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๏ Special architectures read the raw information (e.g., 
images) and convert them into “smart variables” (high-level 
features) to accomplish the task 

๏ Typical example: convolutional neural networks for image 
processing & computing vision

Convolutional Layer
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๏ Each image is a matrix 
of pixels 

๏ Each pixel comes with a 
color 

๏ In RGB scheme, these are 
three values i [0,1] 

๏ Each image becomes a 3D 
tensor 

๏ 3 channels of 2D 
pixelated images  

Digital images
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๏ The main ingredient 
of ConvNN is a 
filter, a k x k’ 
matrix of weights 

๏ The filter scans the 
image and performs a 
scalar product of 
each image patch 

๏ This results into a 
new matrix of 
values, with 
different 
dimensionality

Convolutional filter
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Filtro convolutional
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๏ The main ingredient of 
ConvNN is a filter, a k 
x k’ matrix of weights 

๏ The filter scans the 
image and performs a 
scalar product of each 
image patch 

๏ The scan is done 
shifting the filter by a 
stride (of q, 2, … 
cells) 

๏ This results into a new 
matrix of values, with 
different dimensionality



๏ MaxPooling: Given an image 
and a filter of size k x 
k’, scans the image and 
replaces each k x k’ patch 
with its maximum 

๏ AveragePooling:  Given an 
image and a filter of size 
k x k’, scans the image 
and replaces each k x k’ 
patch with its average 

๏ …

Pooling
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๏ When the filter arrived 
at the edge, it might 
exceeds it (if n/k is 
not an integer) 

๏ In this case, a padding 
rule needs to be 
specified 

๏ Same: repeat the values 
at the boundary 

๏ Zero: fill the extra 
columns with zeros

Padding
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Convolutional Layer
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๏ This can be done automatically 
with BatchNormalization 

๏ non-learnable shift and scale 
parameters, adjusted batch by 
batch

BatchNormalization Layer
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๏ It is good practice to give normalized inputs to 
a layer 

๏ With all inputs having the same order of 
magnitude, all weights are equal important in 
the gradient 

๏ Prevents explosion of the loss function



๏ Dense NN architectures can be made 
more complex 

๏ Multiple inputs  

๏ Multiple outputs 

๏ Different networks branches 

๏ This is possible thanks to layer-
manipulation layers 

๏ Add, Subtract, etc. 

๏ Concatenation 

๏ Flattening 

๏ All these operations are usually 
provided with NN training libraries

More complex structures
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๏ A full ConvNN is a 
sequence of 
Con2D+Pooling 
(+BatchNormalization+
Dropout) layers 

๏ The Conv+Pooling 
layer reduces the 2D 
image representation 

๏ The use of multiple 
filters on the image 
make the output grow 
on a third dimension 

๏ Eventually, 
flattening occurs and 
the result is given 
to a dense layer

The full network
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๏ Each filter alters the 
image in a different way, 
picking up different 
aspects of the image 

๏ edges oriented in 
various ways 

๏ enhancing / blur of 
certain features 

๏ It is interesting to 
check what each filter is 
doing (and to produce 
DeepDreams)

What does a ConvNN learn?

14 Check this blog entry on ConvNNs

https://deepdreamgenerator.com
https://ujjwalkarn.me/2016/08/11/intuitive-explanation-convnets/


๏ The use on non-linear activation functions plays a 
special role in enhancing features

What does a ConvNN learn?
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๏ Pooling is important in smoothing out the image 

๏ reduce parameters downstream (and prevent overfitting) 

๏ makes processing independent to local features (distortion, translation) 

๏ yields a scale invariant representation of the image (which could be good 
or bad)

What does a ConvNN learn?
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๏ The Conv layer stars from RAW data and defines interesting 
quantities (high level features) 

๏ The HLFs replace the physics-motivated inputs of a DNN 

๏ The DNN at the end exploits the engineered features to 
accomplish the task

Two tasks in one network

17
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๏ Neocognitron (1980): 
translation-invariant image 
processing with NNs 

๏ LeNet (1989): considered the 
very first ConvNN, designer for 
digit recognition (ZIP codes) 

๏ AlexNet (2012): the first big 
ConvNN (60M parameters, 650K 
neurtons), setting the state of 
the art: trained on GPUs, using 
ReLU and Dropout 

๏ GoogleNet (2014): built on 
AlexNet, introduced an 
inception model to reduce e the 
number of parameters

A history of ConvNNs
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Figure 2: An illustration of the architecture of our CNN, explicitly showing the delineation of responsibilities
between the two GPUs. One GPU runs the layer-parts at the top of the figure while the other runs the layer-parts
at the bottom. The GPUs communicate only at certain layers. The network’s input is 150,528-dimensional, and
the number of neurons in the network’s remaining layers is given by 253,440–186,624–64,896–64,896–43,264–
4096–4096–1000.

neurons in a kernel map). The second convolutional layer takes as input the (response-normalized
and pooled) output of the first convolutional layer and filters it with 256 kernels of size 5⇥ 5⇥ 48.
The third, fourth, and fifth convolutional layers are connected to one another without any intervening
pooling or normalization layers. The third convolutional layer has 384 kernels of size 3 ⇥ 3 ⇥
256 connected to the (normalized, pooled) outputs of the second convolutional layer. The fourth
convolutional layer has 384 kernels of size 3 ⇥ 3 ⇥ 192 , and the fifth convolutional layer has 256
kernels of size 3⇥ 3⇥ 192. The fully-connected layers have 4096 neurons each.

4 Reducing Overfitting

Our neural network architecture has 60 million parameters. Although the 1000 classes of ILSVRC
make each training example impose 10 bits of constraint on the mapping from image to label, this
turns out to be insufficient to learn so many parameters without considerable overfitting. Below, we
describe the two primary ways in which we combat overfitting.

4.1 Data Augmentation

The easiest and most common method to reduce overfitting on image data is to artificially enlarge
the dataset using label-preserving transformations (e.g., [25, 4, 5]). We employ two distinct forms
of data augmentation, both of which allow transformed images to be produced from the original
images with very little computation, so the transformed images do not need to be stored on disk.
In our implementation, the transformed images are generated in Python code on the CPU while the
GPU is training on the previous batch of images. So these data augmentation schemes are, in effect,
computationally free.

The first form of data augmentation consists of generating image translations and horizontal reflec-
tions. We do this by extracting random 224⇥ 224 patches (and their horizontal reflections) from the
256⇥256 images and training our network on these extracted patches4. This increases the size of our
training set by a factor of 2048, though the resulting training examples are, of course, highly inter-
dependent. Without this scheme, our network suffers from substantial overfitting, which would have
forced us to use much smaller networks. At test time, the network makes a prediction by extracting
five 224 ⇥ 224 patches (the four corner patches and the center patch) as well as their horizontal
reflections (hence ten patches in all), and averaging the predictions made by the network’s softmax
layer on the ten patches.

The second form of data augmentation consists of altering the intensities of the RGB channels in
training images. Specifically, we perform PCA on the set of RGB pixel values throughout the
ImageNet training set. To each training image, we add multiples of the found principal components,

4This is the reason why the input images in Figure 2 are 224⇥ 224⇥ 3-dimensional.
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3.1 ReLU Nonlinearity

Figure 1: A four-layer convolutional neural
network with ReLUs (solid line) reaches a 25%
training error rate on CIFAR-10 six times faster
than an equivalent network with tanh neurons
(dashed line). The learning rates for each net-
work were chosen independently to make train-
ing as fast as possible. No regularization of
any kind was employed. The magnitude of the
effect demonstrated here varies with network
architecture, but networks with ReLUs consis-
tently learn several times faster than equivalents
with saturating neurons.

The standard way to model a neuron’s output f as
a function of its input x is with f(x) = tanh(x)
or f(x) = (1 + e�x)�1. In terms of training time
with gradient descent, these saturating nonlinearities
are much slower than the non-saturating nonlinearity
f(x) = max(0, x). Following Nair and Hinton [20],
we refer to neurons with this nonlinearity as Rectified
Linear Units (ReLUs). Deep convolutional neural net-
works with ReLUs train several times faster than their
equivalents with tanh units. This is demonstrated in
Figure 1, which shows the number of iterations re-
quired to reach 25% training error on the CIFAR-10
dataset for a particular four-layer convolutional net-
work. This plot shows that we would not have been
able to experiment with such large neural networks for
this work if we had used traditional saturating neuron
models.

We are not the first to consider alternatives to tradi-
tional neuron models in CNNs. For example, Jarrett
et al. [11] claim that the nonlinearity f(x) = |tanh(x)|
works particularly well with their type of contrast nor-
malization followed by local average pooling on the
Caltech-101 dataset. However, on this dataset the pri-
mary concern is preventing overfitting, so the effect
they are observing is different from the accelerated
ability to fit the training set which we report when us-
ing ReLUs. Faster learning has a great influence on the
performance of large models trained on large datasets.

3.2 Training on Multiple GPUs

A single GTX 580 GPU has only 3GB of memory, which limits the maximum size of the networks
that can be trained on it. It turns out that 1.2 million training examples are enough to train networks
which are too big to fit on one GPU. Therefore we spread the net across two GPUs. Current GPUs
are particularly well-suited to cross-GPU parallelization, as they are able to read from and write to
one another’s memory directly, without going through host machine memory. The parallelization
scheme that we employ essentially puts half of the kernels (or neurons) on each GPU, with one
additional trick: the GPUs communicate only in certain layers. This means that, for example, the
kernels of layer 3 take input from all kernel maps in layer 2. However, kernels in layer 4 take input
only from those kernel maps in layer 3 which reside on the same GPU. Choosing the pattern of
connectivity is a problem for cross-validation, but this allows us to precisely tune the amount of
communication until it is an acceptable fraction of the amount of computation.

