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[ defuinttion (UUikipedia]

Machine learning (ML) 1s the scientific study of algorithms and
statistical models that computer systems use to progressively
improve their performance on a specific task. Machine learning
algorithms build a mathematical model of sample data, known as
"training data’, 1n order to make predictions or decisions
without being explicitly programmed to perform the task.

[ 1L.OSS
3 TUNCTIONS

the loss, 1.e. the
error made 1n
prediction

TRAINING DATA

.
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PREDICTION

The name of the game 1is
O finding the algorithm
TR setting (its parameter

: values) that minimise
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@) Many flavors of Mu

® Different ML Hidden layer
algorithms had their
moment of glory

xi >cl xi <cl

»_\
xj>c2:;x,<c2 X} >c3| |xj<c3
i U

® Alternatives emerged \
1n the 90°’s

® (Shallow) neural
networks dominated
in the 80’s

® Support vector
machine

® Boosting of " L |
decision trees 2 T X HerC e



https://link.springer.com/article/10.1007/BF00994018
https://link.springer.com/article/10.1007/BF00994018
https://statistics.berkeley.edu/sites/default/files/tech-reports/486.pdf

[ two-steps process

® Learning: train the algorithm on a Supervised learning
provided dataset

® Supervised: the dataset X comes with %
the right answer y (right class 1n a X X
classification problem). The - X
algorithm learns the function OOO

® Unsupervised: the dataset X comes e
with no label. The algorithm learns
structures 1n the data (e.g., alike

events 1n a clustering algorithm) Unsupervised learning
® Reinforcement: learn a series of [ clusstors
actions and develop a decision- O
. . O O
taking algorithm, based on some O
action/reward model X2 35
_ @ 2, O
® Inference: once trained, the model can O OOO
be applied to other datasets | | European
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Bl Machine Learning in HEP

@ Classification:

S = ATLAS ¢ Data -
_ _ _ _ = 700 -, 1s=8TeV, 203 fb ™ E
® given an image, 1identify the 5 ooy T morers
. L 500 7z uncertainty 3
object represented 400 E
300 —g
® in particle physics, given a f$ . .
particle shower, i1dentify the 5 128
particle kind . ﬁ
g 0 0.1 OB2DT R03 04
esponse
® Regression: < 10° 218
S CMS Barrel ;
. . . % 104 Simulation H—> vy, p.> o5 GeV <
® given a set of quantities X, I oo s E
. L1 =
learn some function f(x) =
102 . .-
® 1in particle physics, given a 0 tf ni*,
particle shower, learn 1ts "EETL 5iNST 10 PO8O10 2015
energy 006 08 1 12 14 16 2 el‘ C|comci
7 Etrue/ Eraw R




(Machine Learning \In HEP

@ Classification:

® identify a particle & reject fakes 108CMS Preliminary 35.9 o' (13 TeV)
§ § | |+ lData | | | | | | §

’ ; ; ’ < - Simulation: 7

® 1dentify signal events & reject background 2 Hry (. = 125 GeV)x10° -
Q 10 = I total background+stat.uncert. =

LLI - _

® Regression:

® Measure energy of a particle

—h
o
o1
T

@ Up to now, these task mainly solved with BDTs : s -.-."-.f--w};l
® moved to Deep Learning for analysis-specific - -
tasks e -

® same will happen for centralised tasks L

(eventually) 1 -08 06 04 02 0 02 04 06 08 1
BDT score of the photon ID

Centralised task (in online or offline reconstruction) IR | European
Analysis-specific task (by users on local computing e:rc et
infrastructures) = R




@l Machine Learning in HEP

® Long tradition

é —— BDT y classifier
® Neural networks used at g / |
LEP and the Tevatron 2 ,.

® Boosted Decision Trees
1ntroduced by MiniNooNE
and heavy used at BaBar 110 115 120 125 130 135 140 145 150

Higgs Mass (GeV)

—y
o

(00
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—— BDT v classifier

® BDTs ported to LHC and
very useful on Higgs
discovery

Rule-based y selector

® Now Deep Learning 1s
opening up many new _
possibilities S e e ke @K C| cowen

= Higgs Mass (GeV

Dataset increase factor for 5¢ discovery
~
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Typlcal Qroblems

@ Classification: associate a
given element of a dataset to
one of N exclusive classes

