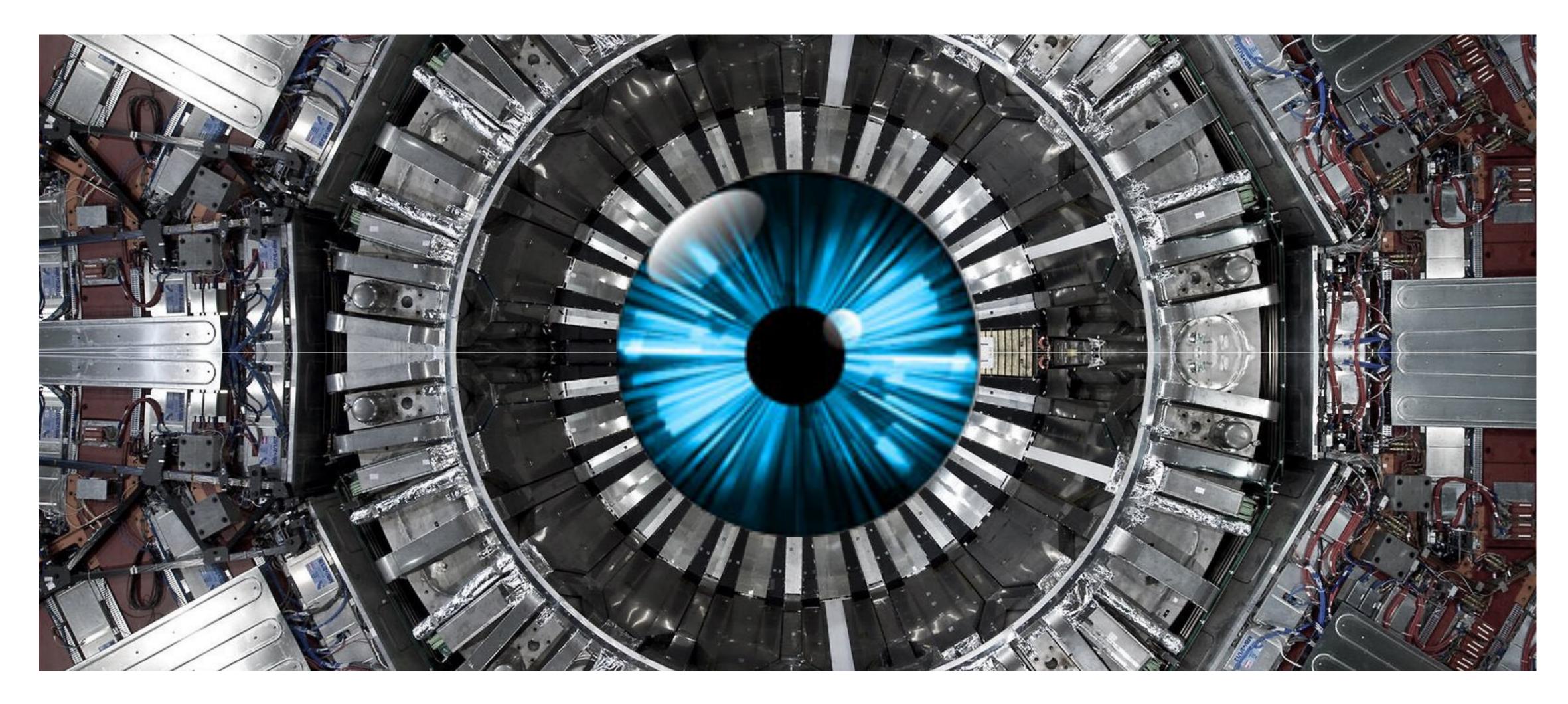
Deep Learning Applications for collider physics Lecture 2

Maurizio Pierini

	Day1	Day2	Day3	Day4	Day5
Lecture	Introduction	ConvNN	RNNs	Graphs	Unsupervised Learning
Tutorial	Fully Connected Classifier	ConvNN Classifier	RNNs Classifier	Graphs Classifier	Anomaly Detection

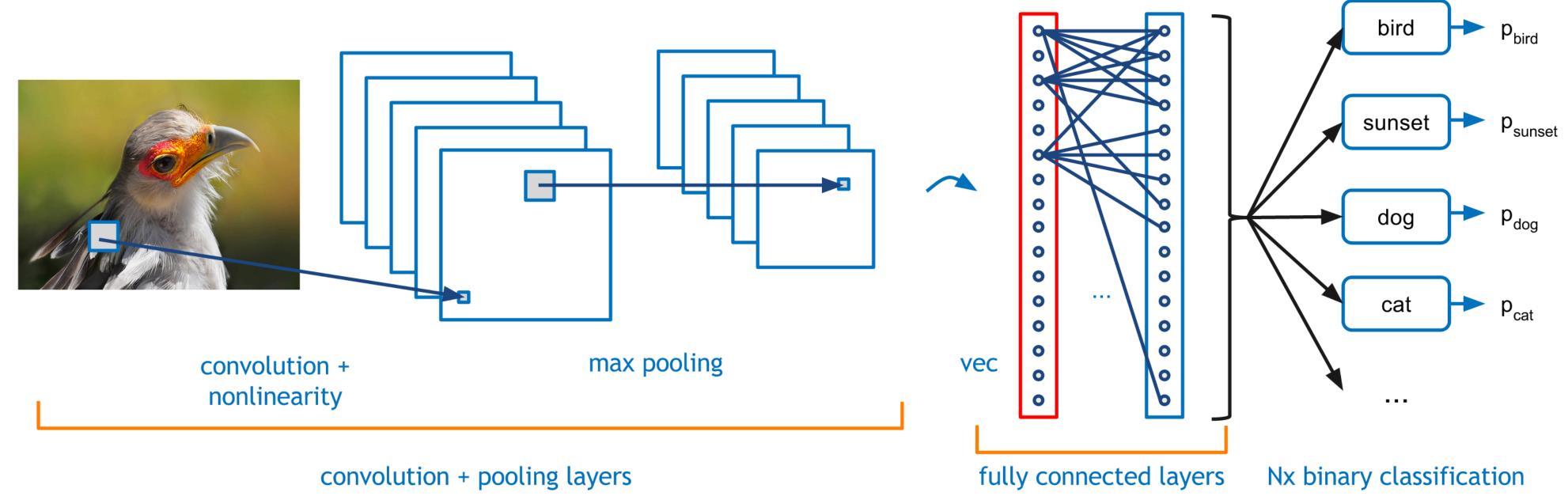


Palule Reconstructor of Computer Vision erc

Convolutional Layer

• Special architectures read the raw information (e.g., images) and convert them into "smart variables" (high-level features) to accomplish the task

• Typical example: convolutional neural networks for image processing & computing vision



• Each image is a matrix of pixels

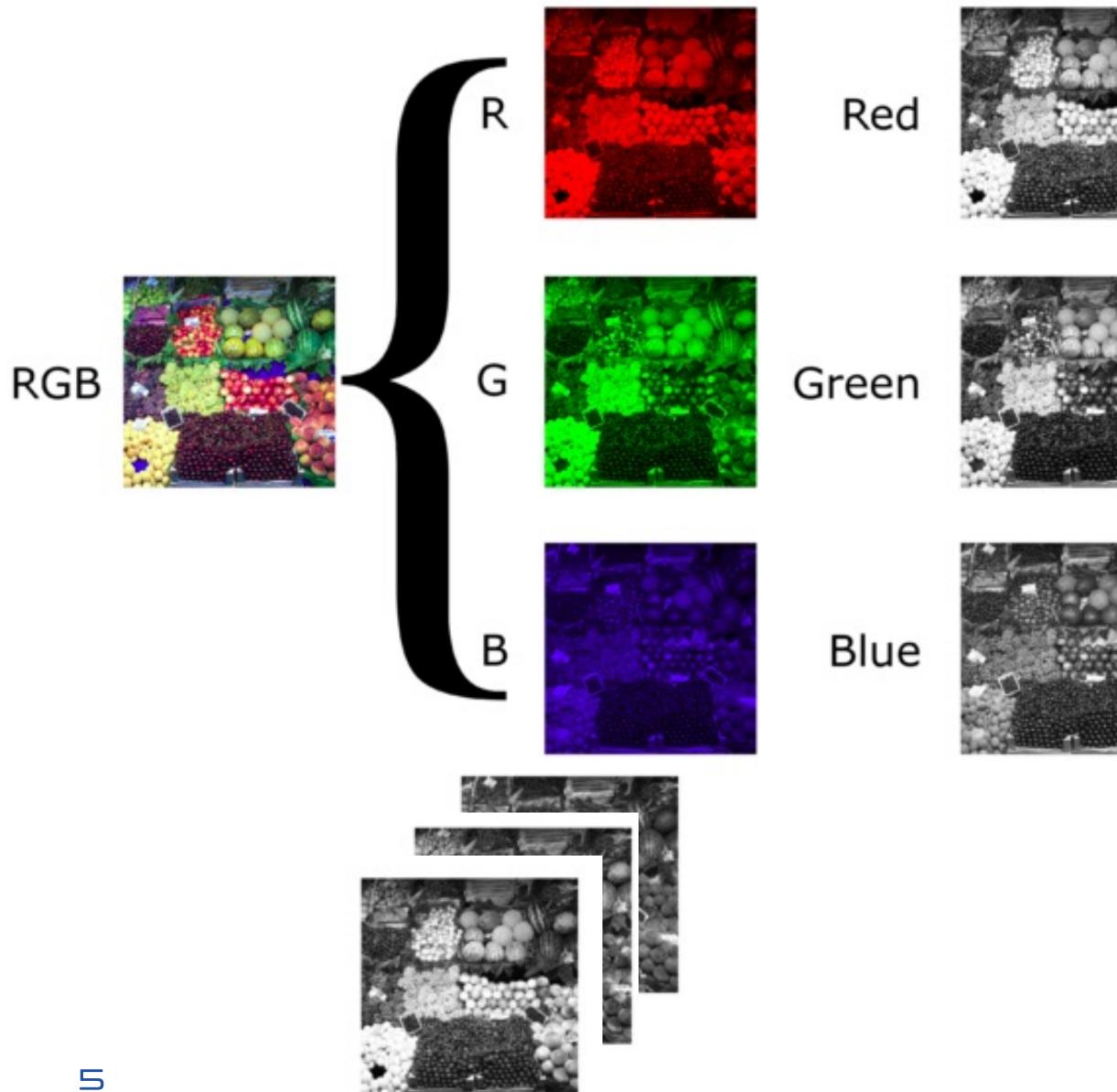
• Each pixel comes with a color

In RGB scheme, these are three values i [0,1]