The resultant architecture is somewhat similar to that of the “columnar” CNN employed by Cireşan
et al. [5], except that our columns are not independent (see Figure 2). This scheme reduces our top-1
and top-5 error rates by 1.7% and 1.2%, respectively, as compared with a net with half as many
kernels in each convolutional layer trained on one GPU. The two-GPU net takes slightly less time
to train than the one-GPU net2.

2The one-GPU net actually has the same number of kernels as the two-GPU net in the final convolutional
layer. This is because most of the net’s parameters are in the first fully-connected layer, which takes the last
convolutional layer as input. So to make the two nets have approximately the same number of parameters, we
did not halve the size of the final convolutional layer (nor the fully-conneced layers which follow). Therefore
this comparison is biased in favor of the one-GPU net, since it is bigger than “half the size” of the two-GPU
net.

3

https://www.rctn.org/bruno/public/papers/Fukushima1980.pdf
http://yann.lecun.com/exdb/publis/pdf/lecun-01a.pdf
https://papers.nips.cc/paper/4824-imagenet-classification-with-deep-convolutional-neural-networks.pdf
https://arxiv.org/pdf/1409.4842.pdf


๏ Rather than going deeper and deeper, 
inception architecture go wider 

๏ Several conv layers, with different 
filter size, process the same inputs 

๏ This way, more features can be detected 
from the same image 

๏ The outcome of this parallel processing 
is then recombined through a 
concatenation step ass channels of an 
image

Inception Module
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Figure 2: Inception module

increase in the number of outputs from stage to stage. Even while this architecture might cover the
optimal sparse structure, it would do it very inefficiently, leading to a computational blow up within
a few stages.

This leads to the second idea of the proposed architecture: judiciously applying dimension reduc-
tions and projections wherever the computational requirements would increase too much otherwise.
This is based on the success of embeddings: even low dimensional embeddings might contain a lot
of information about a relatively large image patch. However, embeddings represent information in
a dense, compressed form and compressed information is harder to model. We would like to keep
our representation sparse at most places (as required by the conditions of [2]) and compress the
signals only whenever they have to be aggregated en masse. That is, 1⇥1 convolutions are used to
compute reductions before the expensive 3⇥3 and 5⇥5 convolutions. Besides being used as reduc-
tions, they also include the use of rectified linear activation which makes them dual-purpose. The
final result is depicted in Figure 2(b).

In general, an Inception network is a network consisting of modules of the above type stacked upon
each other, with occasional max-pooling layers with stride 2 to halve the resolution of the grid. For
technical reasons (memory efficiency during training), it seemed beneficial to start using Inception
modules only at higher layers while keeping the lower layers in traditional convolutional fashion.
This is not strictly necessary, simply reflecting some infrastructural inefficiencies in our current
implementation.

One of the main beneficial aspects of this architecture is that it allows for increasing the number of
units at each stage significantly without an uncontrolled blow-up in computational complexity. The
ubiquitous use of dimension reduction allows for shielding the large number of input filters of the
last stage to the next layer, first reducing their dimension before convolving over them with a large
patch size. Another practically useful aspect of this design is that it aligns with the intuition that
visual information should be processed at various scales and then aggregated so that the next stage
can abstract features from different scales simultaneously.

The improved use of computational resources allows for increasing both the width of each stage
as well as the number of stages without getting into computational difficulties. Another way to
utilize the inception architecture is to create slightly inferior, but computationally cheaper versions
of it. We have found that all the included the knobs and levers allow for a controlled balancing of
computational resources that can result in networks that are 2� 3⇥ faster than similarly performing
networks with non-Inception architecture, however this requires careful manual design at this point.

5 GoogLeNet

We chose GoogLeNet as our team-name in the ILSVRC14 competition. This name is an homage to
Yann LeCuns pioneering LeNet 5 network [10]. We also use GoogLeNet to refer to the particular
incarnation of the Inception architecture used in our submission for the competition. We have also
used a deeper and wider Inception network, the quality of which was slightly inferior, but adding it
to the ensemble seemed to improve the results marginally. We omit the details of that network, since
our experiments have shown that the influence of the exact architectural parameters is relatively
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๏ VGGNet(2014):exploit small filters (3x3, 1x1), 
previously considered not optimal in a stack 
of Conv layers (rather than 1Conv+1Pooling) 

๏ ResNet (2015):implemented skip connections, 
which were proven to boost performances

A history of ConvNNs

22 Check this blog entry on ConvNNs
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Figure 2. Residual learning: a building block.

are comparably good or better than the constructed solution
(or unable to do so in feasible time).

In this paper, we address the degradation problem by
introducing a deep residual learning framework. In-
stead of hoping each few stacked layers directly fit a
desired underlying mapping, we explicitly let these lay-
ers fit a residual mapping. Formally, denoting the desired
underlying mapping as H(x), we let the stacked nonlinear
layers fit another mapping of F(x) := H(x)�x. The orig-
inal mapping is recast into F(x)+x. We hypothesize that it
is easier to optimize the residual mapping than to optimize
the original, unreferenced mapping. To the extreme, if an
identity mapping were optimal, it would be easier to push
the residual to zero than to fit an identity mapping by a stack
of nonlinear layers.

The formulation of F(x)+x can be realized by feedfor-
ward neural networks with “shortcut connections” (Fig. 2).
Shortcut connections [2, 34, 49] are those skipping one or
more layers. In our case, the shortcut connections simply
perform identity mapping, and their outputs are added to
the outputs of the stacked layers (Fig. 2). Identity short-
cut connections add neither extra parameter nor computa-
tional complexity. The entire network can still be trained
end-to-end by SGD with backpropagation, and can be eas-
ily implemented using common libraries (e.g., Caffe [19])
without modifying the solvers.

We present comprehensive experiments on ImageNet
[36] to show the degradation problem and evaluate our
method. We show that: 1) Our extremely deep residual nets
are easy to optimize, but the counterpart “plain” nets (that
simply stack layers) exhibit higher training error when the
depth increases; 2) Our deep residual nets can easily enjoy
accuracy gains from greatly increased depth, producing re-
sults substantially better than previous networks.

Similar phenomena are also shown on the CIFAR-10 set
[20], suggesting that the optimization difficulties and the
effects of our method are not just akin to a particular dataset.
We present successfully trained models on this dataset with
over 100 layers, and explore models with over 1000 layers.

On the ImageNet classification dataset [36], we obtain
excellent results by extremely deep residual nets. Our 152-
layer residual net is the deepest network ever presented on
ImageNet, while still having lower complexity than VGG
nets [41]. Our ensemble has 3.57% top-5 error on the

ImageNet test set, and won the 1st place in the ILSVRC
2015 classification competition. The extremely deep rep-
resentations also have excellent generalization performance
on other recognition tasks, and lead us to further win the
1st places on: ImageNet detection, ImageNet localization,
COCO detection, and COCO segmentation in ILSVRC &
COCO 2015 competitions. This strong evidence shows that
the residual learning principle is generic, and we expect that
it is applicable in other vision and non-vision problems.

2. Related Work

Residual Representations. In image recognition, VLAD
[18] is a representation that encodes by the residual vectors
with respect to a dictionary, and Fisher Vector [30] can be
formulated as a probabilistic version [18] of VLAD. Both
of them are powerful shallow representations for image re-
trieval and classification [4, 48]. For vector quantization,
encoding residual vectors [17] is shown to be more effec-
tive than encoding original vectors.

In low-level vision and computer graphics, for solv-
ing Partial Differential Equations (PDEs), the widely used
Multigrid method [3] reformulates the system as subprob-
lems at multiple scales, where each subproblem is respon-
sible for the residual solution between a coarser and a finer
scale. An alternative to Multigrid is hierarchical basis pre-
conditioning [45, 46], which relies on variables that repre-
sent residual vectors between two scales. It has been shown
[3, 45, 46] that these solvers converge much faster than stan-
dard solvers that are unaware of the residual nature of the
solutions. These methods suggest that a good reformulation
or preconditioning can simplify the optimization.

Shortcut Connections. Practices and theories that lead to
shortcut connections [2, 34, 49] have been studied for a long
time. An early practice of training multi-layer perceptrons
(MLPs) is to add a linear layer connected from the network
input to the output [34, 49]. In [44, 24], a few interme-
diate layers are directly connected to auxiliary classifiers
for addressing vanishing/exploding gradients. The papers
of [39, 38, 31, 47] propose methods for centering layer re-
sponses, gradients, and propagated errors, implemented by
shortcut connections. In [44], an “inception” layer is com-
posed of a shortcut branch and a few deeper branches.