® Regression: determine a
continuous value y from a set
of Tnputs X

® Clustering: group elements of
a dataset because of their
similarity according to some
learned metric

@ Dimensionality reduction:
find the k quantities of the
N 1nputs (with k<N) that
1ncorporate the relevant
information (e.g., principal
component analysis)
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UNSUPERVISED MACHINE LEARNING — SUPERVISED MACRINE (EARNING
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A simple example: S vs B selection

® Define a selection to separate the signal from the
background

With rectangular X1 With a linear X With a non linear X1
cuts discrimininat discrimininat

12
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A simple example: S vs B selection

® Define a selection to separate the signal from the
background

With a linear
discrimininat

® Define a decision boundary which gives optimal

(Signed) distance between x and the boundary plane

=



Loglstic F%egressu::n

® Give as 1nput pairs of 1nputs and h>o @l
OUtpUtS h(x)=0 o
n h(x) <o R 1
.xl’E R yi= {0’1} o.o. °
® Model the probability of x to be signal W’ . ’,"h<x>
(y=1) as 1 . / Twl
=1|x)=— o .
p(y = 1]x) p— - _
Twll

® The larger (and positive) the distance
the closer p to 1

® The larger (and negative) the distance,
the closer p to 0

® We can choose the plane such that we
maximise the probability of the signal
and minimise that of the background

14



Bernoullls problem

® Bernoulli’s problem:
probability of a process that

can give 1 or O g — lexl(l _pi)l—xi

® The corresponding likelihood
1s (as usual) the product of
the probabilities across the
events

® Maximizing the li1keli1hood
corresponds to minimizing the
- loglL

—log &L = — log[Hpixi(l — p)' 7]

®@ Minimizing the -loglL
corresponds to minimizing the
binary cross entropy

— 2 [xl- logp; + (1 —x)log(1 — p;

® How do we minimise 1t?

15



Gradient Descent

® Gradient Descent 1s a popular Wa A
minimisation algorithm

® Start from a random point

® Compute the gradient wrt the model 6‘L(W)
parameters
OwW

® Make a step of size n (the learning
rate) towards the gradient direction

® Update the parameters of the mode

accordingly
® Effective, but computationally / OL(wW)
expensive (gradient over entire W =W —1 OwW

dataset) ]

16




Stochastic Gradient Descent

® Make the minimisation more
computationally efficient

® Compute gradient on a small batch
of events (faster &
parallelizable, but noisy)

® Average over the batches to
reduce noise

® BEWARE: better scalability come
at the cost of (sometimes) not
converging

® Many recipes exist to help
convergence, by playing with the
algorithm setup (e.g., adapting
learning rate)

17

sgd
momentum |
nag

adagrad
adadelta
rmsprop
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Example: regression & (MSE

® Given a set of points, find the
curve that goes through them

® Can be a l1near model

y. =ax;+ b

® Can be a linear function of
non-1linear kernel of the Xx.
For 1nstance, a polynomial
basis

yi==a1ﬂninykl>

_ (g | European
New feature, “engineered” from X are de
i ineel) ounci

the input features
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Example: regression & (MSE

® Take some model

(e.g., linear) h(xi‘a, h) = axi'l'b

® Consider the case
of a Gaussian y
dispersion of y | e
around the expected 'y, = h(x;) + e; p(ei) = —— € 2o

value \/ 270

® Assume that the
resolution o 1s 1 2

1 (vj = h(x)?
fi1xed F = e 22 = e 252
H \/ 270 H \/ 270

® Write down the
l1keli1hood

s s ...:..o European
R LI Research
| -:::'.'.erc Council
. _'.o.o:.:.....: .,
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Example: regression & (MSE

® The maximisation of this likelihood corresponds to the
minimisation of the mean square error (MSE)

1 (= hop))?
e

252 ]]

argmin[—2log £| = argmin[ — 2 log[H

2o

h(x)’
2

O

— argmin[z Oi = ] = argmin[z (v; — h(xl-))z] = MSE

® MSE 1s the most popular loss function when dealing with
continuous outputs. We will use 1t a few times 1n the next days

® BE AWARE OF THE UNDERLYING ASSUMPTION: if you are using MSE,
you are 1mplicitly assuming that your y are Gaussian
distributed, with fixed RMS