• Each image becomes a 3D tensor

 3 channels of 2D
 pixelated images

Digital images

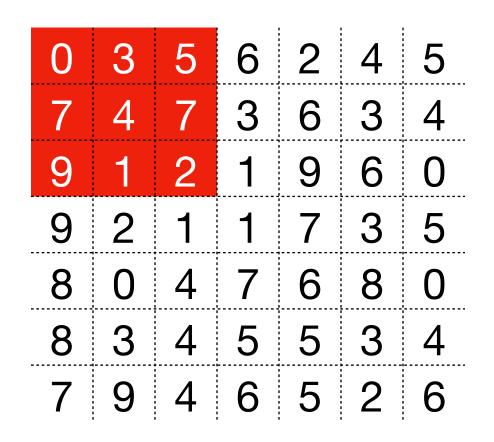


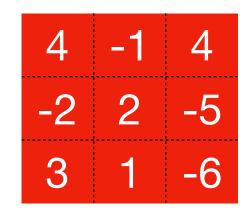
• The main ingredient of ConvNN is a filter, a k x k' matrix of weights

• The filter scans the image and performs a scalar product of each image patch

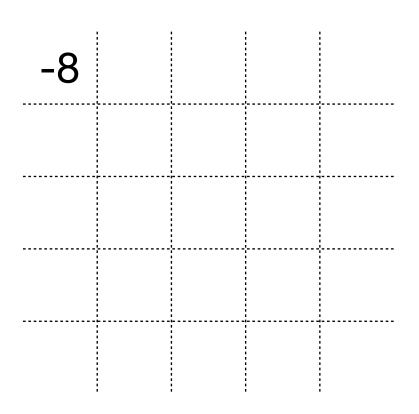
• This results into a new matrix of values, with different *dimensionality*

Convolutional filter





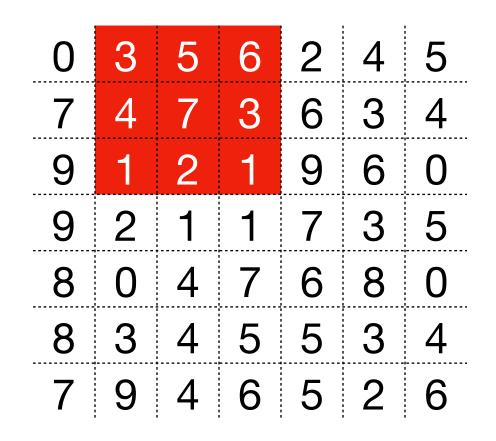
0x4 - 3x1 + 5x4 +-7x2 + 4x2 - 7x5 +9x3 + 1x1 - 2x6 = -8

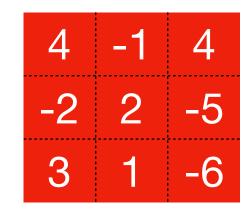


- The main ingredient of ConvNN is a filter, a k x k' matrix of weights
- The filter scans the image and performs a scalar product of each image patch
- The scan is done shifting the filter by a stride (of q, 2, ... cells)

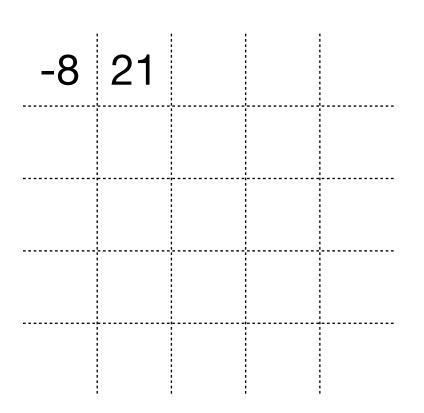
• This results into a new matrix of values, with different dimensionality

Filtro convolutional





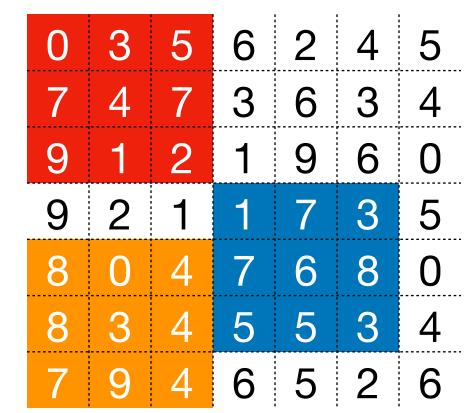
3x4 - 5x1 + 6x4 +-4x2 + 7x2 - 3x5 +1x3 + 2x1 - 1x6 = 21

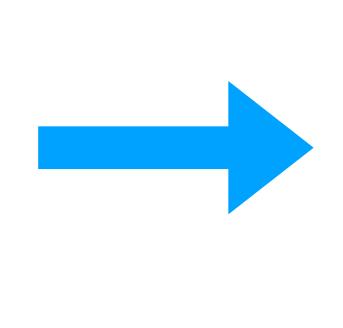


MaxPooling: Given an image and a filter of size k x k', scans the image and replaces each k x k' patch with its maximum

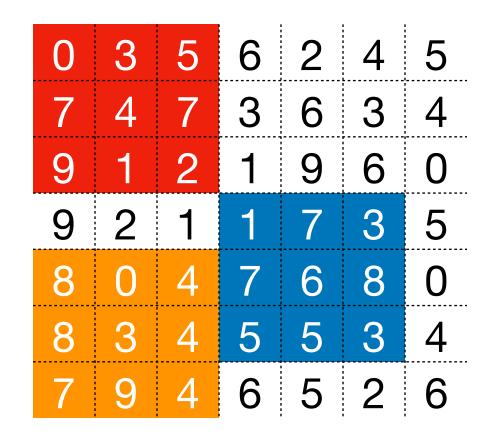
AveragePooling: Given an image and a filter of size k x k', scans the image and replaces each k x k' patch with its average

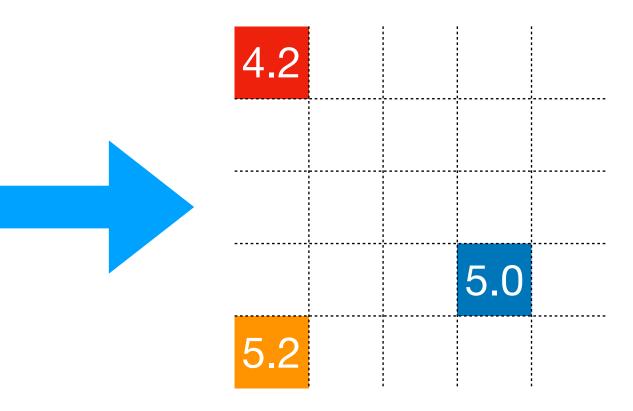
Polina





9	7	9	9
9	7	9	9
9	7	7	9
9	7	7	8
9	9	7	8





• When the filter arrived at the edge, it might exceeds it (if n/k is not an integer)

In this case, a padding rule needs to be specified

• Same: repeat the values at the boundary

• Zero: fill the extra columns with zeros

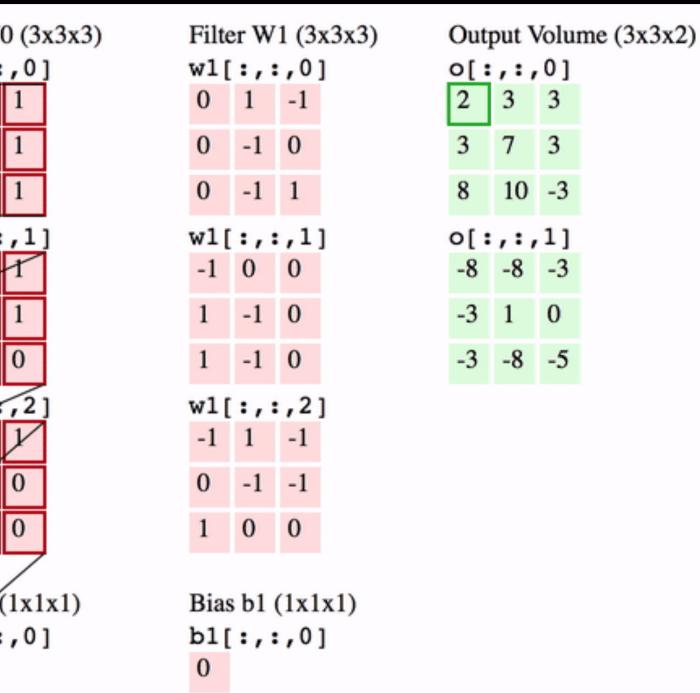
Padding

0	3	5	6	2	4	4
7	4	7	3	6	3	3
9	1	2	1	9	6	6
9	2	1	1	7	3	3
8	0	4	7	6	8	8
8	3	4	5	5	3	3
8	3	4	5	5	3	3

0	3	5	6	2	4	0
7	4	7	3	6	3	0
9	1	2	1	9	6	0
9	2	1	1	7	3	0
8	0	4	7	6	8	0
8	3	4	5	5	3	0
0	0	0	0	0	0	0

Eonvolutional Layer

	ut Vo		e (+p	pad 1	l) (7:	x7x3	5)	Filter W0
x[:	,:,	, 0]						w0[:,:,
0	0	0	0	0	0	0		-1 0 1
0	0	0	1	0	2	0		0 0 1
0	1	0	2	0	1	0		1 -1 1
0	1	0	2	2	0	0		w0[:,:,
0	2	0	0	2	0	0		-1 0
0	2	1	2	2	0	0		1 -1 1
0	0	0	0	0	0	0		0 1 0
	~	11		\sim				w0[:,,
	· · · ,			0	0	1		111
0	0	0	0	0	0	0		
0	2	1	2	1	1	0	/	1 X (
0	2	1	2	0	1	ø		0 -1 (
0	0	2	1	0	1	0		Bias b0 (1
0	1	2	2	2	2	0/	//	b01:,:,
0	0	1/	2	0	V	6		1
0	9	0	0	8/	6	0		
	· .	21	1	/				
×1:	, : ,	2]		0	0	6		
0	0	0	0	0	0/	0		
0	2/	1	1	2/	0	0		
9	1	0	V	1	0	0		
0	0	1	0	0	0	0		
0	1	0	2	1	0	0		
0	2	2	1	1	1	0		
0	0	0	0	0	0	0		