Concurrent with our work, “highway networks” [42, 43]
present shortcut connections with gating functions [15].
These gates are data-dependent and have parameters, in
contrast to our identity shortcuts that are parameter-free.
When a gated shortcut is “closed” (approaching zero), the
layers in highway networks represent non-residual func-
tions. On the contrary, our formulation always learns
residual functions; our identity shortcuts are never closed,
and all information is always passed through, with addi-
tional residual functions to be learned. In addition, high-

2

7
x
7
 
c
o
n
v
,
 
6
4
,
 
/
2

p
o
o
l
,
 
/
2

3
x
3
 c
o
n
v
,
 6
4

3
x
3
 c
o
n
v
,
 6
4

3
x
3
 c
o
n
v
,
 6
4

3
x
3
 c
o
n
v
,
 6
4

3
x
3
 c
o
n
v
,
 6
4

3
x
3
 c
o
n
v
,
 6
4

3
x
3
 c
o
n
v
,
 1
2
8
,
 /
2

3
x
3
 
c
o
n
v
,
 
1
2
8

3
x
3
 
c
o
n
v
,
 
1
2
8

3
x
3
 
c
o
n
v
,
 
1
2
8

3
x
3
 
c
o
n
v
,
 
1
2
8

3
x
3
 
c
o
n
v
,
 
1
2
8

3
x
3
 
c
o
n
v
,
 
1
2
8

3
x
3
 
c
o
n
v
,
 
1
2
8

3
x
3
 c
o
n
v
,
 2
5
6
,
 /
2

3
x
3
 
c
o
n
v
,
 
2
5
6

3
x
3
 
c
o
n
v
,
 
2
5
6

3
x
3
 
c
o
n
v
,
 
2
5
6

3
x
3
 
c
o
n
v
,
 
2
5
6

3
x
3
 
c
o
n
v
,
 
2
5
6

3
x
3
 
c
o
n
v
,
 
2
5
6

3
x
3
 
c
o
n
v
,
 
2
5
6

3
x
3
 
c
o
n
v
,
 
2
5
6

3
x
3
 
c
o
n
v
,
 
2
5
6

3
x
3
 
c
o
n
v
,
 
2
5
6

3
x
3
 
c
o
n
v
,
 
2
5
6

3
x
3
 c
o
n
v
,
 5
1
2
,
 /
2

3
x
3
 
c
o
n
v
,
 
5
1
2

3
x
3
 
c
o
n
v
,
 
5
1
2

3
x
3
 
c
o
n
v
,
 
5
1
2

3
x
3
 
c
o
n
v
,
 
5
1
2

3
x
3
 
c
o
n
v
,
 
5
1
2

a
v
g
 
p
o
o
l

f
c
 1
0
0
0

i
m
a
g
e

3
x
3
 c
o
n
v
,
 5
1
2

3
x
3
 c
o
n
v
,
 6
4

3
x
3
 c
o
n
v
,
 6
4

p
o
o
l
,
 
/
2

3
x
3
 
c
o
n
v
,
 
1
2
8

3
x
3
 
c
o
n
v
,
 
1
2
8

p
o
o
l
,
 
/
2

3
x
3
 
c
o
n
v
,
 
2
5
6

3
x
3
 
c
o
n
v
,
 
2
5
6

3
x
3
 
c
o
n
v
,
 
2
5
6

3
x
3
 
c
o
n
v
,
 
2
5
6

p
o
o
l
,
 
/
2

3
x
3
 
c
o
n
v
,
 
5
1
2

3
x
3
 
c
o
n
v
,
 
5
1
2

3
x
3
 
c
o
n
v
,
 
5
1
2

p
o
o
l
,
 
/
2

3
x
3
 
c
o
n
v
,
 
5
1
2

3
x
3
 
c
o
n
v
,
 
5
1
2

3
x
3
 
c
o
n
v
,
 
5
1
2

3
x
3
 
c
o
n
v
,
 
5
1
2

p
o
o
l
,
 
/
2

f
c
 4
0
9
6

f
c
 4
0
9
6

f
c
 1
0
0
0

i
m
a
g
e

o
u
t
p
u
t
 

s
iz
e
:
 
1
1
2

o
u
t
p
u
t
 

s
iz
e
:
 
2
2
4

o
u
t
p
u
t
 

s
i
z
e
:
 5
6

o
u
t
p
u
t
 

s
i
z
e
:
 2
8

o
u
t
p
u
t
 

s
i
z
e
:
 1
4

o
u
t
p
u
t
 

s
iz
e
:
 7

o
u
t
p
u
t
 

s
iz
e
:
 1

V
G
G
-
1
9

3
4
-
l
a
y
e
r
 p
l
a
in

7
x
7
 
c
o
n
v
,
 
6
4
,
 
/
2

p
o
o
l
,
 /
2

3
x
3
 c
o
n
v
,
 6
4

3
x
3
 c
o
n
v
,
 6
4

3
x
3
 c
o
n
v
,
 6
4

3
x
3
 c
o
n
v
,
 6
4

3
x
3
 c
o
n
v
,
 6
4

3
x
3
 c
o
n
v
,
 6
4

3
x
3
 c
o
n
v
,
 1
2
8
,
 /
2

3
x
3
 
c
o
n
v
,
 
1
2
8

3
x
3
 
c
o
n
v
,
 
1
2
8

3
x
3
 
c
o
n
v
,
 
1
2
8

3
x
3
 
c
o
n
v
,
 
1
2
8

3
x
3
 
c
o
n
v
,
 
1
2
8

3
x
3
 
c
o
n
v
,
 
1
2
8

3
x
3
 
c
o
n
v
,
 
1
2
8

3
x
3
 c
o
n
v
,
 2
5
6
,
 /
2

3
x
3
 
c
o
n
v
,
 
2
5
6

3
x
3
 
c
o
n
v
,
 
2
5
6

3
x
3
 
c
o
n
v
,
 
2
5
6

3
x
3
 
c
o
n
v
,
 
2
5
6

3
x
3
 
c
o
n
v
,
 
2
5
6

3
x
3
 
c
o
n
v
,
 
2
5
6

3
x
3
 
c
o
n
v
,
 
2
5
6

3
x
3
 
c
o
n
v
,
 
2
5
6

3
x
3
 
c
o
n
v
,
 
2
5
6

3
x
3
 
c
o
n
v
,
 
2
5
6

3
x
3
 
c
o
n
v
,
 
2
5
6

3
x
3
 c
o
n
v
,
 5
1
2
,
 /
2

3
x
3
 
c
o
n
v
,
 
5
1
2

3
x
3
 
c
o
n
v
,
 
5
1
2

3
x
3
 
c
o
n
v
,
 
5
1
2

3
x
3
 
c
o
n
v
,
 
5
1
2

3
x
3
 
c
o
n
v
,
 
5
1
2

a
v
g
 
p
o
o
l

f
c
 1
0
0
0

im
a
g
e

3
4
-
la
y
e
r
 r
e
s
id
u
a
l

Fi
gu

re
3.

Ex
am

pl
e

ne
tw

or
k

ar
ch

ite
ct

ur
es

fo
rI

m
ag

eN
et

.
L

e
ft

:
th

e
V

G
G

-1
9

m
od

el
[4

1]
(1

9.
6

bi
lli

on
FL

O
Ps

)
as

a
re

fe
re

nc
e.

M
id

-

d
le

:a
pl

ai
n

ne
tw

or
k

w
ith

34
pa

ra
m

et
er

la
ye

rs
(3

.6
bi

lli
on

FL
O

Ps
).

R
ig

h
t:

a
re

si
du

al
ne

tw
or

k
w

ith
34

pa
ra

m
et

er
la

ye
rs

(3
.6

bi
lli

on
FL

O
Ps

).
Th

e
do

tte
d

sh
or

tc
ut

si
nc

re
as

e
di

m
en

si
on

s.
T

a
b

le
1

sh
ow

s
m

or
e

de
ta

ils
an

d
ot

he
rv

ar
ia

nt
s.

R
e
s
id

u
a
l

N
e
tw

o
r
k

.
B

as
ed

on
th

e
ab

ov
e

pl
ai

n
ne

tw
or

k,
w

e
in

se
rt

sh
or

tc
ut

co
nn

ec
tio

ns
(F

ig
.

3,
rig

ht
)

w
hi

ch
tu

rn
th

e
ne

tw
or

k
in

to
its

co
un

te
rp

ar
tr

es
id

ua
lv

er
si

on
.

Th
e

id
en

tit
y

sh
or

tc
ut

s
(E

qn
.(1

))
ca

n
be

di
re

ct
ly

us
ed

w
he

n
th

e
in

pu
ta

nd
ou

tp
ut

ar
e

of
th

e
sa

m
e

di
m

en
si

on
s

(s
ol

id
lin

e
sh

or
tc

ut
s

in
Fi

g.
3)

.W
he

n
th

e
di

m
en

si
on

si
nc

re
as

e
(d

ot
te

d
lin

e
sh

or
tc

ut
s

in
Fi

g.
3)

,w
e

co
ns

id
er

tw
o

op
tio

ns
:

(A
)

Th
e

sh
or

tc
ut

st
ill

pe
rf

or
m

s
id

en
tit

y
m

ap
pi

ng
,w

ith
ex

tra
ze

ro
en

tri
es

pa
dd

ed
fo

ri
nc

re
as

in
g

di
m

en
si

on
s.

Th
is

op
tio

n
in

tro
du

ce
s

no
ex

tra
pa

ra
m

et
er

;(
B

)T
he

pr
oj

ec
tio

n
sh

or
tc

ut
in

Eq
n.

(2
)i

su
se

d
to

m
at

ch
di

m
en

si
on

s
(d

on
e

by
1⇥

1
co

nv
ol

ut
io

ns
).

Fo
r

bo
th

op
tio

ns
,w

he
n

th
e

sh
or

tc
ut

s
go

ac
ro

ss
fe

at
ur

e
m

ap
s

of
tw

o
si

ze
s,

th
ey

ar
e

pe
rf

or
m

ed
w

ith
a

st
rid

e
of

2.

3
.4

.
I
m

p
le

m
e
n

ta
ti

o
n

O
ur

im
pl

em
en

ta
tio

n
fo

r
Im

ag
eN

et
fo

llo
w

s
th

e
pr

ac
tic

e
in

[2
1,

41
].

Th
e

im
ag

e
is

re
si

ze
d

w
ith

its
sh

or
te

r
si

de
ra

n-
do

m
ly

sa
m

pl
ed

in
[2
56

,4
80
]

fo
r

sc
al

e
au

gm
en

ta
tio

n
[4

1]
.

