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* Semiclassical approach is useful Degrande, Khoze, Mattelaer, 2016]



Perturbative loop expansion: semiclassical approach
Consider the two-point function in the U(1) complex scalar model

= [ d [9396 + 32 (36)°]
Rescale the field as ¢ — ¢/v/Ao:
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Ordinary loop expansion with \p the loop counting parameter. For
Ao < 1 the path integral is dominated by the extrema of S.

Evaluate via a saddle point expansion by expanding the action around the
stationary configuration ¢ = 0

S = S(¢0) + 5(6 — 40)*S"(do) + -

& 1s the solution of the classical EOM



Large charge expansion: Semiclassical approach

Rattazzi et al ‘19

The operator ¢ (¢) carries U(1) charge +1 (—1).

Then ¢" (¢") carries U(1) charge +n (—n)

Consider the two-point function (¢"¢")

1 [ DD &"(x)¢"(x;)e o

A [D¢DGe %o

¢" and @" can be brought up in the exponent, obtaining ¢ — ¢/Q

(6" (x¢)8" (x:)) =

- D&D b —x%[f 6$3¢+%($¢)2_,\0n(|nq's(x,)+ln¢>(x,))]
M@0 = L2022
[ DoDF e % | 2796+1(3) ]

* n counts number of the external legs and 1/n is our expansion parameter.



Goal to compute: Agrn =n(d/2 —1) + v4 (An)

Large charge expansion: Semiclassical approach

- DéDo _'x%[f3‘$3¢+%(<5¢)2—)\0n(|nq’ﬁ(xr)+ln¢(x,))]
3 @) = L2220 S
[ DoDF e % L 2726+ (3) ]

The dependence on A\g and n shows that we can perform the path
integral via a saddle point expansion around the stationary points of

Seff = / dx[0¢0¢ + %(%cb)?] — n)o (log &(xr) + log &(x;)) -

in the limit of small A\g, while keeping Agn fixed.

The result is organized as a 't Hooft expansion in coupling An.
The conformal dimension of ¢" takes the form

1
k=—1
where A, is the (k + 1)-loop correction in the saddle point expansion.



Reorganizing perturbative expansion

For a well-defined limit need to introduce 't Hooft coupling A

m Large-N_ : Planar limit : A, = g?N_ = fixed
m Large-Nf : Bubble diagrams : Ar = g?Nf = fixed
m Large-charge expansion : Ag = gQ = fixed this talk

Then we have

observable ~ Z g'Pi(N) = Z %Fk (A)
k

I=loops

N = {Nc, Nf, Q}



Weyl map to the cylinder

:

d d—1
R*™ — RxS S
r = Re™/ R R
L
R is the radius of the sphere. S

The eigenvalues of the dilation charge operator (the scaling dimensions)
become the energy spectrum on the cylinder (eigenvalues of Hamiltonian).

E=A/R

State-operator correspondence:
States and operators are in 1-to-1 correspondence.

Works at the conformal fixed point



Minimal scaling dimension

1

Ty — T

Conformal invariance: (@™ (xf)¢™ (x:)) fiat = 28,

T; — — OO

(™ (2 1)™(2:) ) eqtinder = €~ Eom (71T

E¢,n — AOH/R

* By computing the ground state energy on the cylinder we compute the
minimal scaling dimension operators carrying the charge Q



Effective action

We introduce polar coordinates for the field ¢ = 5 e’X, ¢ = 5 e~ X

p=f

(n| € HT [tp) = Z72 DpDxe =S

p=f

m? A n

e”—/dT/dQ[ (6p) + POX + 30"+ 16"+ g X

m The term in red fixes the charge of initial and final states to n.

d—2

<5 )2, stemming from R the radius of

m A mass term appears m* = (%22
the sphere.

m (2 is the solid angle in d — 1 dimensions.



Leading order: S = S(¢o) + 5(d — ¢0)?S" (o) + ...

P R I
— I piX — I e—iX
¢ /s ¢
The classical solution of the EOM with minimal energy is spatially
homogeneous and reads

p = f — const. : X = _iI”' Superfluid phase with |
homogeneous charge density
where
2 2 A 2
(u* —m?) = Zf EOM
n
nf?R1Q, 1 =n (H = pfz) Noether charge

Action evaluated on this classical trajectory gives A_; term in

1

k=—1



Leading order: A_4

A _ is given by the effective action evaluated on the classical
trajectory at the fixed point

2
33 (3%! + (x+ \/—3+x2)3>

1
i, F(x+v3Ea)
A.n M

2 1
3%+(x+\/—3+x2)3 (x+\/—3+x2)g
— 6A.n
where x = 3257.
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Quantum physics “classicalizes” in the presence of large quantum numbers.