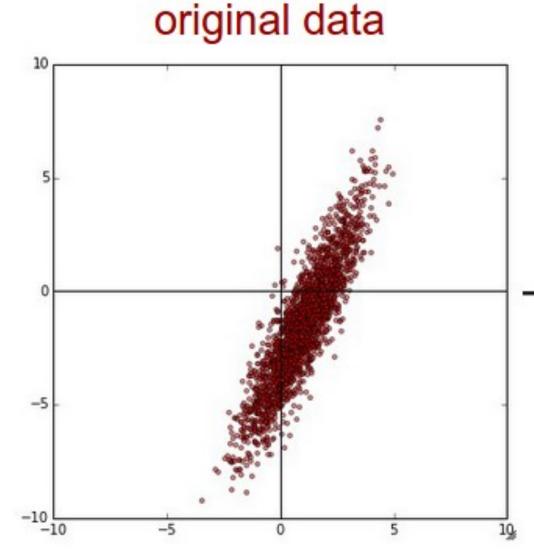


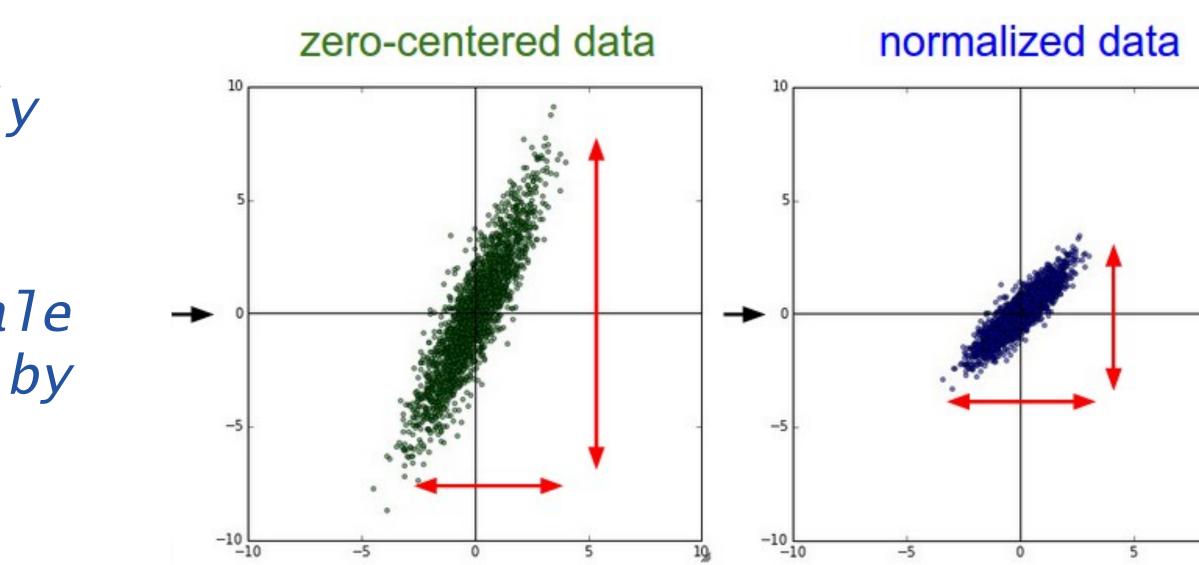
toggle movement

10

BatchMormalization Layer

- It is good practice to give normalized inputs to a layer
 - With all inputs having the same order of magnitude, all weights are equal important in the gradient
 - Prevents explosion of the loss function
- This can be done automatically with BatchNormalization
 - In non-learnable shift and scale parameters, adjusted batch by batch

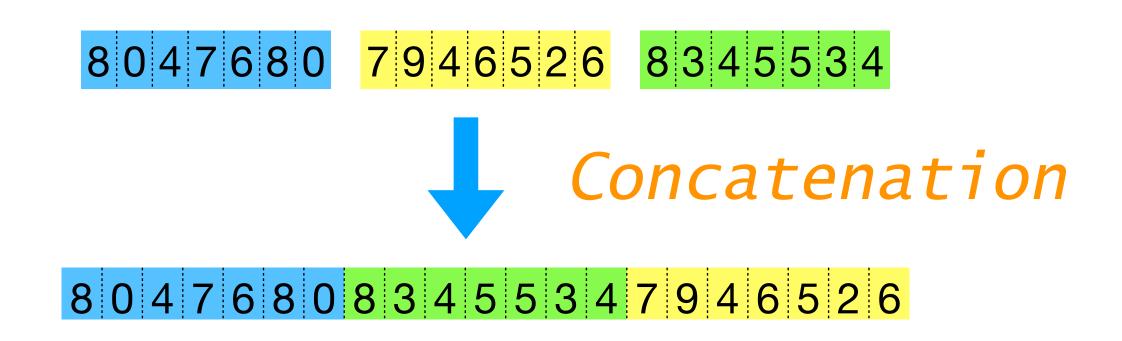


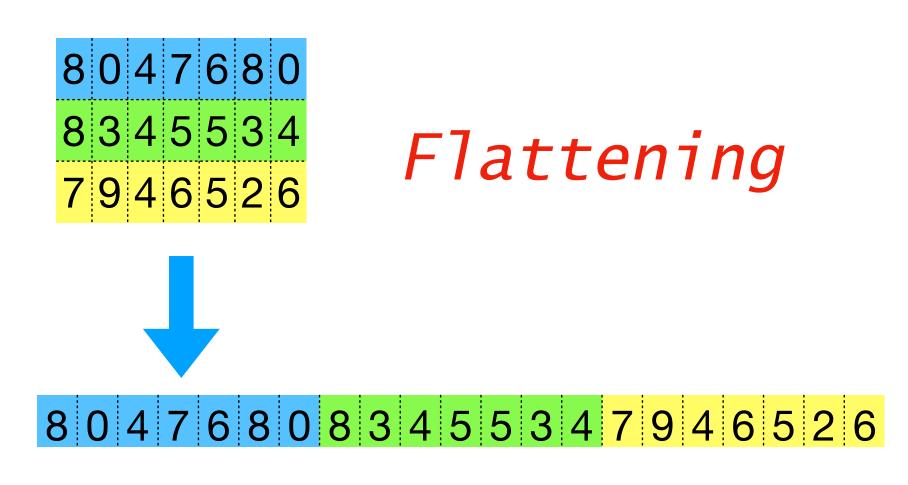


- Dense NN architectures can be made more complex
 - Multiple inputs
 - Multiple outputs
 - Different networks branches
- This is possible thanks to layermanipulation layers
 - Add, Subtract, etc.
 - Concatenation
 - Flattening
- All these operations are usually provided with NN training libraries

12

More complex structures



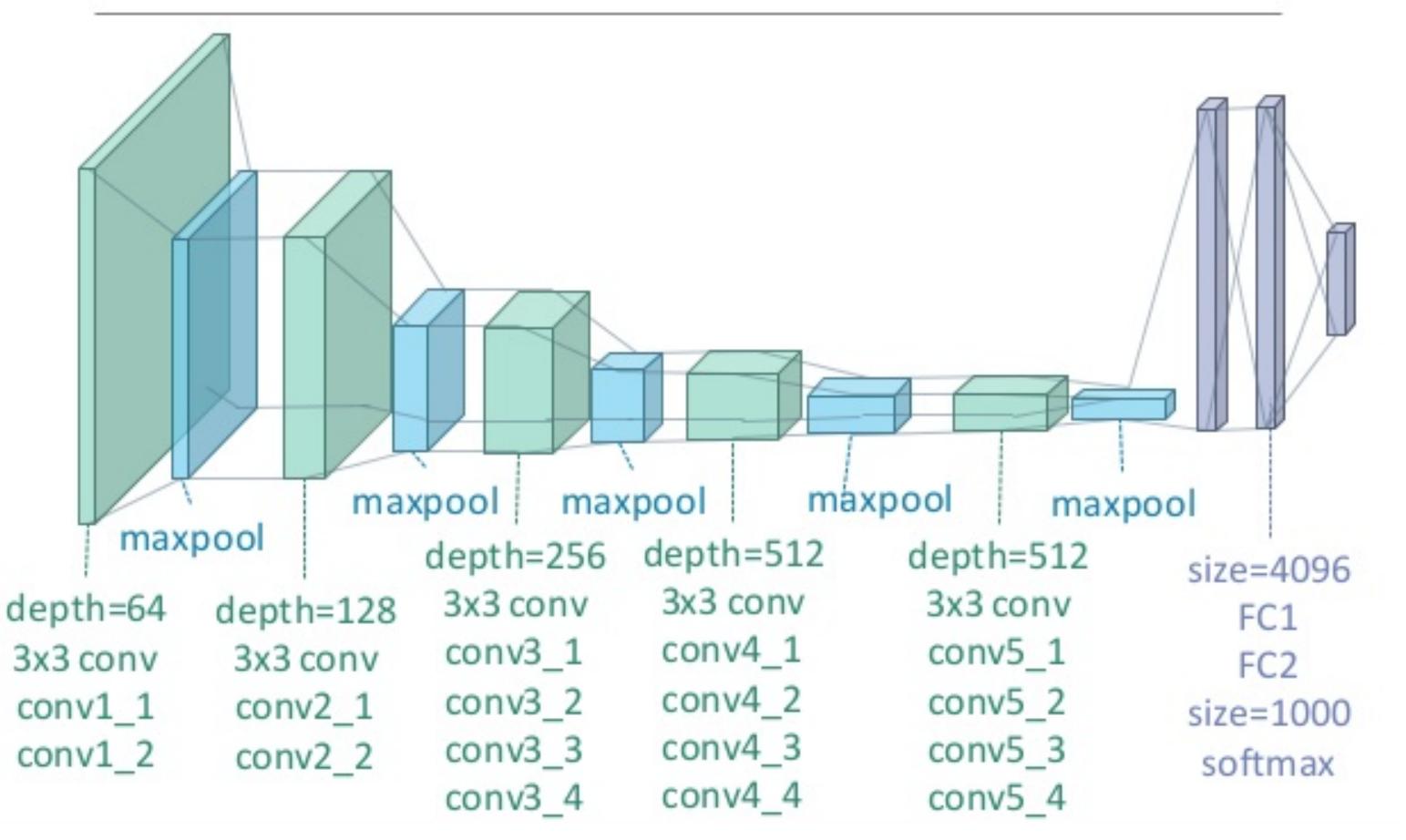


• A full ConvNN is a sequence of Con2D+Pooling (+BatchNormalization+ Dropout) layers

• The Conv+Pooling layer reduces the 2D image representation

• The use of multiple filters on the image make the output grow on a third dimension

• Eventually, flattening occurs and the result is given to a dense layer



The full network

VGG 19

What does a ConvMN learn?