A
22

4⇥
22

4
cr

op
is

ra
nd

om
ly

sa
m

pl
ed

fr
om

an
im

ag
e

or
its

ho
riz

on
ta

lfl
ip

,w
ith

th
e

pe
r-

pi
xe

lm
ea

n
su

bt
ra

ct
ed

[2
1]

.T
he

st
an

da
rd

co
lo

ra
ug

m
en

ta
tio

n
in

[2
1]

is
us

ed
.W

e
ad

op
tb

at
ch

no
rm

al
iz

at
io

n
(B

N
)

[1
6]

rig
ht

af
te

r
ea

ch
co

nv
ol

ut
io

n
an

d
be

fo
re

ac
tiv

at
io

n,
fo

llo
w

in
g

[1
6]

.
W

e
in

iti
al

iz
e

th
e

w
ei

gh
ts

as
in

[1
3]

an
d

tra
in

al
lp

la
in

/re
si

du
al

ne
ts

fr
om

sc
ra

tc
h.

W
e

us
e

SG
D

w
ith

a
m

in
i-b

at
ch

si
ze

of
25

6.
Th

e
le

ar
ni

ng
ra

te
st

ar
ts

fr
om

0.
1

an
d

is
di

vi
de

d
by

10
w

he
n

th
e

er
ro

rp
la

te
au

s,
an

d
th

e
m

od
el

sa
re

tra
in

ed
fo

ru
p

to
60

⇥
10

4
ite

ra
tio

ns
.W

e
us

e
a

w
ei

gh
td

ec
ay

of
0.

00
01

an
d

a
m

om
en

tu
m

of
0.

9.
W

e
do

no
tu

se
dr

op
ou

t[
14

],
fo

llo
w

in
g

th
e

pr
ac

tic
e

in
[1

6]
.

In
te

st
in

g,
fo

rc
om

pa
ris

on
st

ud
ie

s
w

e
ad

op
tt

he
st

an
da

rd
10

-c
ro

p
te

st
in

g
[2

1]
.

Fo
r

be
st

re
su

lts
,w

e
ad

op
tt

he
fu

lly
-

co
nv

ol
ut

io
na

l
fo

rm
as

in
[4

1,
13

],
an

d
av

er
ag

e
th

e
sc

or
es

at
m

ul
tip

le
sc

al
es

(im
ag

es
ar

e
re

si
ze

d
su

ch
th

at
th

e
sh

or
te

r
si

de
is

in
{
22
4,
25
6,
38
4,
48
0,
64
0}

).

4
.
E

x
p

e
r
im

e
n

ts

4
.1

.
I
m

a
g

e
N

e
t

C
la

s
s
ifi

c
a

ti
o

n

W
e

ev
al

ua
te

ou
rm

et
ho

d
on

th
e

Im
ag

eN
et

20
12

cl
as

si
fi-

ca
tio

n
da

ta
se

t[
36

]t
ha

tc
on

si
st

so
f1

00
0

cl
as

se
s.

Th
e

m
od

el
s

ar
e

tra
in

ed
on

th
e

1.
28

m
ill

io
n

tra
in

in
g

im
ag

es
,a

nd
ev

al
u-

at
ed

on
th

e
50

k
va

lid
at

io
n

im
ag

es
.

W
e

al
so

ob
ta

in
a

fin
al

re
su

lt
on

th
e

10
0k

te
st

im
ag

es
,r

ep
or

te
d

by
th

e
te

st
se

rv
er

.
W

e
ev

al
ua

te
bo

th
to

p-
1

an
d

to
p-

5
er

ro
rr

at
es

.

P
la

in
N

e
tw

o
r
k

s
.

W
e

fir
st

ev
al

ua
te

18
-la

ye
r

an
d

34
-la

ye
r

pl
ai

n
ne

ts
.T

he
34

-la
ye

rp
la

in
ne

ti
s

in
Fi

g.
3

(m
id

dl
e)

.T
he

18
-la

ye
rp

la
in

ne
ti

s
of

a
si

m
ila

rf
or

m
.

Se
e

Ta
bl

e
1

fo
rd

e-
ta

ile
d

ar
ch

ite
ct

ur
es

.
Th

e
re

su
lts

in
Ta

bl
e

2
sh

ow
th

at
th

e
de

ep
er

34
-la

ye
rp

la
in

ne
th

as
hi

gh
er

va
lid

at
io

n
er

ro
r

th
an

th
e

sh
al

lo
w

er
18

-la
ye

r
pl

ai
n

ne
t.

To
re

ve
al

th
e

re
as

on
s,

in
Fi

g.
4

(le
ft)

w
e

co
m

-
pa

re
th

ei
rt

ra
in

in
g/

va
lid

at
io

n
er

ro
rs

du
rin

g
th

e
tra

in
in

g
pr

o-
ce

du
re

.
W

e
ha

ve
ob

se
rv

ed
th

e
de

gr
ad

at
io

n
pr

ob
le

m
-

th
e

4

7
x
7
 
c
o
n
v
,
 
6
4
,
 
/
2

p
o
o
l
,
 
/
2

3
x
3
 c
o
n
v
,
 6
4

3
x
3
 c
o
n
v
,
 6
4

3
x
3
 c
o
n
v
,
 6
4

3
x
3
 c
o
n
v
,
 6
4

3
x
3
 c
o
n
v
,
 6
4

3
x
3
 c
o
n
v
,
 6
4

3
x
3
 c
o
n
v
,
 1
2
8
,
 /
2

3
x
3
 
c
o
n
v
,
 
1
2
8

3
x
3
 
c
o
n
v
,
 
1
2
8

3
x
3
 
c
o
n
v
,
 
1
2
8

3
x
3
 
c
o
n
v
,
 
1
2
8

3
x
3
 
c
o
n
v
,
 
1
2
8

3
x
3
 
c
o
n
v
,
 
1
2
8

3
x
3
 
c
o
n
v
,
 
1
2
8

3
x
3
 c
o
n
v
,
 2
5
6
,
 /
2

3
x
3
 
c
o
n
v
,
 
2
5
6

3
x
3
 
c
o
n
v
,
 
2
5
6

3
x
3
 
c
o
n
v
,
 
2
5
6

3
x
3
 
c
o
n
v
,
 
2
5
6

3
x
3
 
c
o
n
v
,
 
2
5
6

3
x
3
 
c
o
n
v
,
 
2
5
6

3
x
3
 
c
o
n
v
,
 
2
5
6

3
x
3
 
c
o
n
v
,
 
2
5
6

3
x
3
 
c
o
n
v
,
 
2
5
6

3
x
3
 
c
o
n
v
,
 
2
5
6

3
x
3
 
c
o
n
v
,
 
2
5
6

3
x
3
 c
o
n
v
,
 5
1
2
,
 /
2

3
x
3
 
c
o
n
v
,
 
5
1
2

3
x
3
 
c
o
n
v
,
 
5
1
2

3
x
3
 
c
o
n
v
,
 
5
1
2

3
x
3
 
c
o
n
v
,
 
5
1
2

3
x
3
 
c
o
n
v
,
 
5
1
2

a
v
g
 
p
o
o
l

f
c
 1
0
0
0

i
m
a
g
e

3
x
3
 c
o
n
v
,
 5
1
2

3
x
3
 c
o
n
v
,
 6
4

3
x
3
 c
o
n
v
,
 6
4

p
o
o
l
,
 
/
2

3
x
3
 
c
o
n
v
,
 
1
2
8

3
x
3
 
c
o
n
v
,
 
1
2
8

p
o
o
l
,
 
/
2

3
x
3
 
c
o
n
v
,
 
2
5
6

3
x
3
 
c
o
n
v
,
 
2
5
6

3
x
3
 
c
o
n
v
,
 
2
5
6

3
x
3
 
c
o
n
v
,
 
2
5
6

p
o
o
l
,
 
/
2

3
x
3
 
c
o
n
v
,
 
5
1
2

3
x
3
 
c
o
n
v
,
 
5
1
2

3
x
3
 
c
o
n
v
,
 
5
1
2

p
o
o
l
,
 
/
2

3
x
3
 
c
o
n
v
,
 
5
1
2

3
x
3
 
c
o
n
v
,
 
5
1
2

3
x
3
 
c
o
n
v
,
 
5
1
2

3
x
3
 
c
o
n
v
,
 
5
1
2

p
o
o
l
,
 
/
2

f
c
 4
0
9
6

f
c
 4
0
9
6

f
c
 1
0
0
0

i
m
a
g
e

o
u
t
p
u
t
 

s
iz
e
:
 
1
1
2

o
u
t
p
u
t
 

s
iz
e
:
 
