
Maurizio Pierini

Deep Learning Applications
for collider physics

Lecture 3

Plan for this week

2

Day1 Day2 Day3 Day4 Day5

Lecture Introduction ConvNN RNNs Graphs Unsupervised
Learning

Tutorial Fully Connected
Classifier

ConvNN
Classifier RNNs Classifier Graphs Classifier Anomaly

Detection

Language processing
for particle physics

๏ Recurrent architectures are
designed to process
sequences of data

๏ Then idea is to have
information flowing in the
network while the sequence
is sequentially processed

๏ Through this idea, recurrent
networks mimic memory
persistence

๏ Advantages

๏ the input is not fixed-
sized

Recurrent networks

4

https://towardsdatascience.com/
understanding-rnn-and-lstm-f7cdf6dfc14e

https://towardsdatascience.com/understanding-rnn-and-lstm-f7cdf6dfc14e
https://towardsdatascience.com/understanding-rnn-and-lstm-f7cdf6dfc14e

๏ RNN can be used to deal
with list of
reconstructed particles

๏ Their architecture
better fits our needs

๏ No underlying
assumption on the
detector geometry

๏ This comes at two costs

๏ Some ordering
principle needs to be
specified

๏ Inference is
sequential (not ideal
for L1 real time)

RNNs for particle physics

5

6

FIG. 3. Jet classification performance for various input rep-
resentations of the RNN classifier, using kt topologies for the
embedding. The plot shows that there is significant improve-
ment from removing the image processing step and that sig-
nificant gains can be made with more accurate measurements
of the 4-momenta.

FIG. 4. Jet classification performance of the RNN classifier
based on various network topologies for the embedding (par-
ticles scenario). This plot shows that topology is significant,
as supported by the fact that results for kt, C/A and desc-pT
topologies improve over results for anti-kt, asc-pT and random
binary trees. Best results are achieved for C/A and desc-pT
topologies, depending on the metric considered.

further supported by the poor performance of the random
binary tree topology. We expected however that a simple
sequence (represented as a degenerate binary tree) based
on ascending and descending pT ordering would not per-
form particularly well, particularly since the topology
does not use any angular information. Surprisingly, the
simple descending pT ordering slightly outperforms the
RNNs based on kt and C/A topologies. The descending
pT network has the highest pT 4-momenta near the root
of the tree, which we expect to be the most important.
We suspect this is the reason that the descending pT out-
performs the ascending pT ordering on particles, but this
is not supported by the performance on towers. A similar
observation was already made in the context of natural
languages [24–26], where tree-based models have at best
only slightly outperformed simpler sequence-based net-
works. While recursive networks appear as a principled
choice, it is conjectured that recurrent networks may in
fact be able to discover and implicitly use recursive com-
positional structure by themselves, without supervision.
d. Gating The last factor that we varied was

whether or not to incorporate gating in the RNN. Adding
gating increases the number of parameters to 48,761, but
this is still about 20 times smaller than the number of
parameters in the MaxOut architectures used in previ-
ous jet image studies. Table I shows the performance of
the various RNN topologies with gating. While results
improve significantly with gating, most notably in terms
of R✏=50%, the trends in terms of topologies remain un-
changed.
e. Other variants Finally, we also considered a num-

ber of other variants. For example, we jointly trained
a classifier with the concatenated embeddings obtained
over kt and anti-kt topologies, but saw no significant
performance gain. We also tested the performance of
recursive activations transferred across topologies. For
instance, we used the recursive activation learned with
a kt topology when applied to an anti-kt topology and
observed a significant loss in performance. We also con-
sidered particle and tower level inputs with an additional
trimming preprocessing step, which was used for the jet
image studies, but we saw a significant loss in perfor-
mance. While the trimming degraded classification per-
formance, we did not evaluate the robustness to pileup
that motivates trimming and other jet grooming proce-
dures.