• Each filter alters the image in a different way, picking up different aspects of the image

• edges oriented in various ways

 enhancing / blur of certain features

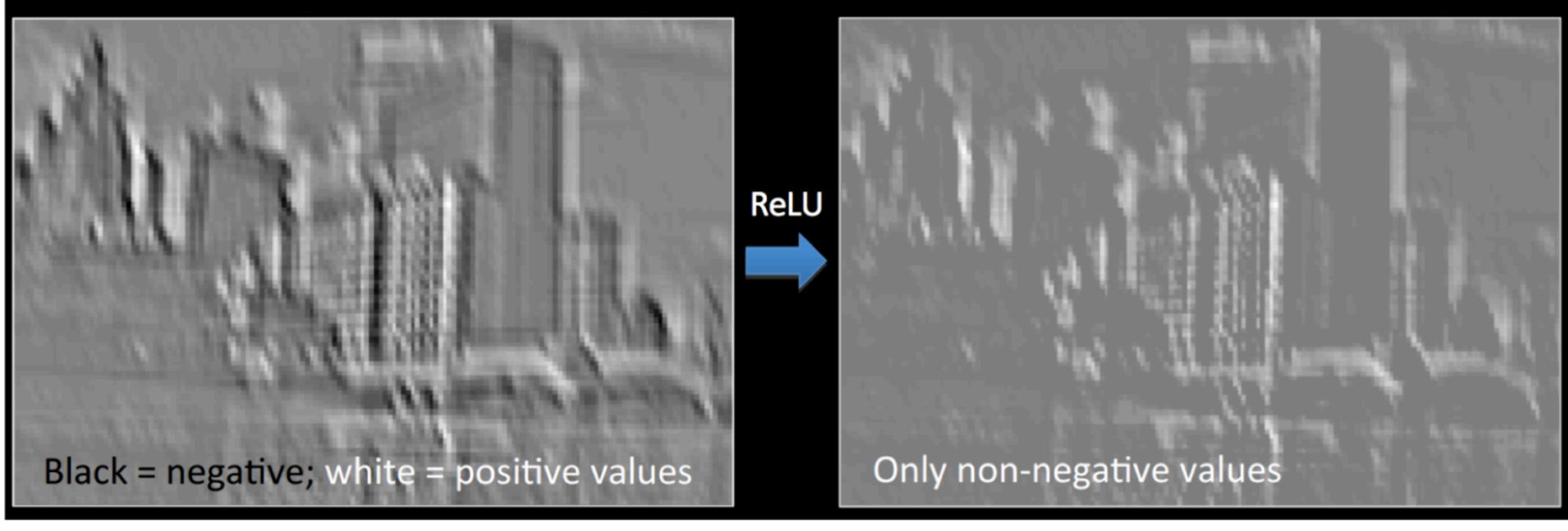
It is interesting to check what each filter is doing (and to produce <u>DeepDreams</u>)

Operation	Filter	Convolved Image	Operation	Filter	Co I
Identity	$\begin{bmatrix} 0 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}$		Sharpen	$\begin{bmatrix} 0 & -1 & 0 \\ -1 & 5 & -1 \\ 0 & -1 & 0 \end{bmatrix}$	
	$\begin{bmatrix} 1 & 0 & -1 \\ 0 & 0 & 0 \\ -1 & 0 & 1 \end{bmatrix}$		Box blur (normalized)	$\frac{1}{9} \begin{bmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{bmatrix}$	1
Edge detection	$\begin{bmatrix} 0 & 1 & 0 \\ 1 & -4 & 1 \\ 0 & 1 & 0 \end{bmatrix}$		Gaussian blur (approximation)	$\frac{1}{16} \begin{bmatrix} 1 & 2 & 1 \\ 2 & 4 & 2 \\ 1 & 2 & 1 \end{bmatrix}$	
	$\begin{bmatrix} -1 & -1 & -1 \\ -1 & 8 & -1 \\ -1 & -1 & -1 \end{bmatrix}$				

Check this blog entry on ConvNNs

The use on non-linear activation functions plays a special role in enhancing features

Input Feature Map



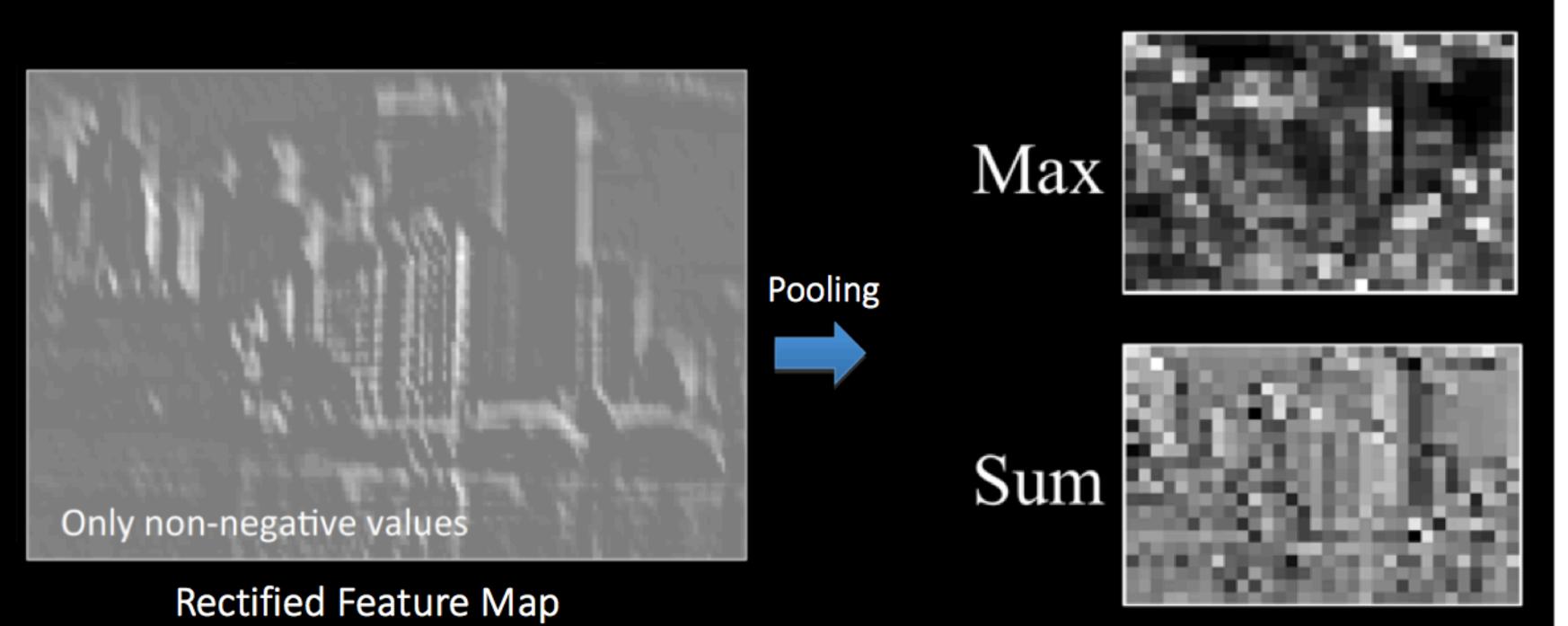
15

Rectified Feature Map

• Pooling is important in smoothing out the image

- reduce parameters downstream (and prevent overfitting)
- makes processing independent to local features (distortion, translation)

or bad)

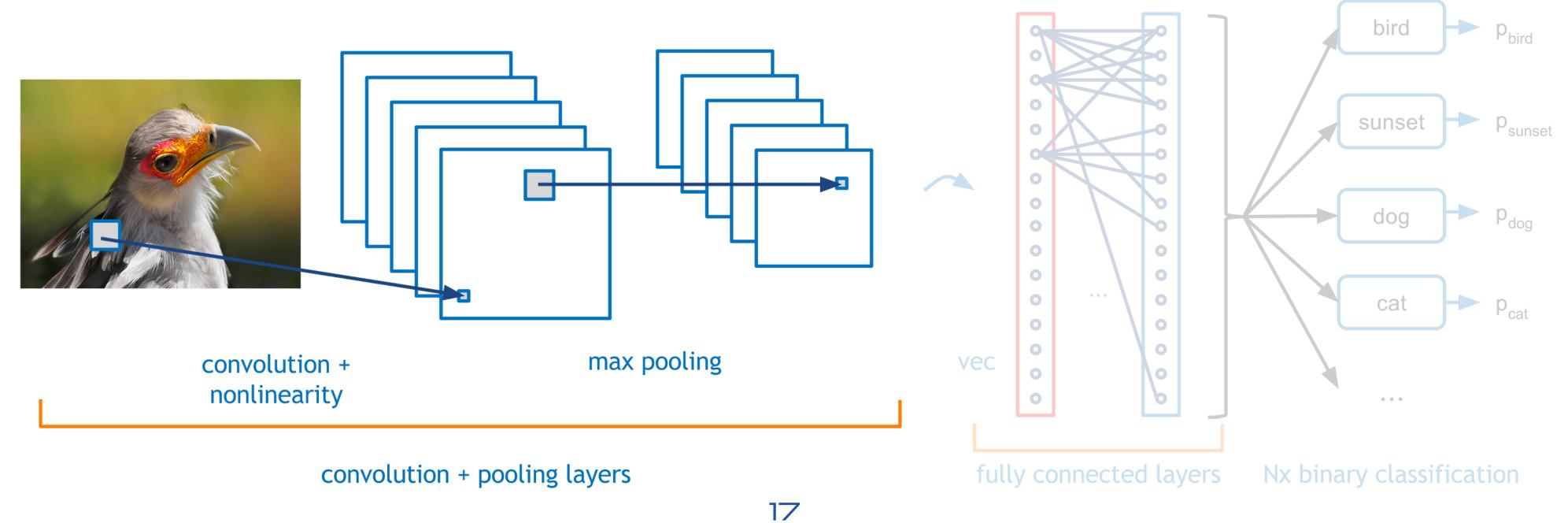


• yields a scale invariant representation of the image (which could be good

Two tasks in one network

quantities (high level features)

accomplish the task

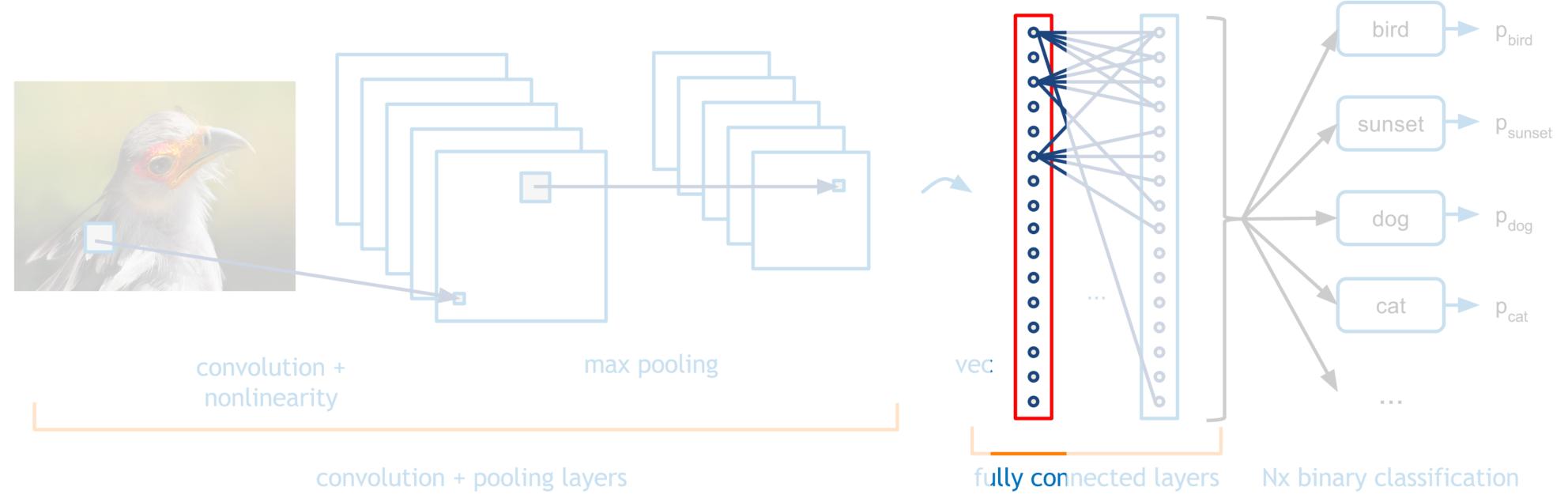


- The Conv layer stars from RAW data and defines interesting
- The HLFs replace the physics-motivated inputs of a DNN
- The DNN at the end exploits the engineered features to