2
2
4

o
u
t
p
u
t
 

s
i
z
e
:
 5
6

o
u
t
p
u
t
 

s
i
z
e
:
 2
8

o
u
t
p
u
t
 

s
i
z
e
:
 1
4

o
u
t
p
u
t
 

s
iz
e
:
 7

o
u
t
p
u
t
 

s
iz
e
:
 1

V
G
G
-
1
9

3
4
-
l
a
y
e
r
 p
l
a
in

7
x
7
 
c
o
n
v
,
 
6
4
,
 
/
2

p
o
o
l
,
 /
2

3
x
3
 c
o
n
v
,
 6
4

3
x
3
 c
o
n
v
,
 6
4

3
x
3
 c
o
n
v
,
 6
4

3
x
3
 c
o
n
v
,
 6
4

3
x
3
 c
o
n
v
,
 6
4

3
x
3
 c
o
n
v
,
 6
4

3
x
3
 c
o
n
v
,
 1
2
8
,
 /
2

3
x
3
 
c
o
n
v
,
 
1
2
8

3
x
3
 
c
o
n
v
,
 
1
2
8

3
x
3
 
c
o
n
v
,
 
1
2
8

3
x
3
 
c
o
n
v
,
 
1
2
8

3
x
3
 
c
o
n
v
,
 
1
2
8

3
x
3
 
c
o
n
v
,
 
1
2
8

3
x
3
 
c
o
n
v
,
 
1
2
8

3
x
3
 c
o
n
v
,
 2
5
6
,
 /
2

3
x
3
 
c
o
n
v
,
 
2
5
6

3
x
3
 
c
o
n
v
,
 
2
5
6

3
x
3
 
c
o
n
v
,
 
2
5
6

3
x
3
 
c
o
n
v
,
 
2
5
6

3
x
3
 
c
o
n
v
,
 
2
5
6

3
x
3
 
c
o
n
v
,
 
2
5
6

3
x
3
 
c
o
n
v
,
 
2
5
6

3
x
3
 
c
o
n
v
,
 
2
5
6

3
x
3
 
c
o
n
v
,
 
2
5
6

3
x
3
 
c
o
n
v
,
 
2
5
6

3
x
3
 
c
o
n
v
,
 
2
5
6

3
x
3
 c
o
n
v
,
 5
1
2
,
 /
2

3
x
3
 
c
o
n
v
,
 
5
1
2

3
x
3
 
c
o
n
v
,
 
5
1
2

3
x
3
 
c
o
n
v
,
 
5
1
2

3
x
3
 
c
o
n
v
,
 
5
1
2

3
x
3
 
c
o
n
v
,
 
5
1
2

a
v
g
 
p
o
o
l

f
c
 1
0
0
0

im
a
g
e

3
4
-
la
y
e
r
 r
e
s
id
u
a
l

Fi
gu

re
3.

Ex
am

pl
e

ne
tw

or
k

ar
ch

ite
ct

ur
es

fo
rI

m
ag

eN
et

.
L

e
ft

:
th

e
V

G
G

-1
9

m
od

el
[4

1]
(1

9.
6

bi
lli

on
FL

O
Ps

)
as

a
re

fe
re

nc
e.

M
id

-

d
le

:a
pl

ai
n

ne
tw

or
k

w
ith

34
pa

ra
m

et
er

la
ye

rs
(3

.6
bi

lli
on

FL
O

Ps
).

R
ig

h
t:

a
re

si
du

al
ne

tw
or

k
w

ith
34

pa
ra

m
et

er
la

ye
rs

(3
.6

bi
lli

on
FL

O
Ps

).
Th

e
do

tte
d

sh
or

tc
ut

si
nc

re
as

e
di

m
en

si
on

s.
T

a
b

le
1

sh
ow

s
m

or
e

de
ta

ils
an

d
ot

he
rv

ar
ia

nt
s.

R
e
s
id

u
a
l

N
e
tw

o
r
k

.
B

as
ed

on
th

e
ab

ov
e

pl
ai

n
ne

tw
or

k,
w

e
in

se
rt

sh
or

tc
ut

co
nn

ec
tio

ns
(F

ig
.

3,
rig

ht
)

w
hi

ch
tu

rn
th

e
ne

tw
or

k
in

to
its

co
un

te
rp

ar
tr

es
id

ua
lv

er
si

on
.

Th
e

id
en

tit
y

sh
or

tc
ut

s
(E

qn
.(1

))
ca

n
be

di
re

ct
ly

us
ed

w
he

n
th

e
in

pu
ta

nd
ou

tp
ut

ar
e

of
th

e
sa

m
e

di
m

en
si

on
s

(s
ol

id
lin

e
sh

or
tc

ut
s

in
Fi

g.
3)

.W
he

n
th

e
di

m
en

si
on

si
nc

re
as

e
(d

ot
te

d
lin

e
sh

or
tc

ut
s

in
Fi

g.
3)

,w
e

co
ns

id
er

tw
o

op
tio

ns
:

(A
)

Th
e

sh
or

tc
ut

st
ill

pe
rf

or
m

s
id

en
tit

y
m

ap
pi

ng
,w

ith
ex

tra
ze

ro
en

tri
es

pa
dd

ed
fo

ri
nc

re
as

in
g

di
m

en
si

on
s.

Th
is

op
tio

n
in

tro
du

ce
s

no
ex

tra
pa

ra
m

et
er

;(
B

)T
he

pr
oj

ec
tio

n
sh

or
tc

ut
in

Eq
n.

(2
)i

su
se

d
to

m
at

ch
di

m
en

si
on

s
(d

on
e

by
1⇥

1
co

nv
ol

ut
io

ns
).

Fo
r

bo
th

op
tio

ns
,w

he
n

th
e

sh
or

tc
ut

s
go

ac
ro

ss
fe

at
ur

e
m

ap
s

of
tw

o
si

ze
s,

th
ey

ar
e

pe
rf

or
m

ed
w

ith
a

st
rid

e
of

2.

3
.4

.
I
m

p
le

m
e
n

ta
ti

o
n

O
ur

im
pl

em
en

ta
tio

n
fo

r
Im

ag
eN

et
fo

llo
w

s
th

e
pr

ac
tic

e
in

[2
1,

41
].

Th
e

im
ag

e
is

re
si

ze
d

w
ith

its
sh

or
te

r
si

de
ra

n-
do

m
ly

sa
m

pl
ed

in
[2
56

,4
80
]

fo
r

sc
al

e
au

gm
en

ta
tio

n
[4

1]
.

A
22

4⇥
22

4
cr

op
is

ra
nd

om
ly

sa
m

pl
ed

fr
om

an
im

ag
e

or
its

ho
riz

on
ta

lfl
ip

,w
ith

th
e

pe
r-

pi
xe

lm
ea

n
su

bt
ra

ct
ed

[2
1]

.T
he

st
an

da
rd

co
lo

ra
ug

m
en

ta
tio

n
in

[2
1]

is
us

ed
.W

e
ad

op
tb

at
ch

no
rm

al
iz

at
io

n
(B

N
)

[1
6]

rig
ht

af
te

r
ea

ch
co

nv
ol

ut
io

n
an

d
be

fo
re

ac
tiv

at
io

n,
fo

llo
w

in
g

[1
6]

.
W

e
in

iti
al

iz
e

th
e

w
ei

gh
ts

as
in

[1
3]

an
d

tra
in

al
lp

la
in

/re
si

du
al

ne
ts

fr
om

sc
ra

tc
h.

W
e

us
e

SG
D

w
ith

a
m

in
i-b

at
ch

si
ze

of
25

6.
Th

e
le

ar
ni

ng
ra

te
st

ar
ts

fr
om

0.
1

an
d

is
di

vi
de

d
by

10
w

he
n

th
e

er
ro

rp
la

te
au

s,
an

d
th

e
m

od
el

sa
re

tra
in

ed
fo

ru
p

to
60

⇥
10

4
ite

ra
tio

ns
.W

e
us

e
a

w
ei

gh
td

ec
ay

of
0.

00
01

an
d

a
m

om
en

tu
m

of
0.

9.
W

e
do

no
tu

se
dr

op
ou

t[
14

],
fo

llo
w

in
g

th
e

pr
ac

tic
e

in
[1

6]
.

In
te

st
in

g,
fo

rc
om

pa
ris

on
st

ud
ie

s
w

e
ad

op
tt

he
st

an
da

rd
10

-c
ro

p
te

st
in

g
[2

1]
.

Fo
r

be
st

re
su

lts
,w

e
ad

op
tt

he
fu

lly
-

co
nv

ol
ut

io
na

l
fo

rm
as

in
[4

1,
13

],
an

d
av

er
ag

e
th

e
sc

or
es

at
m

ul
tip

le
sc

al
es

(im
ag

es
ar

e
re

si
ze

d
su

ch
th

at
th

e
sh

or
te

r
si

de
is

in
{
22
4,
25
6,
38
4,
48
0,
64
0}

).

4
.
E

x
p

e
r
im

e
n

ts

4
.1

.
I
m

a
g

e
N

e
t

C
la

s
s
ifi

c
a

ti
o

n

W
e

ev
al

ua
te

ou
rm

et
ho

d
on

th
e

Im
ag

eN
et

20
12

cl
as

si
fi-

ca
tio

n
da

ta
se

t[
36

]t
ha

tc
on

si
st

so
f1

00
0

cl
as

se
s.

Th
e

m
od

el
s

ar
e

tra
in

ed
on

th
e

1.
28

m
ill

io
n

tra
in

in
g

im
ag

es
,a

nd
ev

al
u-

at
ed

on
th

e
50

k
va

lid
at

io
n

im
ag

es
.

W
e

al
so

ob
ta

in
a

fin
al

re
su

lt
on

th
e

10
0k

te
st

im
ag

es
,r

ep
or

te
d

by
th

e
te

st
se

rv
er

.
W

e
ev

al
ua

te
bo

th
to

p-
1

an
d

to
p-

5
er

ro
rr

at
es

.

P
la

in
N

e
tw

o
r
k

s
.

W
e

fir
st

ev
al

ua
te

18
-la

ye
r

an
d

34
-la

ye
r

pl
ai

n
ne

ts
.T

he
34

-la
ye

rp
la

in
ne

ti
s

in
Fi

g.
3

(m
id

dl
e)

.T
he

18
-la

ye
rp

la
in

ne
ti

s
of

a
si

m
ila

rf
or

m
.