B. Infrared and Collinear Safety Studies

In proposing variables to characterize substructure,
physicists have been equally concerned with classification
performance and the ability to ensure various theoretical
properties of those variables. In particular, initial work
on jet algorithms focused on the Infrared-Collinear (IRC)
safe conditions:

• Infrared safety. The model is robust to augmenting
e with additional particles {vN+1, . . . ,vN+K} with

Q C D - I N S P I R E D R E C U R S I V E N E U R A L N E T W O R K S

15

kt

anti-kt

• choice of jet
algorithm matters

• GRU “gating”
improves
performance

anti-ktkt

LHC events & language processing

6

๏ RNNs learn sentence meaning by order, which (for a given
language) carries a lot of the information about the
underlying grammar

๏ One could attempt something similar with physics, e.g.,
understanding the hadronization processes in jets from a
sequence of jet constituents

๏ Which order: not a clear answer. One can use pT ordering,
angular ordering, etc. as in parton-shower MC simulation
(pythia, sherpa, …) and jet clustering algorithms (kT,
anti-kT, etc.)

๏ particles as words in a sentence

๏ QCD is the grammar

๏ Given an ordered list of jet
constituents, one could then
learn jet features

๏ Jet ID, as in our problem

๏ Jet substructure quantities,
jet kinematic, etc

๏ One could use the same
approach on the whole event,
w/o jet clustering (topology
classifier)

๏ Not my best option as of
today: graph networks emerged
as a more suitable
architecture for this (can
process unordered sets)

Recurrent Neural Networks

7

Recurrent Neural Networks (RNNs)

I RNNs can process an arbitrarily length sequence

I Output is a fixed dimensional vector for each jet

dguest@cern.ch (UCI) RNN b-tagging May 9, 2017 11 / 20

P
a
r
t
i
c
l
e

P
a
r
t
i
c
l
e

P
a
r
t
i
c
l
e

P
a
r
t
i
c
l
e

P
a
r
t
i
c
l
e

๏ Recurrent networks can be operated
in two ways

๏ one can inject a sequence and
received a sequence

๏ one could just focus on the
result of the last iteration,
translating a sequence in a
quantity (*)

๏ One typically operates many
recurrent units at once in a
recurrent layer (like nodes in a
dense layer, or kernels for CNN)

Recurrent networks

8(*) This is what we will be doing

From Keras

๏ Several architectures proposed

๏ what changes is what happens in the
A block

๏ We will focus on the first three

๏ LSTMs (1995): the most popular (and
performing) choice for serial-data
processing

๏ GRUs (2014): essentially an LSTM
with a forget gate, with less
parameters (and similar
performance) as LSTM

๏ SRNs, aka Elman (1990) and Jordan
(1997) networks: simplest
realisation of the idea

Recurrent networks

9(*) This is what we will be doing

From Keras

https://arxiv.org/pdf/1905.00689.pdf
https://www.mitpressjournals.org/doi/abs/10.1162/neco.1997.9.8.1735
https://arxiv.org/abs/1406.1078
https://onlinelibrary.wiley.com/doi/abs/10.1207/s15516709cog1402_1
https://www.sciencedirect.com/science/article/pii/S0166411597801112?via=ihub
https://www.sciencedirect.com/science/article/pii/S0166411597801112?via=ihub

๏ The simplest recurrent
architecture

๏ The processing unit
receives an input x and
the output of the
previous-particle
processing h (the
context)

๏ The product of the two is
activated by a tank
function

๏ the result can be used as
it is and/or passed to
the next processing

SRN

10

yt

σ
σ

The network processing essentially works as
memory gates ->

One typically uses sigmoids or tanh as activation
functions

LSTM

11

LSTM’s memory cell

12

๏ Information in the network flows through the memory cell

๏ simple operations on it (to make the flow easy)

๏ depending on gates (computed from next input), memory cell can
be reset (yes/no decision taken by adequate activation function)

๏ Layer1: decide if the context stored in the memory cell is
to be forgotten or not