Two tasks in one network

• The Conv layer stars from RAW data and defines interesting quantities (high level features)

accomplish the task



18

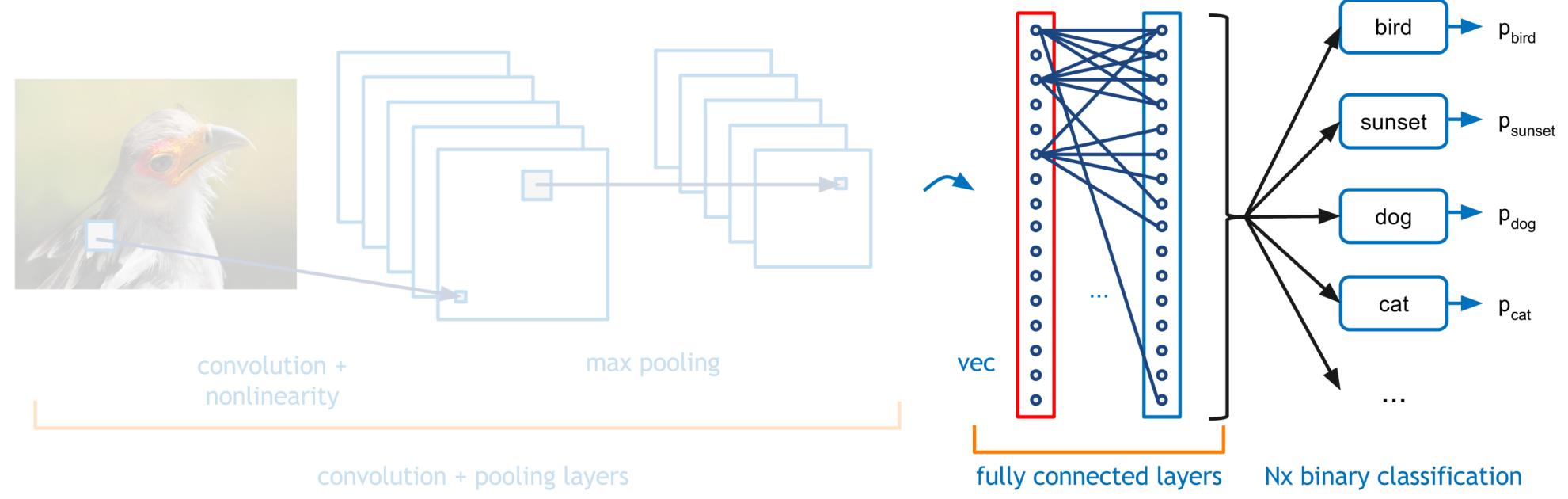
- The HLFs replace the physics-motivated inputs of a DNN
- The DNN at the end exploits the engineered features to

Two tasks in one network

• The Conv layer stars from RAW data and defines interesting quantities (high level features)

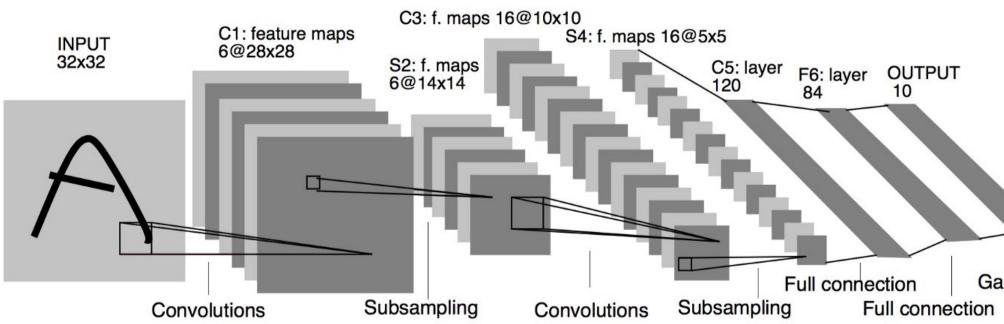
• The HLFs replace the physics-motivated inputs of a DNN

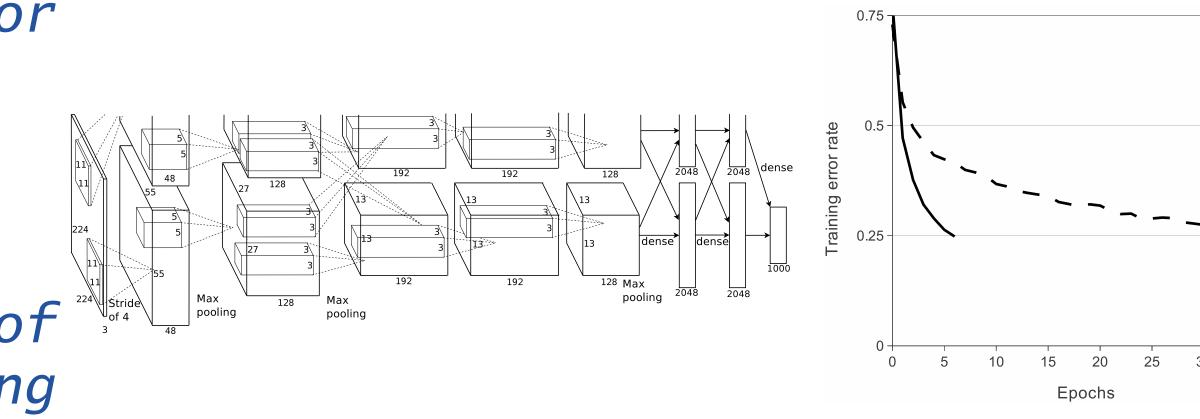
• The DNN at the end exploits the engineered features to accomplish the task

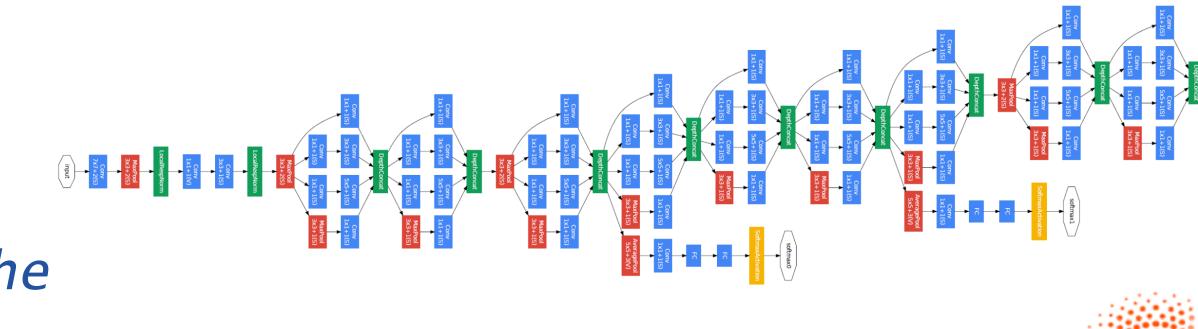


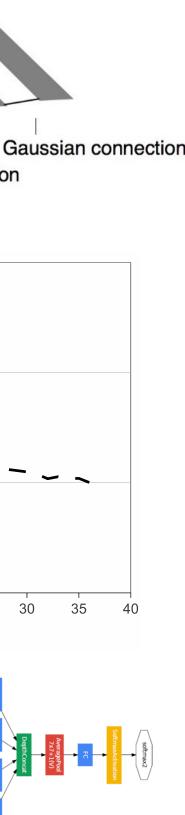
19

- <u>Neocognitron</u> (1980): translation-invariant image processing with NNs
- LeNet (1989): considered the very first ConvNN, designer for digit recognition (ZIP codes)
- <u>AlexNet (2012)</u>: the first big ConvNN (60M parameters, 650K neurtons), setting the state of the art: trained on GPUs, using ReLU and Dropout
- GoogleNet (2014): built on AlexNet, introduced an inception model to reduce e the number of parameters



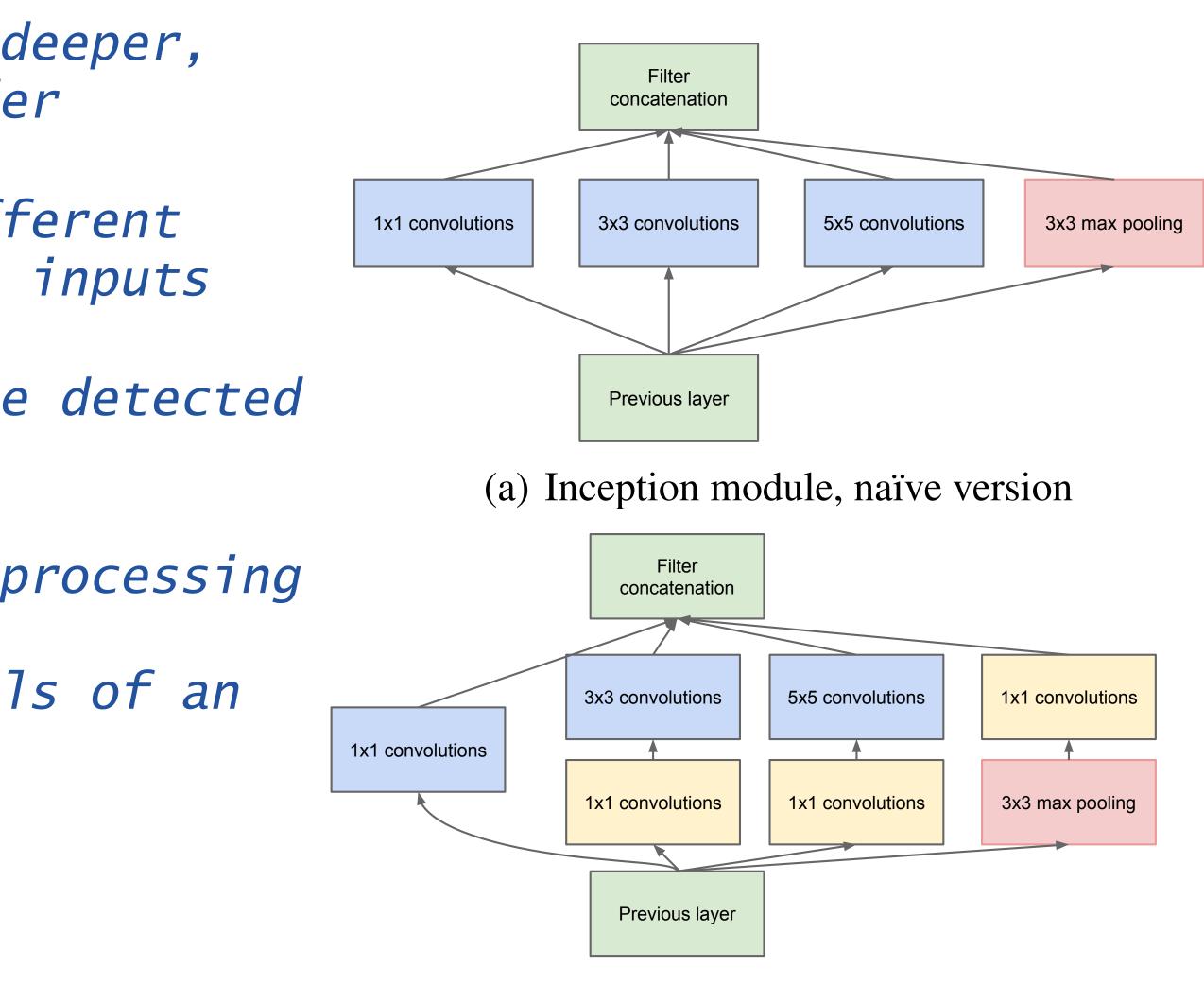






- Rather than going deeper and deeper, inception architecture go wider
- Several conv layers, with different filter size, process the same inputs
- This way, more features can be detected from the same image
- The outcome of this parallel processing is then recombined through a concatenation step ass channels of an ımage