® What 1f the RMS is not a constant? erc e

=0



https://arxiv.org/pdf/2010.05531.pdf

@ Supervised Learning 1N a nutshell

TRAINING DATA

@A training dataset x
@ A target y
® A model to go from x to y

® A loss function quantifying how wrong the model 1s

@A minimisation algorithm to find the model h that corresponds. to

. AT European

the minimal loss rare e
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Tralinng N practice

® Spli1t your sample 1n three:

® Training: the biggest chunk, where you learn from

@ Validation: an auxiliary dataset to verify
generalization and prevent overtraining

® Test: the dataset for the final 1ndependent check

2
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Validation
Training

/)]
® Train across multiple epochs _§

@ 1 epoch = going once through
the full dataset

® Use small batches (64, 128, etc)
® Check your training history

® on the training data (training
loss)

® and the validation ones
(validation loss)

® Use an object-i ve a ]gor--,' thm to EARLY TOPPING: stop the train if the

s ( T t . ) validation loss didn’t change more than 6 i
>top (€.g., edlrly Stopping in the last n epochs (patience) erc

=3




LUhat can go wrong: underfitting

Degree 1 Degree 4

@ I your model has — Model — Model
——  True function ——  True function
not enough o ees Samples :
flexibi1lity, 1t will
not be able to >
describe the data

e*e Samples

® The training and
validation loss will
be close, but their
value will not
decrease

Loss

® The model 1s said to Validation
be underfitting, or ~— Training
being biased *

=24
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LUhat can go wrong: overfitting

® Your model can learn too much Degree 4 Degree 15

of your training dataset — Model

——  True function
e*e Samples

—  Model
——  True function
e e Samples

@ e.g., 1ts statistical
fluctuations g

® Such an overfitted model :
would not generalise

® So, 1ts description of the
validation dataset will be
bad (1.e., the mode doesn’t
generalise)

Loss

® This 1s typically highlighted
by a divergence of the
training and validation loss

=5

Validation
Training




The Blias vs VVariance tradeoff

Degree 15

@ A model would underfit if too o Model
S-imp7e: -it W-i77 I’IO'L' be ab7e 'L'O i *e Samples
model the mean value

@ A model would overfit 1f too
complex: 1t will reproduce the
mean value, but 1t wi1ll x
underestimate the variance of the Degree 1

da ta —  Model

——  True function
e®e Samples

® The generalization error 1s the
error made going from the
training sample to another sample
(e.g., the test sample)

26
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The Blias vs VVariance tradeoff

® Generalization error can be written as the sum of three
terms:

® The 1ntrinsic statistical noise 1n the data
® the bias wrt the mean
® the variance of the prediction around the mean

Noise Bias Variance
Squared

=2/



The Blias vs VVariance tradeoff

Total Error

Optimum Model Complexily

Variance

Error

Model Complexity

=8



Reqularization

® Model complexity can be “optimized” —_— p=2 —_— p=1
when minimizing the loss 4 4

@ A modified loss 1s 1ntroduced, with

>
a penalty term attache to each model ®© 2 2
parameter Q \/
L.,=L+ Q(w) : o

-2 0 2 -2 0 2
® For 1nstance, Lp regularisation 0 0
— p=0.5 —— p=0
— P — P 4 4
L,=|w|" = Z,\W,-\
I
® The minimisation 1s a tradeoff between: 2 2

® pushing down the 1st term by taking ; \/ : ‘

advantage of the parameters

® pushing down the 2nd term by L | European
switching off the parameters HIGTC| coman
29 https://openreview.net/pdf?2id=H1Y8hhg0Ob %



https://openreview.net/pdf?id=H1Y8hhg0b
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D Neural Networks in a nutshell

A mostly complete chart of

O Backfed Input Cell N e u ra l N EtWO rks Deep Feed Forward (DFF)

~ Input Cell

©2016 Fjodor van Veen - asimovinstitute.org

A Noisy Inpat Cel Perceptran (P) Feed Forward (FF)  Radial Basis Network (RBF)

. G Gy S8, e
® NINs are (as of today) the best ML solution on the g & ¢ ~

. Qutput Cell

Recurrent Neural Network (RNN) Long / Short Term Memory (LSTM)  Gated Recurrent Unit (GRU)
o () () . () () . () ()

i (n\.ln\'l - ln\.ln"/ I\

I I I a r I(et . Match Input Output Cell - "’\"',\\" - "’\""\"' A%
AR e e AR
_ ‘ll"\ll"‘ ~ \‘."“."\ o \‘."\‘."\