๏ yes/no question -> sigmoid function

๏ decision taken based on context and input

LSTM processing

13

๏ Layer2: two networks act to update the memory cell

๏ a sigmoid (as in layer 1) decides which values in (0,1)
to pass through

๏ a tanh function assigns a weight in (-1,1) to it

LSTM processing

14

๏ Layer3: fixes the output value to be passed next

๏ the cell content Ct is pushed in (-1,1) by a tanh

๏ a gate function (sigmoid) sets which fraction of the cell
content is passed through

LSTM processing

15

Gated Recurrent Unit

16

(aka element-wise product)

https://
towardsdatascience.com/

understanding-gru-
networks-2ef37df6c9be

http://www.apple.com/uk

GRU processing

17

๏ Layer1: update gate

๏ multiply input and context by update weights

๏ based on that, decide how much of the previous information should
be passes through

๏ Layer2: reset gate

๏ multiply input and context by reset weights

๏ decide how much of the previous information is to be forgotten

GRU processing

18

๏ Layer3: determine the current memory content

๏ the context information is partially removed to an element-by-element product
with the reset gate

๏ the result is summed to the (weighted) input and passed through a tank
activation function

GRU processing

19

๏ Layer4: compute the new memory state, to pass through

๏ mixes the current memory state with the input one

๏ uses the update gate to weight the two contributions

GRU processing

20

Application to HEP
data

๏ Finding which process
generated an event is a
typical task @LHC
experiments

๏ Let’s take as input the
events with one energetic
electron or muon (lepton)

๏ After some loose selection,
mainly three processes
left: jet production (QCD,
the background) + W or tt
productions (the signals)

๏ We want to separate the
three components

Example: topology classification @LHC

22
Figure 1: Relative composition of the isolated-lepton sample after the acceptance requirement (left)
and the trigger selection (right), as described in the text.

The most commonly used selection rules are inclusive, i.e., more than one topology is selected by
the same requirement. The so-called isolated lepton triggers are a typical example of this kind of
algorithms. These triggers select events with a high-momentum electron or muon and no surrounding
energetic particle, a typical signature of an interesting rare process, e.g., the production of a W boson
decaying to a neutrino and an electron or muon. With such a requirement, one can simultaneously
collect W bosons produced in the primary interaction (W events) or from the cascade decay of other
particles, e.g., top quarks (mainly in tt̄ events where a top quark-antiquark pair is produced). A
sample selected this way is dominated by W events but it retains a substantial (> 10%) contamination
from QCD multijet. The tt̄ contribution is smaller than 1%. Events from tt̄ production are sometimes
triggered by a set of dedicated lepton+jets algorithms, capable of using looser requirements on the
lepton at the cost of introducing requirements on jets.1 Due to this additional complexity, the use of
these triggers in a data analysis comes with additional complications. For instance, the applied jet
requirements produce distortions on offline distributions of jet-related quantities. To avoid having
this effect, any typical data analysis applies a tighter offline selection. This means that many of the
selected events close to the online-selection threshold are discarded. This is not necessarily the most
cost-effective way to retain an unbiased dataset for offline analysis.

In this paper, we investigate the possibility of using machine learning to disentangle events from
different event topologies at trigger level. Doing so, one could customize the trigger-selection strategy
on individual processes (depending on the physics goals) while keeping the selection loose and
simple. As a benchmark case, we consider a stream of data selected by requiring the presence of
one electron or muon with transverse momentum pT > 23 GeV 2 and a loose requirement on the
isolation. Details on the applied selection can be found in Sec. 2.

The considered benchmark sample is dominated by direct W production, with a sizable contamination
from QCD multijet events and a small contribution of tt̄ events. Other interesting processes (e.g.,
WW , WZ, and ZZ production) are usually selected with more exclusive and dedicated trigger
algorithms (e.g., di-muon or di-electron triggers), or share the same kinematic properties of the
two main interesting processes (W and tt̄). For the sake of simplicity, we ignore these sub-leading
processes in our study, without compromising the validity of our conclusions. Fig. 1 shows the
composition of a sample with one electron or muon within the defined acceptance (pT > 22 GeV and
pseudorapidity |⌘| = |� log[tan(✓/2)]| < 2.6, where ✓ is the polar angle), before and after applying
the trigger requirements (pT > 23 GeV and loose isolation).