Inception Module

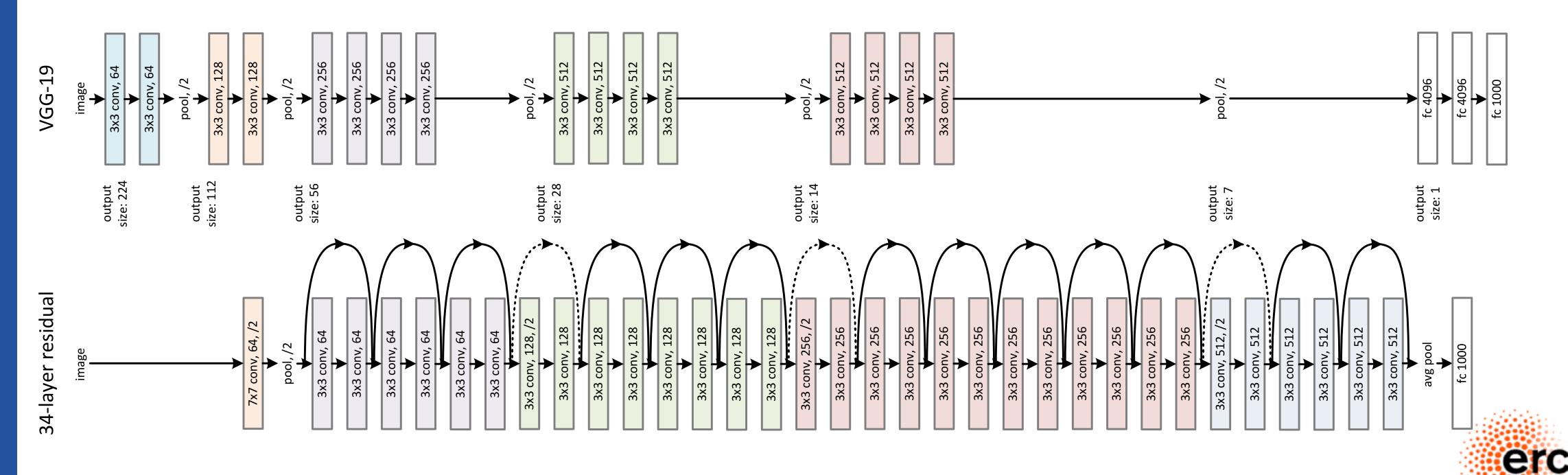


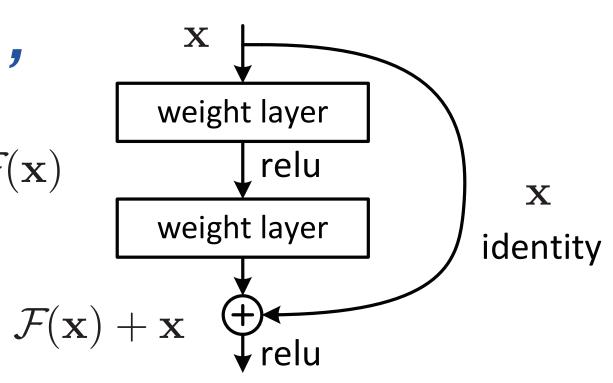
(b) Inception module with dimension reductions

A history of ConvM

• <u>VGGNet(2014)</u>: exploit small filters (3x3, 1x1), previously considered not optimal in a stack of Conv layers (rather than 1Conv+1Pooling) $\mathcal{F}(\mathbf{x})$

• <u>ResNet (2015): implemented skip connections</u>, which were proven to boost performances



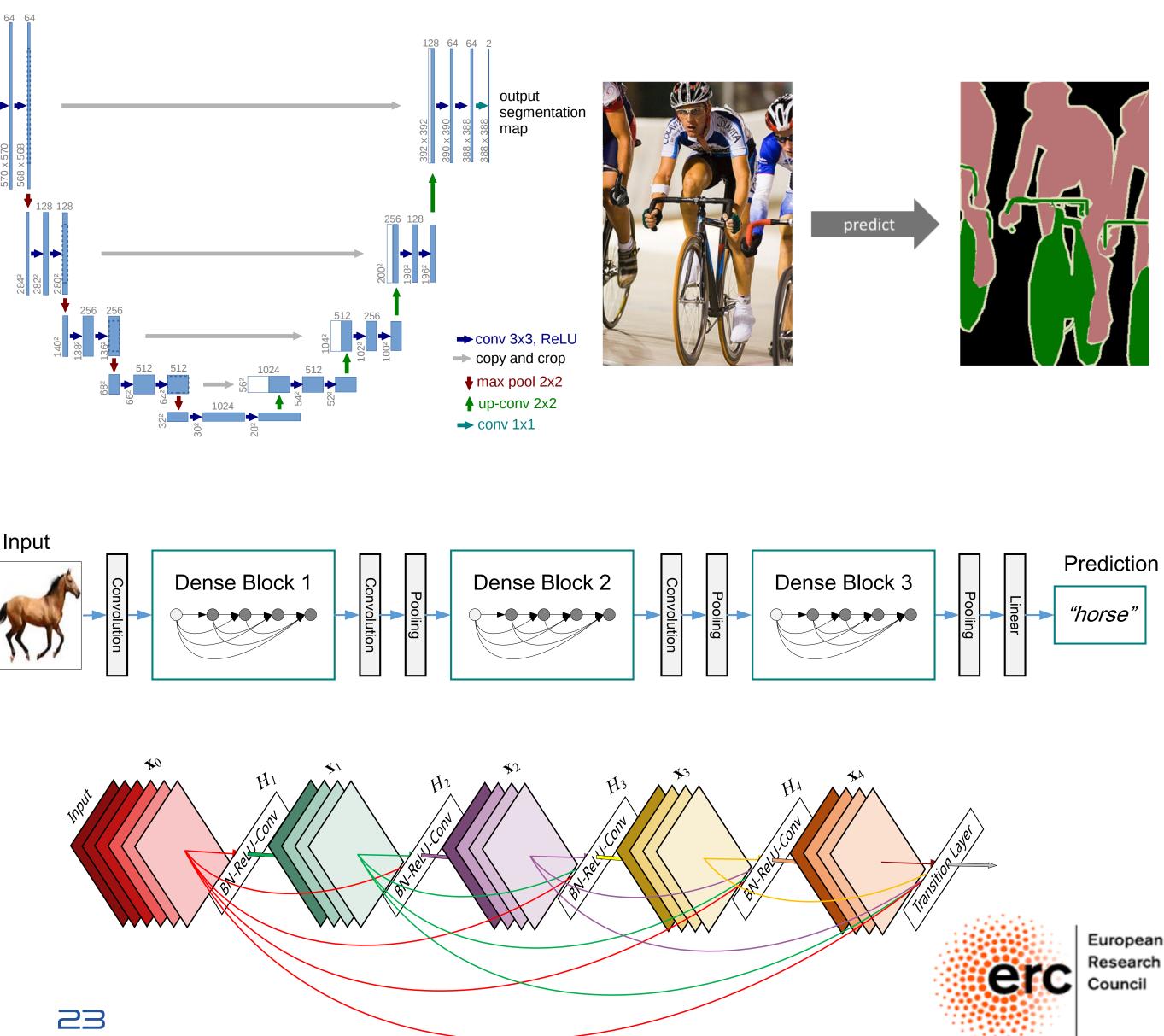


Check this blog entry on ConvNNs

A history of ConvMS

 U-net (2015): conv input layers with skip connections, in a downsampling+upsampling U-shaped sequence. Introduced for semantic segmentation

• <u>DenseNet (2016)</u>: uses skip connections between a given layer and all the layers downstream in a dense block, with Conv layers in between