. Recurrent Cell

. Memory Cell Auto Encoder (AE) Variational AE (VAE) Denoising AE (DAE) Sparse AE (SAE)

. Different Memory Cell

® NNs are usually structured in nodes connected by ¢ .

o
- .\')’l “\’I‘f
: 10:{‘ 400

\Yem Yl
p— - “\'Q "l‘\"
QO Convolution or Pool AANIEOAN

g Markov Chain (MC) Hopfield Network (HN) Boltzmann Machine (BM) Restricted BM (RBM) Deep Belief Network (DBN)
o - o - - - ‘\ . - s o

® cach node performs a math operation on the

Deep Convolutional Network (DCN) Deconvolutional Network (DN) Deep Convolutional Inverse Graphics Netwaork (DCIGN)
. - - . - - ~
INput X 0 X

P 53 AYAY S S

e UMD S0 S o

X S e o <

. QL ».

X o7 X

® edges determine the flow of neuron’s inputs &

outputs @ | @

Deep Residual Network (DRN) Kohonen Network (KN)  Support Vector Machine (SYM)  Neural Turing Machine (NTM)

VaVaWaW
AW WA




Deep Neural MNetworks

Hidden layer 1  Hidden layer 2  Hidden layer 3
Input layer

® Deep neural networks are

l?. : -

h . h 1 . 7 }%‘:’:‘;" S §§§\$?: utput layer
those with >1 1nner layer S\te S A A
ERE B A0
® Thanks to GPUs, 1t 1S now e A,
: : Za e
possible to train them SN

’ A8

efficiently, which boosted
the revival of neural
networks 1n the years 2000

Large-scale Deep Unsupervised Learning using Graphics Processors

@ In addition, new
architectures emerged,

W h .I' C h b e t t e r, e X p 7 O _I' t t h e Computer Science Department, Stanford University, Stanford CA 94305 USA
new computing power

.. ;.. ...; European
% -'.".‘:'.." o Research
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http://www.machinelearning.org/archive/icml2009/papers/218.pdf

LUUhat 1Is DL used for

Image processing

text/sound processing

Everything is a Recommendation

NETFLIX  ~ . — -

l!ﬁ“

¥ g T

Over 75% of what
people watch
comes from our
recommendations

LPHAGO
‘00 08:32

LEE SEDOL

« 00:00:27

Recommendations
are driven by
Machine Learning

———— e ———
——

ﬁﬁﬂﬁl%nﬁ% 

. . NETFLIX i uropean
Reinforcement Learning Clustering are resere
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DL, HEP, and new opportuntties

DO~ 0
G - D

® Anomaly Detection to search | e
for new Physics -

GEANT

® Event Generation with
generative models

GAN

—_ 1 h%stT
O A-a
= 1 h*>t1v

Probability

® Adversarial training for
systematics e

® Reinforcement learning for
jet grooming

e use ep Q-Net
(s,a), rmining th
8 sy = o threshold on f(X)
= H /= A\ 1 3
. . . . =
@ o m/n i\i
g N\ $ I
EEN .DD (] B = ®o: 0 =
| . . .
o] H \= Y/1 !
g /1
il e
TR Europ

' -
S )
. =

Q" (s,a) = maxE[ry +yri1 + ...|s¢ = s,ap = a, 7 . .‘.‘:. .....
= . -o‘.......

« e an
L J L )
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https://arxiv.org/abs/1903.09644
https://arxiv.org/abs/1811.10276
https://arxiv.org/pdf/1611.01046.pdf
https://arxiv.org/pdf/1705.02355.pdf

Feed-Forward MNMls

® Feed-forward neural networks
have hierarchical structures:

® inputs enter from the left and
flow to the right

® no closed loops or circularities

® Deep neural networks are FF-NN
with more than one hidden layer

® Out of this “classic idea, new
architectures emerge, optimised
for computing vision, language
processing, etc

35

input layer

——

hidden layer 1 hidden layer 2 hidden layer 3

output layer
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The role of a network node

® Each input is multiplied by a weight

® [he weighted values are summed
® A bias is added

® [he result is passed to an
activation function

36

input layer

—

—

hidden layer 1 hidden layer 2 hidden layer 3

output layer
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The role of a network node