Large charge expansion: U(1) complex scalar model

For small \.n:

o

A_, 1 /An\ 1/[An)\’ (A.n)3
— 1 — M O
VL R (16«2) > (16«2) N ((47r)6
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result resums an infinite number of Feynman diagrams!

* n counts the number of external legs l{ ;g

(@) ~ An? (d) ~ \n? (f) ~ A*nt

For large A n:

—

Aox_ 872 (3 (An\*? 1A\
A, A |4\8r2 T\ 82 +0(1)

This i1s large charge expansion. System in the superfluid phase



Next- to leading order: A,

2 : 1 | \
A¢n = n—Ak()\n) S = S(()()) ( hH — ()()))SH(_'Q{)()) + ...
k=—1 .

A, is given by the fluctuation determinant around the classical trajectory
1 Goldstone boson of

p(z) = f +r(z), X(z) = —ipt m(z) spontaneously broken U(1)
V2 and the radial mode

T/2
SO = [ dr [d0us |50+ 50m)? = 2iurorm + (uF — m?)?
e 2 2

Dispersion relations

wi(0) = J? +3u® —m? £ \/4Jgﬂ2 + (3u2 — m?)?
of the spectrum:

J=¢(+d—2)/R? R
L _(20+d-2T((+d-2) AO D) Z ng (w4 (€) + w_(¢)]
T T+ -1 /—0

¢ labels the eigenvalues of the momentum which have degeneracy 7y



Generalization: O(N) model

« O(2)=U(1) is the Abelian complex scalar model before PhysRev.D 102, 045011,

* O(N) scalar theory in d= 4-¢ dimensions where it features an infrared
Wilson-Fisher fixed point

a y, 4 2 ‘ 3e ;
S = / e [ L ?’Z‘) D007 00 = -0 (<)

2 4] S+ N
e=0and N =4 e — 1
Standard Model Higgs Superfluid He*, Magnets,

Superconductors, ..




Scaling dimension

* We compute the scaling dimension AQ of the operators carrying
the charges Q; and having the minimal scaling dimension.

These operators have classical scaling dimension Q and transform
In the Q-indices traceless symmetric O(N) representations where

|
4

a (P’) a S bc b Sac cSab
Q =3 — 9990 — 37— (078" +"5% +¢° )

These operators represent anisotropic perturbations in O(N)-invariant
systems. A@' define a set of crossover (critical) exponents measuring

the stability of the system (e.g. magnets) against anisotropic
perturbations (e.g. crystal structure).



Boosting perturbation theory

By expanding the A.‘s in the limit of small Red terms: A ;

t Hooft coupling A=gQ, we obtain the
conventional perturbative expansion

Feynman diagrams crosscheck: g
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Blue terms: A,

2

We are computing RG functions (anomalous dimensions) of the infinite tower
of Higgs-like operators. For N=4 and Q=1 we have the SM Higgs field itself.



Large Charge EI:T JHEP12(2015)071

In the large ‘t Hooft coupling limit we obtain the form predicted by the EFT approach

)

Ay, = QT [al + ()T + (1'3(.2"'% - } +(~?U [jn + 51QTT + .. } T ..

First-principle computation of a,

For € = 1
e-expansion 1/N-expansion Monte Carlo
N =2 0.424 0.471 0.337
N =3 0.39 0.39 0.32
N =4 0.308 0.333 0.301
N =5 0.35 0.30 0.29




Conclusions

® |mprove and check diagrammatic calculations.

® Access the large order behaviour of perturbation theory (resurgence)

® Applications: Higgsplosion, different global symmetries, AdS/CFT,

CFT data, condensed matter systems, ... (" ‘Large charge seminars”™

series on youtube)

Thank you!






Applications: Multi-boson production
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Examples

m Perturbative loop expansion in small coupling (Feynman diagrams)

m Large-N. in SU(N,) gauge theories: Planar limit (1/N, expansion)

/“‘g\u
~L- -

-4

Non-planar diagram, ~ A° /N,
Suppressed by 1/N,

m Large-Nr (topic of this talk) : Bubble diagrams (1/Nf expansion)

m Large-charge expansion (topic of this talk) (1/Q expansion)

- - ¢

(a) ~ An?® (d) ~ A%n? (f) ~ A*nt