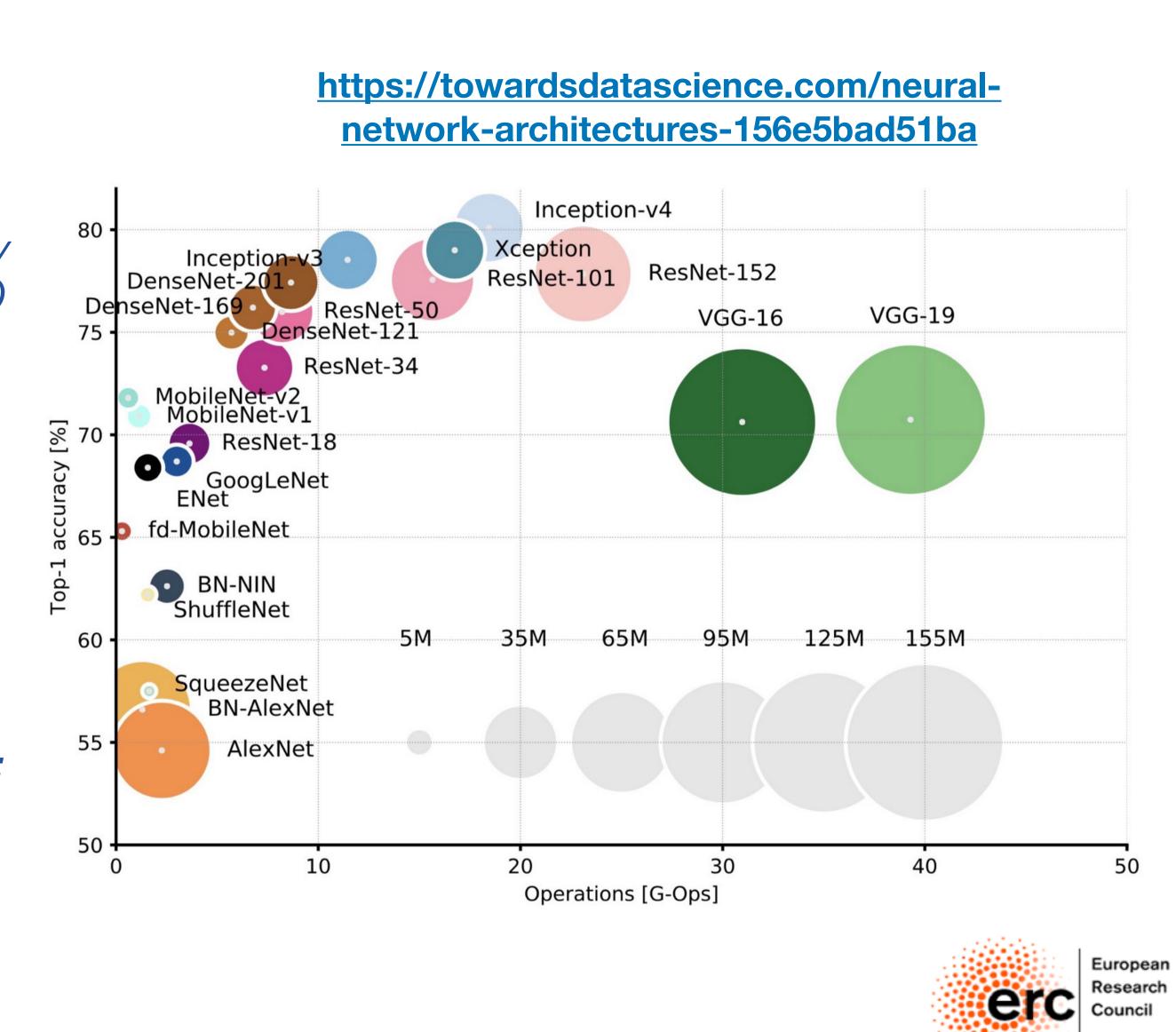


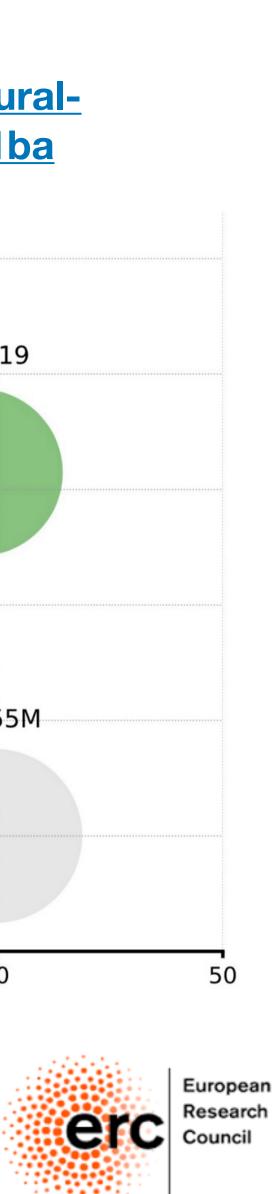
European

The computational cost

- In this evolution, computing-vision networks drastically improved in performance
- This came at a big cost in complexity (number of parameters and operations)
- The inference with this network became particularly slow
 - big interest in optimize these networks on dedicated resources, e.g. FPGAs
- Many cloud providers provide optimized versions of these networks:
 - you can just use them (re-training if needed), rather than inventing your own one

network-architectures-156e5bad51ba





24

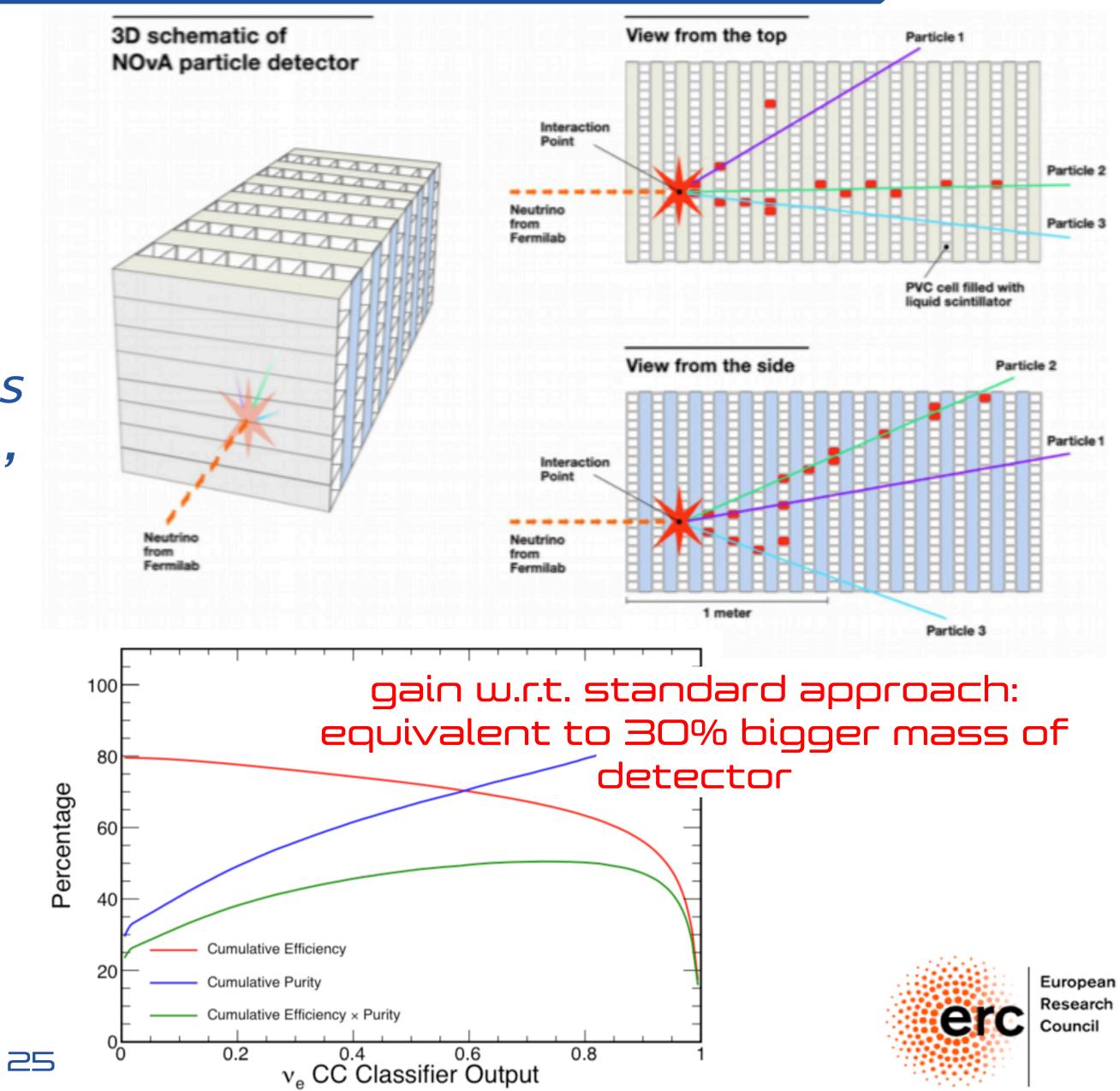
Example: PID for v experiments

Many HEP detectors (particularly underground) more and more structured as regular arrays of sensors

Modern computer-vision techniques work with images as arrays of pixel sensor (in 1D, 2D, and 3D)

These techniques were applied by Nova on electron and muon ID

• Impressive gain over traditional techniques (comparable to +30% detector == \$\$\$ saved)