Se
e

Ta
bl

e
1

fo
rd

e-
ta

ile
d

ar
ch

ite
ct

ur
es

.
Th

e
re

su
lts

in
Ta

bl
e

2
sh

ow
th

at
th

e
de

ep
er

34
-la

ye
rp

la
in

ne
th

as
hi

gh
er

va
lid

at
io

n
er

ro
r

th
an

th
e

sh
al

lo
w

er
18

-la
ye

r
pl

ai
n

ne
t.

To
re

ve
al

th
e

re
as

on
s,

in
Fi

g.
4

(le
ft)

w
e

co
m

-
pa

re
th

ei
rt

ra
in

in
g/

va
lid

at
io

n
er

ro
rs

du
rin

g
th

e
tra

in
in

g
pr

o-
ce

du
re

.
W

e
ha

ve
ob

se
rv

ed
th

e
de

gr
ad

at
io

n
pr

ob
le

m
-

th
e

4

https://arxiv.org/pdf/1409.1556.pdf
https://arxiv.org/pdf/1512.03385.pdf
https://ujjwalkarn.me/2016/08/11/intuitive-explanation-convnets/


A history of ConvNNs

23

Densely Connected Convolutional Networks

Gao Huang⇤

Cornell Universit
y

gh
34
9@
co
rn
el
l.
ed
u

Zhuang Liu
⇤

Tsinghua Universit
y

li
uz
hu
an
g1
3@
ma
il
s.
ts
in
gh
ua
.e
du
.c
n

Laurens van der Maaten

Facebook AI Research

lv
dm
aa
te
n@
fb
.c
om

Kilia
n Q. Weinberger

Cornell Universit
y

kq
w4
@c
or
ne
ll
.e
du

Abstract

Recent w
ork

has
sh

ow
n

th
at convolu

tio
nal netw

ork
s

can

be
su

bst
antia

lly
deeper,

m
ore

accura
te

, and
effi

cie
nt to

tr
ain

if
th

ey
conta

in
sh

ort
er

connectio
ns

betw
een

la
yers

clo
se

to

th
e

in
put

and
th

ose
clo

se
to

th
e

outp
ut.

In
th

is
paper,

w
e

em
bra

ce
th

is
obse

rv
atio

n
and

in
tr

oduce
th

e
D

ense
C

onvo-

lu
tio

nal
N

etw
ork

(D
ense

N
et),

w
hic

h
connects

each
la

yer

to
ev

ery
oth

er
la

yer
in

a
fe

ed-fo
rw

ard
fa

sh
io

n.
W

here
as

tr
aditi

onal
convolu

tio
nal

netw
ork

s
w

ith
L

la
yers

have
L

connectio
ns—

one
betw

een
each

la
yer

and
its

su
bse

quent

la
yer—

our
netw

ork
has

L(
L+

1)

2

dir
ect

connectio
ns.

For

each
la

yer,
th

e
fe

atu
re

-m
aps

of
all

pre
cedin

g
la

yers
are

use
d

as
in

puts
, and

its
ow

n
fe

atu
re

-m
aps

are
use

d
as

in
puts

in
to

all
su

bse
quent

la
yers

.
D

ense
N

ets
have

se
vera

l
com

-

pelli
ng

advanta
ges:

th
ey

alle
via

te
th

e
vanis

hin
g-g

ra
die

nt

pro
ble

m
,

st
re

ngth
en

fe
atu

re
pro

pagatio
n,

encoura
ge

fe
a-

tu
re

re
use

, and
su

bst
antia

lly
re

duce
th

e
num

ber
of para

m
e-

te
rs

.
W

e
ev

alu
ate

our
pro

pose
d

arc
hite

ctu
re

on
fo

ur
hig

hly

com
petit

iv
e

obje
ct re

cogniti
on

bench
m

ark
ta

sk
s (C

IF
AR-1

0,

C
IF

AR-1
00, SVH

N
, and

Im
ageN

et).
D

ense
N

ets
obta

in
si

g-

nifi
cant

im
pro

vem
ents

over
th

e
st

ate
-o

f-t
he-a

rt
on

m
ost

of

th
em

, w
hils

t re
quir

in
g

le
ss

com
puta

tio
n

to
ach

ie
ve

hig
h

per-

fo
rm

ance.
C

ode
and

pre
-tr

ain
ed

m
odels

are
availa

ble
at

ht
tp
s:
//
gi
th
ub
.c
om
/l
iu
zh
ua
ng
13
/D
en
se
Ne
t.

1. Introduction

Convolutional neural networks (CNNs)
have become

the dominant machine learning approach for visual object

recognitio
n. Although they were originally

introduced over

20 years ago [18], improvements in computer hardware and

network
stru

cture have enabled the training of truly deep

CNNs only recently.
The original LeNet5 [19] consist

ed of

5 layers,
VGG featured 19 [29], and only last year Highway

⇤ Authors contrib
uted equally

x0 x1
H1

x2
H2 H3 H4

x3 x4

Figure 1: A 5-layer dense block with
a growth rate of k

=
4.

Each layer takes all preceding feature-maps as input.

Networks [34] and Residual Networks (ResNets)
[11] have

surpasse
d the 100-layer barrie

r.

As CNNs become increasingly
deep, a new

research

problem emerges:
as information about the input or gra-

dient passe
s through many layers,

it can vanish
and “wash

out” by the tim
e it reaches the end (or beginning) of the

network. Many recent publications address this or related

problems.
ResNets [11] and Highway Networks [34] by-

pass signal from one layer to the next via identity
connec-

tions. Stochastic
depth [13] shortens ResNets by randomly

dropping layers during training to allow better information

and gradient flow. FractalNets [17] repeatedly combine sev
-

eral parallel layer sequences with
diffe

rent number of con-

volutional blocks to obtain a large nominal depth, while

maintaining many short paths in the network. Although

these
diffe

rent approaches vary
in

network
topology and

training procedure, they
all share a key

characterist
ic: they

create short paths from early
layers to later layers.
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“horse”
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Figure 2: A deep DenseNet with three dense blocks. The layers between two adjacent blocks are referred to as transition layers and change
feature-map sizes via convolution and pooling.

ResNets can improve its performance provided the depth is
sufficient [42]. FractalNets also achieve competitive results
on several datasets using a wide network structure [17].

Instead of drawing representational power from ex-
tremely deep or wide architectures, DenseNets exploit the
potential of the network through feature reuse, yielding con-
densed models that are easy to train and highly parameter-
efficient. Concatenating feature-maps learned by different

layers increases variation in the input of subsequent layers
and improves efficiency. This constitutes a major difference
between DenseNets and ResNets. Compared to Inception
networks [36, 37], which also concatenate features from dif-
ferent layers, DenseNets are simpler and more efficient.

There are other notable network architecture innovations
which have yielded competitive results. The Network in
Network (NIN) [22] structure includes micro multi-layer
perceptrons into the filters of convolutional layers to ex-
tract more complicated features. In Deeply Supervised Net-
work (DSN) [20], internal layers are directly supervised
by auxiliary classifiers, which can strengthen the gradients
received by earlier layers. Ladder Networks [27, 25] in-
troduce lateral connections into autoencoders, producing
impressive accuracies on semi-supervised learning tasks.
In [39], Deeply-Fused Nets (DFNs) were proposed to im-
prove information flow by combining intermediate layers
of different base networks. The augmentation of networks
with pathways that minimize reconstruction losses was also
shown to improve image classification models [43].

3. DenseNets
Consider a single image x0 that is passed through a con-

volutional network. The network comprises L layers, each
of which implements a non-linear transformation H`(·),
where ` indexes the layer. H`(·) can be a composite func-
tion of operations such as Batch Normalization (BN) [14],
rectified linear units (ReLU) [6], Pooling [19], or Convolu-
tion (Conv). We denote the output of the `

th layer as x`.

ResNets. Traditional convolutional feed-forward net-
works connect the output of the `

th layer as input to the
(` + 1)th layer [16], which gives rise to the following
layer transition: x` = H`(x`�1). ResNets [11] add a
skip-connection that bypasses the non-linear transforma-
tions with an identity function:

x` = H`(x`�1) + x`�1. (1)

An advantage of ResNets is that the gradient can flow di-
rectly through the identity function from later layers to the
earlier layers. However, the identity function and the output
of H` are combined by summation, which may impede the
information flow in the network.

Dense connectivity. To further improve the information
flow between layers we propose a different connectivity
pattern: we introduce direct connections from any layer
to all subsequent layers. Figure 1 illustrates the layout of
the resulting DenseNet schematically. Consequently, the
`
th layer receives the feature-maps of all preceding layers,
x0, . . . ,x`�1, as input:

x` = H`([x0,x1, . . . ,x`�1]), (2)

where [x0,x1, . . . ,x`�1] refers to the concatenation of the
feature-maps produced in layers 0, . . . , `�1. Because of its
dense connectivity we refer to this network architecture as
Dense Convolutional Network (DenseNet). For ease of im-
plementation, we concatenate the multiple inputs of H`(·)
in eq. (2) into a single tensor.

Composite function. Motivated by [12], we define H`(·)
as a composite function of three consecutive operations:
batch normalization (BN) [14], followed by a rectified lin-
ear unit (ReLU) [6] and a 3⇥ 3 convolution (Conv).

Pooling layers. The concatenation operation used in
Eq. (2) is not viable when the size of feature-maps changes.
However, an essential part of convolutional networks is
down-sampling layers that change the size of feature-maps.
To facilitate down-sampling in our architecture we divide
the network into multiple densely connected dense blocks;
see Figure 2. We refer to layers between blocks as transition

layers, which do convolution and pooling. The transition
layers used in our experiments consist of a batch normal-
ization layer and an 1⇥1 convolutional layer followed by a
2⇥2 average pooling layer.