® Each input is multiplied by a weight

® The weighted values are summed

® A bias is added

® [he result is passed to an
activation function

3/

input layer

hidden layer 1 hidden layer 2 hidden layer 3

_——Fd-

—
——

output layer

ooooo




The role of s

® Each input is multiplied by a weight
® [he weighted values are summed

® A bias is added

® [he result is passed to an
activation function

38

network Nnode

input layer

hidden layer 1 hidden layer 2 hidden layer 3

_——Fd-

——

output layer

ooooo
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@’_ The role of a network nmnode

® Each input is multiplied by a weight
® [he weighted values are summed

. . input layer
® A bias is added o i

p—
p— T

hidden layer 1 hidden layer 2 hidden layer 3

output layer

® The result is passed to an
activation function

Activation Functions

Sigmoid Leaky RelLU ) -
O'(LU) _ 1-*_‘13_30 maX(O.lzc, 27)
5 0 To Er—y 10

tanh Maxout

tanh(x) e ° max(’wr{w + b1, w%rx + bz) y f( § : W x | b )

ReLU T/ ELU ‘° / L J U] !

T x>0

maX(07 :L.) _ § {Oz(e"’ —1) =<0 e’ 10 PETrReE European

HHOTC| coma
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The full plcture

® In a feed-forward chain,
each node processes what
comes from the previous
layer

® The final result (depending
on the network geometry) 1s
K outputs, given N 1nputs

— f(3)(21v‘{].(l3) f(2)(2 W(Z) f(l)(Z W(l)x 4 b,fl)) 4 bl(Z)) 4 bj(3))

® One can show that such a mechanism allows to learn gener7c

RNsRK functions

40

input layer

hidden layer

1

hidden layer 2 hidden layer 3

outpu

t layer
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@ Activation functions are an
example of network hyper
parameters

® they come from architecture
choice, rather than from the
training itself

® Activation output of the
output layer play a special
role:

@ 1t needs to return the
output 1n the right domain

® 1t needs to preserve the
wanted features of the
output (e.g., periodic,
positive defined, etc.)

Hame Plot Equation
Identity / flz)==x
, | 0 for <0
ey | flz)= { 1 for >0
Logistic (a.k. a o — N 1
Soft step) — f(l) o 1 +e=
=T 2
Tank / f(x) = tanh(z) = ;5 ~ 1
AdrcTan / f(.l) — t.an_l(.r)
Rectified / 0 for = <0
Linear Unit f(z) = { | -
e x for >0
Parameteric
Rectified e ar for x<0
Linear Unit o x for >0
(PReLU) (2]
Exponential

Linear Unit
(ELY) (3]

/ f(z)= { a(e* —1) for <0

x for >0

/ f(z) = log.(1+ €)

SoftPlus

4]

(Hctivation Functlions

Derivative

f(x)=1

oy ) 0 for x#0
f(r)%'j{ ? for =0

f'(z) = f(z)(1 - f(x))

=:172+1

i v ) 0 for <0
f(I)_{l for >0

i v ) a for <0
f(I)_{lfor x>0

| flx)+a for <0
f(.r)—{ 1 for >0

e 0
.....
ooooo
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Dropout Layer

® A special kind of
layer, 1ntroduced for
regularisation purpose

® Randomly drop I11nks
between neurons, with
probability p

. Standard N ] Net
® The connections are (#) Standard Neural Ne

re-established during
the validation and

; 2 /N 2N
1nference steps 27 Validation S
= Training

Validation
— Training

® Typical sign of 1t:
1nvert hierarchy
between training and
validation loss

Epoch

A =



Ol BatchMNormalization Layer

@ It is good practice to give normalized inputs to ongnaldata
a layer

® With all 1nputs having the same order of

magnitude, all weights are equal 1mportant 1n ; a
the gradient
® Prevents explosion of the loss function " S— |

zero-centered data normalized data

10 - 10

® This can be done automatically
with BatchNormalization

® non-learnable shift and scale -
parameters, adjusted batch by
batch K

43
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® Dense NN architectures can be made
more comp lex

@ Multiple 1nputs
@ Multiple outputs
® Different networks branches

® This 1s possible thanks to layer-
manipulation layers

® Add, Subtract, etc.
® Concatenation
® Flattening

@ All these operations are usually
provided with NN training libraries

ava

(More complex structures

8

8




Tralining Libraries

® Many solutions exist. Most popular
softwares live 1n a python
ecosystem

" OPyTorch

® Google’s TensorFlow TensorFlow

® Facebook’s Pytorch
® Apache MXnet

@ All of them integrated 1n a data
science ecosystem

® with numpy, scikit, etc.