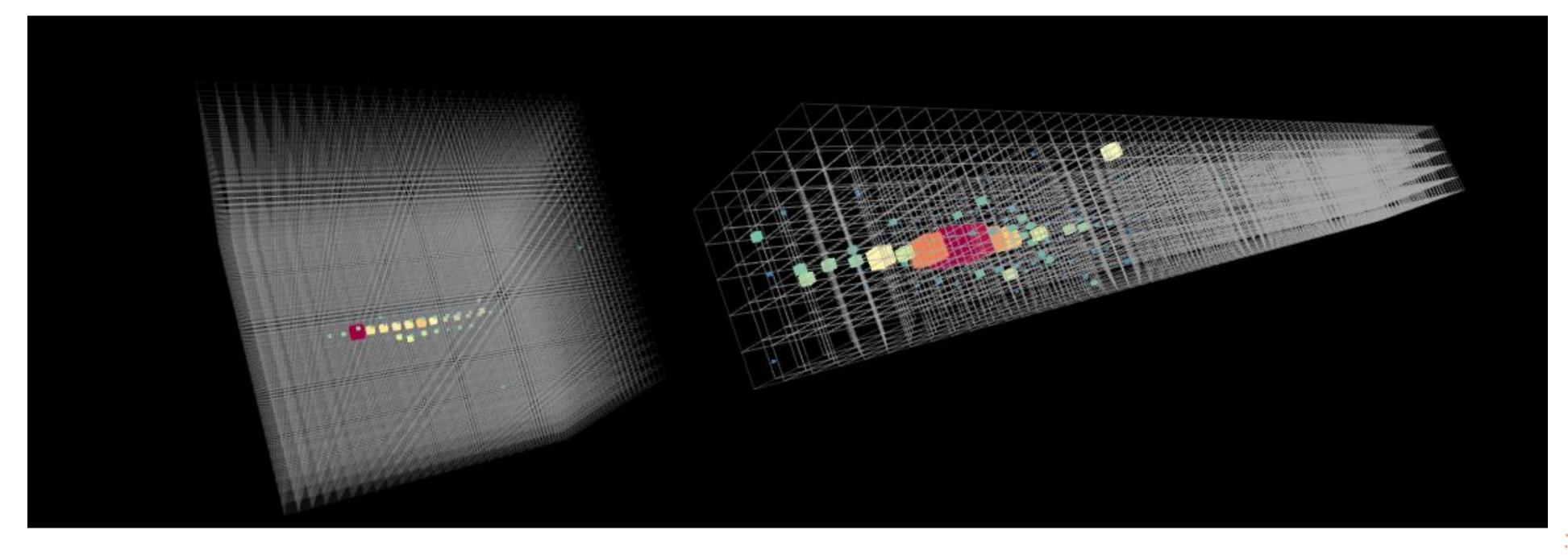


нн	
нн	
нн	
чч	
нн	
нн	
нн	Particle 2
нн	
чч	
	Particle 3
	T di croite o

~				
		Par	ticl	

Calorimetry & Computer Vision

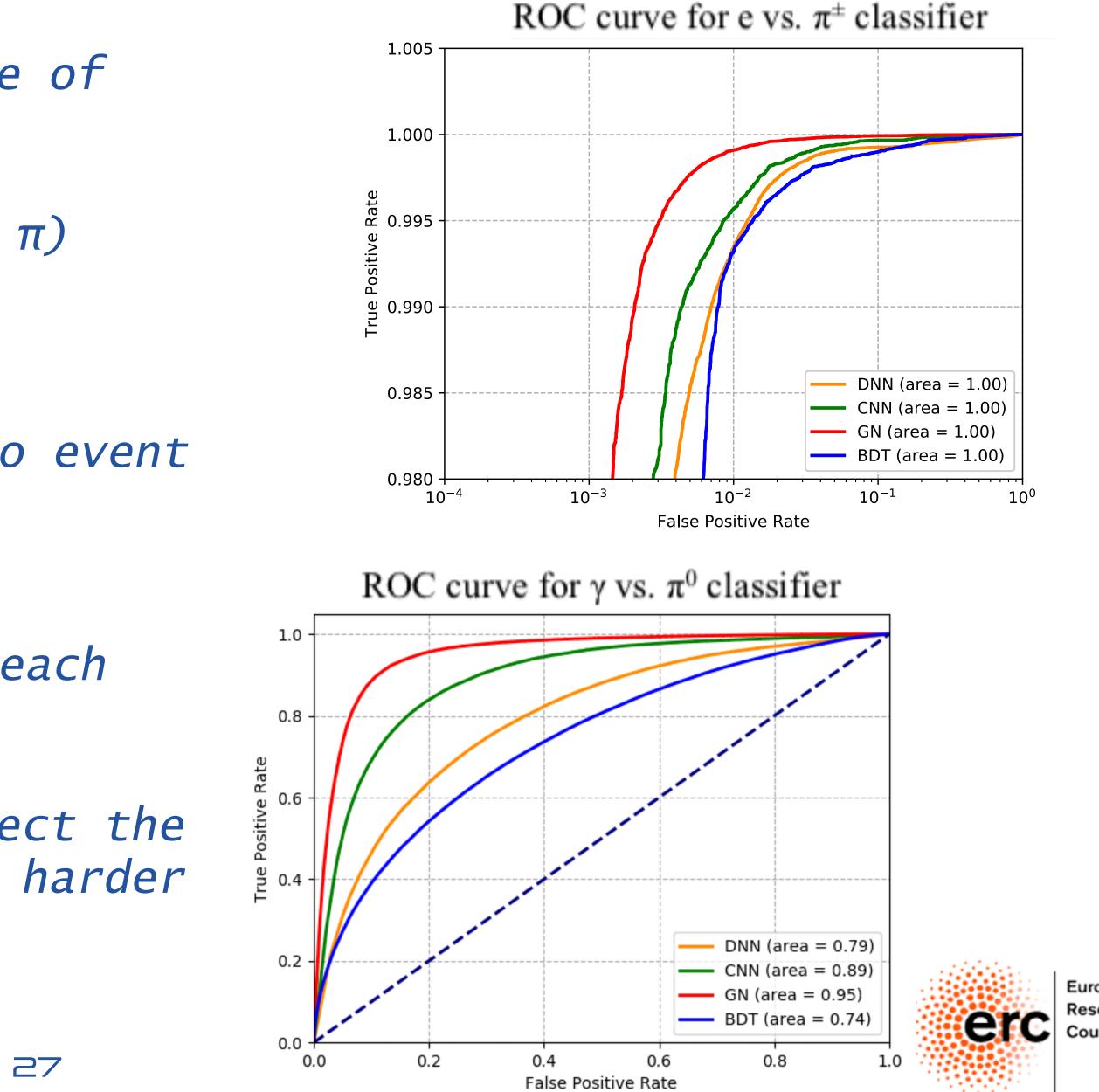
- more regular geometry
- Ideal configuration to apply Convolutional Neural Network
 - speed up reconstruction at similar performances
 - and possibly improve performances



(next generation) digital calorimeters: 3D arrays of sensors with

- We tried particle ID on a sample of simulated events
 - one particle/event (e, γ , π^0 , π)
- Different event representations
 - high-level features related to event shape (moments of X,Y, and Z projections, etc)
 - raw data (energy recorded in each *ce11*)
- Pre-filtered pion events to select the
 nasty ones and make the problem harder

Example: Particle IC



, Jet as imag

riments at the LHC. The 100 million curring 40 million times aper size the surface a digital camera incontraction of and creat an image with the momentum

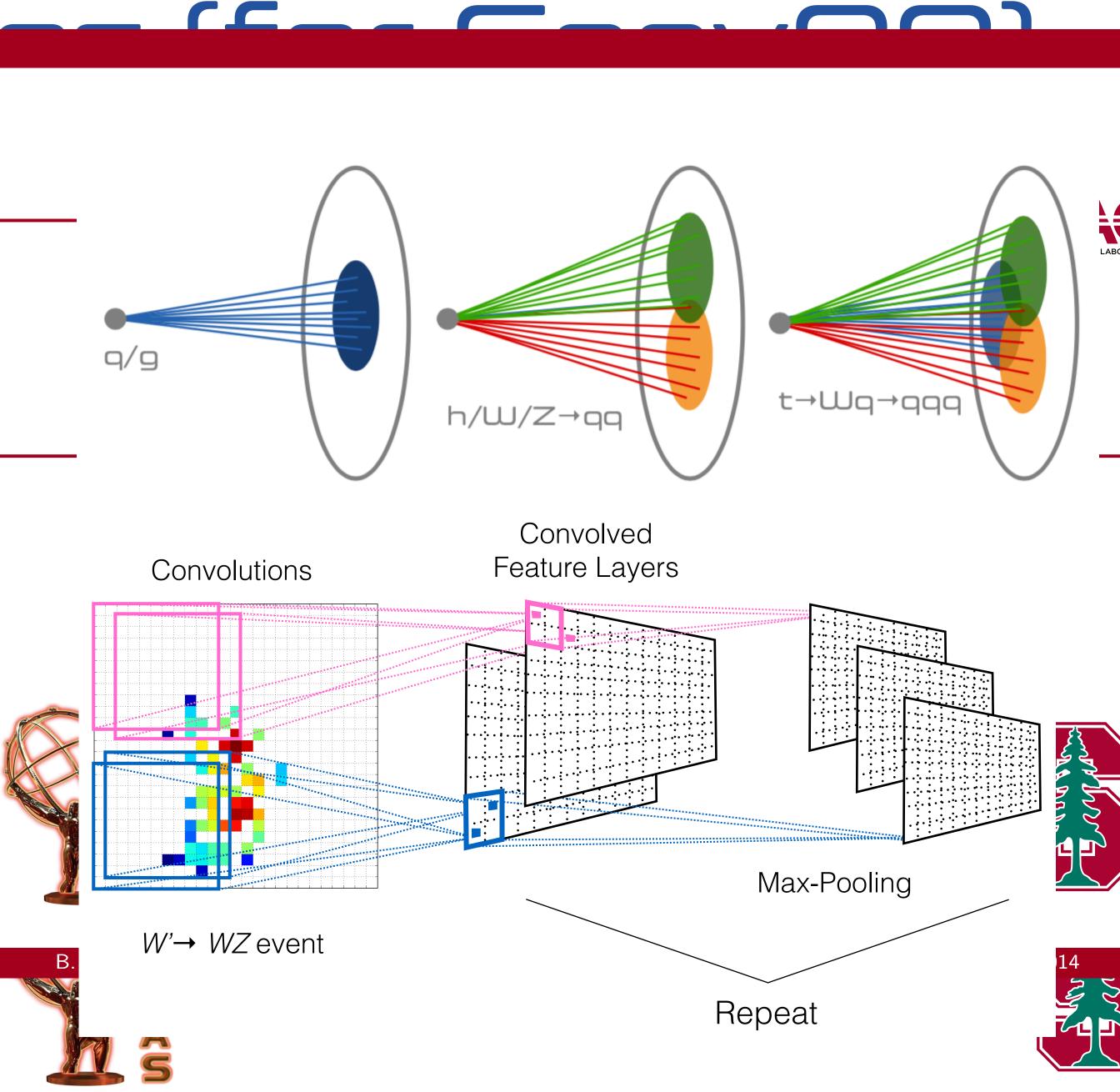
deposited in each cell

• Such an image can then be processed with computingvision techniques

• Pros: can benefit of the progresses made in optimizir computing vision

• Cons: underlying assumption on detector geometry (regula array of pixels) made

mages actual detector ngular grid that allows for an imageof cles are deposited in pixels in (η, ϕ)

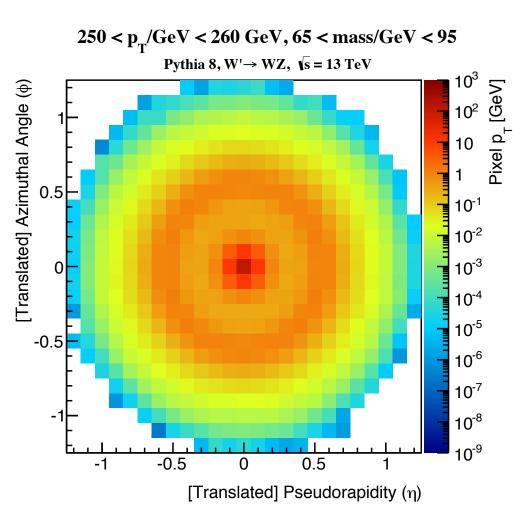


B. Nachman (SLAC)

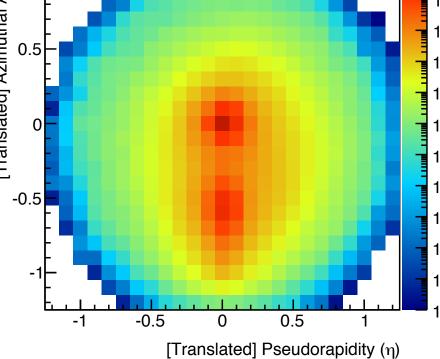
Boosted Boson Type Tagging

Jet as images (for ConvMM)

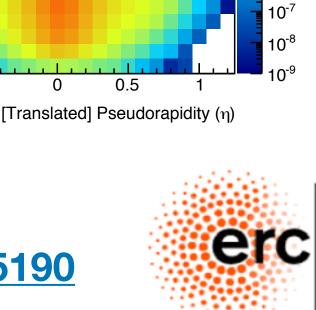
- One can pixelate the surface crossed by the jet and create an image with the momentum deposited in each cell
- Such an image can then be processed with computingvision techniques
- Pros: can benefit of the progresses made in optimizing computing vision
- Cons: underlying assumption on detector geometry (regular array of pixels) made sacrificing information of the actual detector



250 < p_x/GeV < 260 GeV, 65 < mass/GeV < 95 Pythia 8, W' \rightarrow WZ, $\sqrt{s} = 13$ TeV



 $250 < p_T/GeV < 260 GeV, 65 < mass/GeV < 95$ $250 < p_T/GeV < 260 GeV, 65 < mass/GeV < 95$ Pythia 8, QCD dijets, Vs = 13 TeV -0.5 0 [Translated] Pseudorapidity (n)



Pythia 8, QCD dijets, $\sqrt{s} = 13 \text{ TeV}$ -0.5 0.5 -1 0

https://arxiv.org/abs/1511.05190

- 10⁻⁵

• Conv Networks are the most striking example of the success of Deep Learning

• A story of improvement from the 90s to now

• Very effective as a fast tool for particle reconstruction

adversarial training

physics

• Same geometry can be used for image generation with

• Can speed up one of the heaviest tasks in particle