Growth rate. If each function H` produces k feature-
maps, it follows that the `th layer has k0+k⇥ (`�1) input
feature-maps, where k0 is the number of channels in the in-
put layer. An important difference between DenseNet and
existing network architectures is that DenseNet can have
very narrow layers, e.g., k = 12. We refer to the hyper-
parameter k as the growth rate of the network. We show in
Section 4 that a relatively small growth rate is sufficient to

2

copy and crop

input
image

tile

output 
segmentation 
map

641

128

256

512

1024

max pool 2x2

up-conv 2x2

conv 3x3, ReLU

5
7
2

 x
 5

7
2

2
8
4
²

64

128

256

512

5
7

0
 x

 5
7
0

5
6
8
 x

 5
6
8

2
8

2
²

2
8
0

²
1

4
0

²

1
3

8
²

1
3

6
²

6
8
²

6
6

²

6
4

²
3

2
²

2
8
²

5
6
²

5
4
²

5
2

²

512

1
0
4

²

1
0

2
²

1
0

0
²

2
0
0
²

3
0
²

1
9

8
²

1
9
6
²

3
9
2

 x
 3

9
2

3
9

0
 x

 3
9
0

3
8

8
 x

 3
8

8

3
8
8
 x

 3
8
8

1024

512 256

256 128

64128 64 2

conv 1x1
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as input. First, this network can localize. Secondly, the training data in terms
of patches is much larger than the number of training images. The resulting
network won the EM segmentation challenge at ISBI 2012 by a large margin.

Obviously, the strategy in Ciresan et al. [1] has two drawbacks. First, it
is quite slow because the network must be run separately for each patch, and
there is a lot of redundancy due to overlapping patches. Secondly, there is a
trade-o↵ between localization accuracy and the use of context. Larger patches
require more max-pooling layers that reduce the localization accuracy, while
small patches allow the network to see only little context. More recent approaches
[11,4] proposed a classifier output that takes into account the features from
multiple layers. Good localization and the use of context are possible at the
same time.

In this paper, we build upon a more elegant architecture, the so-called “fully
convolutional network” [9]. We modify and extend this architecture such that it
works with very few training images and yields more precise segmentations; see
Figure 1. The main idea in [9] is to supplement a usual contracting network by
successive layers, where pooling operators are replaced by upsampling operators.
Hence, these layers increase the resolution of the output. In order to localize, high
resolution features from the contracting path are combined with the upsampled

๏ U-net (2015): conv 
layers with skip 
connections, in a 
downsampling+upsampling 
U-shaped sequence. 
Introduced for semantic 
segmentation 

๏ DenseNet (2016): uses 
skip connections 
between a given layer 
and all the layers 
downstream in a dense 
block, with Conv layers 
in between

https://arxiv.org/pdf/1505.04597.pdf
https://arxiv.org/pdf/1608.06993.pdf


๏ In this evolution, computing-vision 
networks drastically improved in 
performance 

๏ This came at a big cost in complexity 
(number of parameters and operations) 

๏ The inference with this network 
became particularly slow  

๏ big interest in optimize these 
networks on dedicated resources, 
e.g. FPGAs 

๏ Many cloud providers provide 
optimized versions of these networks: 

๏ you can just use them (re-training 
if needed), rather than inventing 
your own one

The computational cost
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https://towardsdatascience.com/neural-
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gain w.r.t. standard approach: 
equivalent to 30% bigger mass of 

detector 

๏ Many HEP detectors 
(particularly underground) 
more and more structured as 
regular arrays of sensors 

๏ Modern computer-vision 
techniques work with images as 
arrays of pixel sensor (in 1D, 
2D, and 3D) 

๏ These techniques were applied 
by Noνa on electron and muon 
ID  

๏ Impressive gain over 
traditional techniques 
(comparable to +30% detector 
== $$$ saved)



๏ (next generation) digital calorimeters: 3D arrays of sensors with 
more regular geometry 

๏ Ideal configuration to apply Convolutional Neural Network 

๏ speed up reconstruction at similar performances 

๏ and possibly improve performances

Calorimetry & Computer Vision
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Deep Learning for Imaging Calorimetry

Vitoria Barin Pacela,⇤ Jean-Roch Vlimant, Maurizio Pierini, and Maria Spiropulu
California Institute of Technology and

CMS

We investigate particle reconstruction using Deep Learning, based on a dataset consisting of single-

particle energy showers in a highly-granular Linear Collider Detector calorimeter with a regular 3D

array of cells. We perform energy regression on photons, electrons, neutral and charged pions, and

discuss the performance of our model in each particle dataset.

I. INTRODUCTION

One the greatest challenges at the LHC at
CERN is to collect and analyse data e�ciently.
Sophisticated machine learning methods have
been researched to tackle this problem, such as
boosted decision trees and deep learning. In
this project, we are using deep neural networks
(DNN) [1] [2] to recognize images originated by
the collisions in the Linear Collider Detector
(LCD) calorimeter [3] [4], designed to operate
at the Compact Linear Collider (CLIC).

Preliminary studies have explored the possi-
bility of reconstructing particles from calorimet-
ric deposits using image recognition techniques
based on convolutional neural networks, using
a dataset of simulated hits of individual par-
ticles on the LCD surface. The dataset con-
sists of calorimetric showers produced by sin-
gle particles (pions, electrons or photons) hit-
ting the surface of an electromagnetic calorime-
ter (ECAL) and eventually showering within
a hadronic calorimeter (HCAL). This project
aimed at reconstructing the energy of particles
through regression.

The code used for defining the mod-
els and training the DNNs is hosted at
https://github.com/vitoriapacela/NotebooksLCD,
and analysis tools are hosted at
https://github.com/vitoriapacela/RegressionLCD.

⇤ vitoria.barinpacela@helsinki.fi

FIG. 1. Visualization of the data. Charged pion

event displayed in the ECAL and HCAL. Every hit

is shown in its respective cell in each of the calorime-

ters. Warmer colors (like orange and pink) repre-

sent higher energies, as 420 GeV, whereas colder

colors, like blue, represent lower energies, as 50

GeV.[5]

II. METHODS

The datasets were simulated as close as pos-
sible to real collision data, using a preliminary
version of the CLIC detector design, imple-
mented in the DDhep software framework [3].
They consist of 3D arrays representing energy
values in the cells of the ECAL and HCAL, and
the true energy of the particle. The ECAL data
arrays have shape 25 x 25 x 25, whereas the
HCAL data arrays have shape 4 x 4 x 60. Events
are of discrete, integer-valued energies over the
range 10-510 GeV, and fixed direction, so that
they impact the center of the calorimeter bar-
rel, with an impact angle of 90�. The datasets
for each particle are stored in the Hierarchical
Data Format (HDF5) [6], which is designed to
store and organize large amounts of data. Each
HDF5 file contains 10 000 events, and there are



๏ We tried particle ID on a sample of 
simulated events 

๏ one particle/event (e, γ, π0, π) 

๏ Different event representations 

๏ high-level features related to event 
shape (moments of X,Y, and Z 
projections, etc) 

๏ raw data (energy recorded in each 
cell) 

๏ Pre-filtered pion events to select the 
nasty ones and make the problem harder

Example: Particle ID
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and validation accuracy as a function of the batch number
for these extended trainings is shown in Figure 12.

Fig. 12. Training curves for best DNN (top), CNN (middle),
and GN (bottom) hyperparameters, trained on variable-angle
�/⇡0 samples. We see that the DNN over-trains quickly and
saturates at a relatively low accuracy, while the CNN takes
longer to over-train and reaches a higher accuracy, and GN
performs best of all. Each 400 batches corresponds to a single
epoch.

5.3 Results

We apply the best architectures described in the previous
section separately to our electron vs. charged pion and
photon vs. neutral pion reconstruction problems.

5.3.1 Classification Performance

Figure 13 shows ROC curve comparisons for the two clas-
sification tasks. As expected, the electron vs. charged pion
classification problem was found to be a simple task, re-
sulting in an area under the curve (AUC) close to 100%.
For a baseline comparison, the curve obtained for a BDT
(see Appendix C) is also shown. This BDT was optimized
using the scikit-optimize package [32], and was trained
using high-level features computed from the raw 3D arrays.
It represents the performance of current ML approaches
on these problems.

Fig. 13. ROC curve comparisons for � vs. ⇡0 (top) and e
vs. ⇡± (bottom) classification using different neural network
architectures. Samples include particle energies from 10 to 510
GeV, and an inclusive ⌘ range.

The ML models outperform the BDT, with the GN
reaching the best classification performance on both prob-
lems. Figure 14 shows the best-model performance as a
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๏ One can pixelate the surface 
crossed by the jet and create 
an image with the momentum 
deposited in each cell 

๏ Such an image can then be 
processed with computing-
vision techniques 

๏ Pros: can benefit of the 
progresses made in optimizing 
computing vision 

๏ Cons: underlying assumption 
on detector geometry (regular 
array of pixels) made 
sacrificing information  of 
the actual detector

Jet as images (for ConvNN)
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Even more non-linearity: Going Deep

Deep Convolutional Architectures for  
Jet-Images at the Large Hadron Collider

Introduction 
The Large Hadron Collider (LHC) at CERN is the largest and most powerful particle accelerator in 
the world, collecting 3,200 TB of proton-proton collision data every year. A true instance of Big 
Data, scientists use machine learning for rare-event detection, and hope to catch glimpses of new 
and uncharted physics at unprecedented collision energies.  

Our work focuses on the idea of the ATLAS detector as a camera, with events captured as 
images in 3D space. Drawing on the success of Convolutional Neural Networks in Computer 
Vision, we study the potential of deep leaning for interpreting LHC events in new ways.

