta_{\vec{Q}}$ define a set of crossover (critical) exponents measuring the stability of the system (e.g. magnets) against anisotropic perturbations (e.g. crystal structure).

Boosting perturbation theory

By expanding the Δ_k 's in the limit of small 't Hooft coupling A=gQ, we obtain the conventional perturbative expansion Red terms: Δ_{-1} Blue terms: Δ_0

Feynman diagrams crosscheck: Jack and Jones '20 '21

$$\begin{split} &\Delta_Q = Q + \left(\frac{Q^2}{8+N} - \frac{(N+10)}{2(8+N)}Q\right)\epsilon \\ &- \left[\frac{2}{(8+N)^2}Q^3 + \frac{(N-22)(N+6)}{2(8+N)^3}Q^2 + \frac{184+N(14-3N)}{4(8+N)^3}Q\right]\epsilon^2 \\ &+ \left[\frac{8}{(8+N)^3}Q^4 + \frac{-456-64N+N^2+2(8+N)(14+N)\zeta(3)}{(8+N)^4}Q^3 - \frac{-31136-8272N-276N^2+56N^3+N^4+24(N+6)(N+8)(N+26)\zeta(3)}{4(N+8)^5}Q^2 + \frac{-65664-8064N+4912N^2+1116N^3+48N^4-N^5+64(N+8)(178+N(37+N))\zeta(3)}{16(N+8)^5}Q\right]\epsilon^3 \\ &+ \left[\frac{c_5Q^5+c_4Q^4+c_3Q^3+c_2Q^2+c_1Q}{6}\right]\epsilon^4 + \left[\frac{c_6Q^6+c_5Q^5+c_4Q^4+c_3Q^3+c_2Q^2+c_1Q}{6}\right]\epsilon^5 + \dots \end{split}$$

We are computing RG functions (anomalous dimensions) of the infinite tower of Higgs-like operators. For N=4 and Q=1 we have the SM Higgs field itself.

Large charge EFT

JHEP12(2015)071

In the large 't Hooft coupling limit we obtain the form predicted by the EFT approach

$$\begin{aligned} \Delta_{\phi_Q} &= Q^{\frac{d}{d-1}} \left[\alpha_1 + \alpha_2 Q^{\frac{-2}{d-1}} + \alpha_3 \bar{Q}^{\frac{-4}{d-1}} + \dots \right] + Q^0 \left[\beta_0 + \beta_1 Q^{\frac{-2}{d-1}} + \dots \right] + \dots \\ \mathsf{d} &= \mathsf{4}: \quad \frac{3}{4} \left(\frac{\lambda_* n}{8\pi^2} \right)^{4/3} + \dots \end{aligned}$$

First-principle computation of α_1

For $\epsilon = 1$

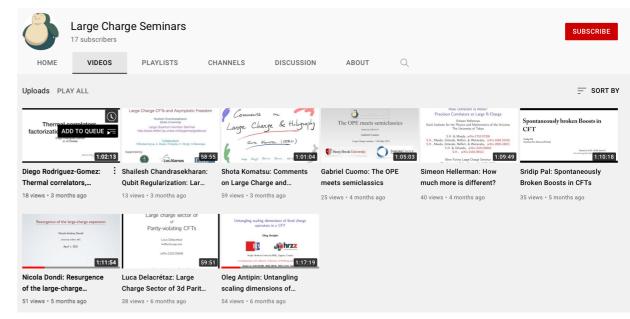
	ϵ -expansion	1/N-expansion	Monte Carlo
N=2	0.424	0.471	0.337
N=3	0.39	0.39	0.32
N=4	0.368	0.333	0.301
N = 5	0.35	0.30	0.29

Conclusions

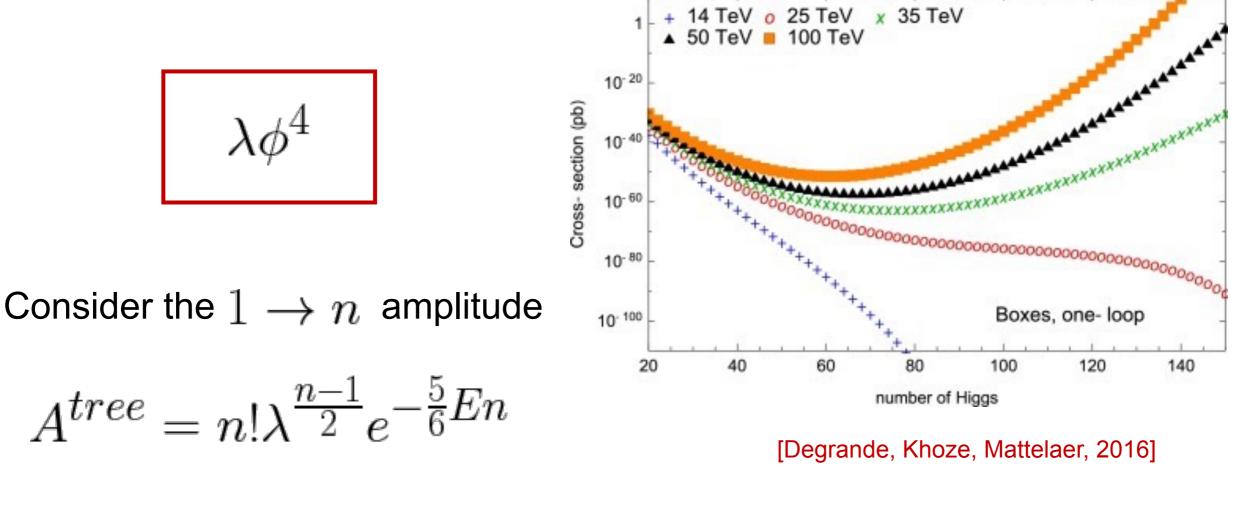
- Improve and check diagrammatic calculations.
- Access the large order behaviour of perturbation theory (resurgence)
- Applications: Higgsplosion, different global symmetries, AdS/CFT,

CFT data, condensed matter systems, ... ("Large charge seminars"

series on youtube)



Applications: Multi-boson production



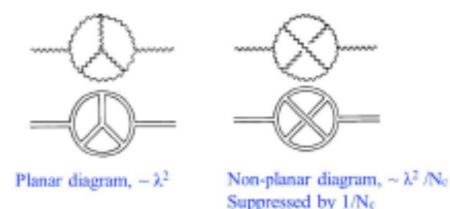
$$A = A^{tree} e^{B\lambda n}$$

$$\sigma(1 \to n) = e^{F(\lambda n, E)}$$

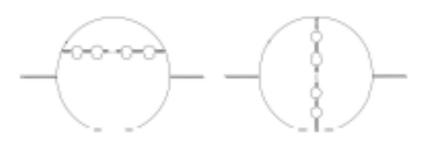
Examples

Perturbative loop expansion in small coupling (Feynman diagrams)

Large- N_c in $SU(N_c)$ gauge theories: Planar limit $(1/N_c \text{ expansion})$



Large-N_f (topic of this talk) : Bubble diagrams (1/N_f expansion)



Large-charge expansion (topic of this talk) (1/Q expansion)