® Convenient libraries built on top,
with pre-coded 1ngredients

® Keras for TF (this 1s what we
will be using)

45



GPUs & 1T PUS

® All codes come with GPU support, through CUDA

<A NVIDIA.

® They work on nVidia GPUs

CUDA.

® GPUs are very suitable to train neural networks

® dedicated VRAM provides large memory to load
datasets
3500 3242
@ architecture ideal to run vectorised 3000
operations on tensors
. . 1943 1984
® can also paralyse training tasks (e.g.,
processing 1n parallel multiple batches)

1169

images / second

. . . . . 1000 819
@ A single-precision gaming card 1s good enough 486 505
for standalone studies (200-1000 $, depending on °00 | 292
mode ) 0 L
ResNet-50 Inception-V3
® Large tasks require access to clusters (with 1XV100 m1xTPU m4xV100 m4xXTPU (Cloud TPU)

libraries for distributed training)

® Dedicated architectures (e.g., Google TPU) now LIS | Europesn
emerging. Essentially, Deep Learning ASICs ﬁ%@éﬁT:gﬁﬁf
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Example: |et taqqunc

® You have a jet at LHC: spray of

hadrons coming from a “shower” _A
initiated by a fundamental g —

particle of some kind (quark,
gluon, W/Z/H bosons, top quark)

® You have a set of jet features
whose distribution depends on the
nature of the 1nitial particle

® You can train a network to start
from the values of these
quantities and guess the nature
of your jet

® To do this you need a sample for
which you know the answer
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Example: |et taqqunc

® You have a jet at LHC: spray of
hadrons coming from a “shower”
initiated by a fundamental e e . I
particle of some kind (quark, :
gluon, W/Z/H bosons, top quark) e o o _

® You have a set of jet features e = B
whose distribution depends on the ‘ s
nature of the initial particle activation: Sortax o S

M enoT

® You can train a network to start - gi
from the values of these i .
guantities and guess the nature 31 . “1
of your jet , iﬁ&%
§ T,
® To do this you need a sample for B Tt
which you know the answer I EIE R
| ercEF
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Classifler metrics

® A given threefold defines the following qualities
® True-positives: (Class-1 events above the threshold
® True-negatives: (Class-0 events below the threshold
® False-positives: (Class-0 events above the threshold
® False-negatives: (Class-1 events below the threshold
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Classifler metrics

® A given threefold defines the following qualities
® True-positives: (Class-1 events above the threshold
® True-negatives: (Class-0 events below the threshold
® False-positives: (Class-0 events above the threshold
® False-negatives: (Class-1 events below the threshold
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Classifler metrics

—>

® Consider a binary classifier

Probability

® Its output y 1s a number 1in

[0,1]

@ IT well trained, value
should be close to 0 (1) for — >
class-0 (class-1) examples score

® One usually defines a
threshold y+ such that:

Probability

f/>yt ->

® y>yt -> (Class 1 Class 1

® y<yt -> Class 0
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Classifler metrics

® Starting 1ngredients are true positive (TP) and true
negative (TN) rates

® Accuracy: (TP+TN)/Total

® The fraction of events correctly classified
® Sensitivity: TP/(Total positive)

® AKA signal efficiency 1n HEP
® Specificity: TN/(Total negative)

® AKA mistag rate 1n HEP

=41




Recelver operating characteristic

probabil &
AUC = 0.99 Sensitivity
Us Sensitivity = 0.00
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Jet ta 1IN ROC curve

—— ] _g tagger, auc = 91.6% /
% —— j q tagger, auc = 88.8% g/
i —— | _w tagger, auc = 92.1% /
g —— | _z tagger, auc = 91.4% '
:5; —— | _ttagger, auc = 93.7%
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Summary of Lecture |

® ML models are adaptable algorithms that are trained
(and not programmed) to accomplish a task

® The training happens minimizing a loss function on a
given sample

® The loss function has a direct connection to the
statistical properties of the problem

® Deep Learning 1s the most powerful class of ML
algorithms nowadays

@ It could be relevant to the future of HEP, e.g., to
face the big-data challenge of the High-Luminosity LHC

. . b .
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® Pattern Recognition and Machine learning (Bishop)
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® Full dataset available at: https://zenodo.org/record/3602260
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