The ATLAS detector 
The ATLAS detector is one of the two general-purpose experiments at the LHC. The 100 million 
channel detector captures snapshots of particle collisions occurring 40 million times per second. 
We focus our attention to the Calorimeter, which we treat as a digital camera in cylindrical space. 
Below, we see a snapshot of a 13 TeV proton-proton collision.

LHC Events as Images 
We transform the ATLAS coordinate system (η, φ) to a rectangular grid that allows for an image-
based grid arrangement. During a collision, energy from particles are deposited in pixels in (η, φ) 
space. We take these energy levels, and use them as the pixel intensities in a greyscale analogue. 
These images — called Jet Images — were first introduced by our group [JHEP 02 (2015) 118], 
enabling the connection between LHC physics event reconstruction and computer vision.. We 
transform each image in (η, φ), rotate around the jet-axis, and normalize each image, as is often 
done in Computer Vision, to account for non-discriminative difference in pixel intensities.  

In our experiments, we build discriminants on top of Jet Images to distinguish between a 
hypothetical new physics event, W’→ WZ, and a standard model background, QCD.  

Jet Image

Convolution Max-Pool Convolution Max-Pool Flatten

Fully  
Connected 
ReLU Unit

ReLU Dropout ReLU Dropout
Local 

Response 
Normalization

W’→ WZ event

Convolutions
Convolved  

Feature Layers

Max-Pooling

Repeat

Physics Performance Improvements 
Our analysis shows that Deep Convolutional Networks significantly improve the classification of 
new physics processes compared to state-of-the-art methods based on physics features, 
enhancing the discovery potential of the LHC.  More importantly, the improved performance 
suggests that the deep convolutional network is capturing features and representations beyond 
physics-motivated variables.  

Concluding Remarks 
We show that modern Deep Convolutional Architectures can significantly enhance the discovery 
potential of the LHC for new particles and phenomena. We hope to both inspire future research 
into Computer Vision-inspired techniques for particle discovery, and continue down this path 
towards increased discovery potential for new physics.

Difference in average 
image between signal 

and background

Deep Convolutional Networks 
Deep Learning — convolutional networks in particular — currently represent the state of the art in 
most image recognition tasks. We apply a deep convolutional architecture to Jet Images, and 
perform model selection. Below, we visualize a simple architecture used to great success.  

We found that architectures with large filters captured the physics response with a higher level of 
accuracy. The learned filters from the convolutional layers exhibit a two prong and location based 
structure that sheds light on phenomenological structures within jets. 

Visualizing Learning 
Below, we have the learned convolutional filters (left) and the difference in between the average 
signal and background image after applying the learned convolutional filters (right). This novel 
difference-visualization technique helps understand what the network learns.

2D  
Convolutions 
to Jet Images

Understanding Improvements 
Since the selection of physics-driven variables is driven by physical understanding, we want to be 
sure that the representations we learn are more than simple recombinations of basic physical 
variables. We introduce a new method to test this — we derive sample weights to apply such that 

meaning that physical variables have no discrimination power. Then, we apply our learned 
discriminant, and check for improvement in our figure of merit — the ROC curve.

Standard physically motivated 
discriminants — mass (top)  
and n-subjettiness (bottom)

Receiver Operating Characteristic

Notice that removing out the individual effects of 
the physics-related variables leads to a likelihood 
performance equivalent to a random guess, but 
the Deep Convolutional Network retains some 
discriminative power. This indicates that the deep 
network learns beyond theory-driven variables — 
we hypothesize these may have to do with 
density, shape, spread, and other spatially driven 
features.

Luke de Oliveiraa, Michael Aaron Kaganb, Lester Mackeyc, Benjamin Nachmanb, Ariel Schwartzmanb 

 
aStanford University, Institute for Computational and Mathematical Engineering (ICME), bSLAC National Accelerator Laboratory,  cStanford University, Department of Statistics 

Repeat

Apply deep learning techniques on jet images! [3]

convolutional nets are a standard image 
processing technique; also consider maxout

Figure 5: The convolution neural network concept as applied to jet-images.

4.1 Architectural Selection

For the MaxOut architecture, we utilize two FC layers with MaxOut activation (the first with 256
units, the second with 128 units, both of which have 5 piecewise components in the MaxOut-operation),
followed by two FC layers with ReLU activations (the first with 64 units, the second with 25 units),
followed by a FC sigmoid layer for classification. We found that the He-uniform initialization [35]
for the initial MaxOut layer weights was needed in order to train the network, which we suspect is
due to the sparsity of the jet-image input. In cases where other initialization schemes were used, the
networks often converged to very sub optimal solutions. This network is trained (and evaluated) on
un-normalized jet-images using the transverse energy for the pixel intensities

For the deep convolution networks, we use a convolutional architecture consisting of three sequen-
tial [Conv + Max-Pool + Dropout] units, followed by a local response normalization (LRN) layer [8],
followed by two fully connected, dense layers. We note that the convolutional layers used are so called
“full” convolutions – i.e., zero padding is added the the input pre-convolution. Our architecture can
be succinctly written as:

[Dropout ! Conv ! ReLU ! MaxPool] ⇤ 3 ! LRN ! [Dropout ! FC ! ReLU] ! Dropout ! Sigmoid.

(4.1)
The convolution layers each utilize 32 feature maps, or filters, with filter sizes of 11 ⇥ 11, 3 ⇥ 3,

and 3 ⇥ 3 respectively. All convolution layers are regularized with the L
2 weight matrix norm. A

down-sampling of (2, 2), (3, 3), and (3, 3) is performed by the three max pooling layers, respectively.
A dropout [8] of 20% is used before the first FC layer, and a dropout 10% is used before the output
layer. The FC hidden layer consists of 64 units.

After early experiments with the standard 3 ⇥ 3 filter size, we discovered significantly worse
performance over a more basic MaxOut [7] feedforward network. After further investigation into larger
convolutional filter size, we discovered that larger-than-normal filters work well on our application.
Though not common in the Deep Learning community, we hypothesize that this larger filter size is
helpful when dealing with sparse structures in the input images. In Table 1, we compare di↵erent
filter sizes, finding the optimal filter size of 11⇥ 11, when considering the Area Under the ROC Curve
(AUC) metric, based on the ROC curve outlined in Sections 3 and 5.

– 8 –

Figure 1. Pictorial representations of different jet substructures at the LHC. Left: jets originating
from quarks or gluons produce one cluster of particles, approximately cone-shaped, developing
along the flight direction of the particle starting the shower. Center: when produced with large
transverse momentum, a heavy boson decaying to quarks would result into a single jet, made of 2
particle clusters (usually referred to as sub-jets). Right: In its full decay chain, a high-momentum
t ! Wb ! qqb results into a jet composed of three sub-jets.

In this work, we compare the typical performances of some of these approaches to what
is achievable with a jet identification algorithm based on an IN (JEDI-net). Interaction
networks [5] (INs) have been introduced to predict the evolution of physical systems under
the influence of forces, e.g. gravitational force, springs, etc. This is achieved by constructing
a graph network representing the system and learning the interaction between the nodes of
the graph. This results into a post-interaction representation of the system, which is used
to predict the evolution of the system. In our case, we are interested to INs as a tool to
learn a fixed-size jet representation, that is used to train a jet classifier. In this respect,
INs are interesting because the can learn a sparse representation with an architecture that
(at least in principle) is similar to the 2 ! 1 recombination procedure that is followed to
cluster jets. To a certain extent, INs (and graph networks in general) seem to be more
QCD-compliant than other network architectures. For instance (see section 4), INs process
jet-constituent four-momenta in pairs and can potentially learn the metrics typically used
for jet clustering, such as the anti-kt [3], kt [2], or Cambridge-Aachen [1] jet algorithms. In
this paper, we investigate if this structural affinity to jet clustering algorithms translates
into a better tagging performance.

This paper is structured as follows: we provide in section 2 a list of related works. We
describe in section 3 the utilized dataset. The structure of the JEDI-net model is discussed
in section 4. Section 5 briefly introduces alternative benchmark models, based on other
DL architectures, whose design and optimization are discussed in Appendix A. Results are
shown in section 6. We conclude with a discussion and outlooks of this work in section 8.

– 2 –
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๏ One can pixelate the surface 
crossed by the jet and create 
an image with the momentum 
deposited in each cell 

๏ Such an image can then be 
processed with computing-
vision techniques 

๏ Pros: can benefit of the 
progresses made in optimizing 
computing vision 

๏ Cons: underlying assumption 
on detector geometry (regular 
array of pixels) made 
sacrificing information  of 
the actual detector

Jet as images (for ConvNN)
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is more di↵use for the QCD background which consists largely of gluon jets, which have an octet
radiation pattern, compared to the singlet radiation pattern of the W jets, where the radiation is
mostly restricted to the region between the two hard cores.
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Figure 2: The average jet image for signal W jets (top) and background QCD jets (bottom) before
(left) and after (right) applying the rotation, re-pixelation, and inversion steps of the pre-processing.
The average is taken over images of jets with 240 GeV < pT < 260 GeV and 65 GeV < mass < 95 GeV.

One standard pre-processing step that is often additionally applied in Computer Vision tasks is
normalization. A common normalization scheme is the L

2 norm such that
P

I
2
i = 1 where Ii is the

intensity of pixel i. This is particularly useful for the jet images where pixel intensities can span many

– 4 –
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๏ Conv Networks are the most striking example of the 
success of Deep Learning 

๏ A story of improvement from the 90s to now 

๏ Very effective as a fast tool for particle 
reconstruction 

๏ Same geometry can be used for image generation with 
adversarial training 

๏ Can speed up one of the heaviest tasks in particle 
physics

Summary

30