Such a loose set of requirements would translate into an event acceptance rate of ⇠ 690 Hz for a
luminosity of 2⇥ 1034 cm�2 s�1, well beyond the currently allocated budget for these triggers. We
suggest that, using the score of our topology classifier, one could tune the amount of each process to
be stored for further analysis, within the boundaries of the allocated resources (typically ⇠ 200 Hz).
For instance, one might be interested to retain all the tt̄ events and some fraction of W events, while

1 A jet is a spray of hadrons, typically originating from the hadronization of gluons and quarks produced in
the proton collisions.

2 In this paper, we set units in such a way that c = ~ = 1.

2

Figure 1: Relative composition of the isolated-lepton sample after the acceptance requirement (left)
and the trigger selection (right), as described in the text.

The most commonly used selection rules are inclusive, i.e., more than one topology is selected by
the same requirement. The so-called isolated lepton triggers are a typical example of this kind of
algorithms. These triggers select events with a high-momentum electron or muon and no surrounding
energetic particle, a typical signature of an interesting rare process, e.g., the production of a W boson
decaying to a neutrino and an electron or muon. With such a requirement, one can simultaneously
collect W bosons produced in the primary interaction (W events) or from the cascade decay of other
particles, e.g., top quarks (mainly in tt̄ events where a top quark-antiquark pair is produced). A
sample selected this way is dominated by W events but it retains a substantial (> 10%) contamination
from QCD multijet. The tt̄ contribution is smaller than 1%. Events from tt̄ production are sometimes
triggered by a set of dedicated lepton+jets algorithms, capable of using looser requirements on the
lepton at the cost of introducing requirements on jets.1 Due to this additional complexity, the use of
these triggers in a data analysis comes with additional complications. For instance, the applied jet
requirements produce distortions on offline distributions of jet-related quantities. To avoid having
this effect, any typical data analysis applies a tighter offline selection. This means that many of the
selected events close to the online-selection threshold are discarded. This is not necessarily the most
cost-effective way to retain an unbiased dataset for offline analysis.

In this paper, we investigate the possibility of using machine learning to disentangle events from
different event topologies at trigger level. Doing so, one could customize the trigger-selection strategy
on individual processes (depending on the physics goals) while keeping the selection loose and
simple. As a benchmark case, we consider a stream of data selected by requiring the presence of
one electron or muon with transverse momentum pT > 23 GeV 2 and a loose requirement on the
isolation. Details on the applied selection can be found in Sec. 2.

The considered benchmark sample is dominated by direct W production, with a sizable contamination
from QCD multijet events and a small contribution of tt̄ events. Other interesting processes (e.g.,
WW , WZ, and ZZ production) are usually selected with more exclusive and dedicated trigger
algorithms (e.g., di-muon or di-electron triggers), or share the same kinematic properties of the
two main interesting processes (W and tt̄). For the sake of simplicity, we ignore these sub-leading
processes in our study, without compromising the validity of our conclusions. Fig. 1 shows the
composition of a sample with one electron or muon within the defined acceptance (pT > 22 GeV and
pseudorapidity |⌘| = |� log[tan(✓/2)]| < 2.6, where ✓ is the polar angle), before and after applying
the trigger requirements (pT > 23 GeV and loose isolation).

Such a loose set of requirements would translate into an event acceptance rate of ⇠ 690 Hz for a
luminosity of 2⇥ 1034 cm�2 s�1, well beyond the currently allocated budget for these triggers. We
suggest that, using the score of our topology classifier, one could tune the amount of each process to
be stored for further analysis, within the boundaries of the allocated resources (typically ⇠ 200 Hz).
For instance, one might be interested to retain all the tt̄ events and some fraction of W events, while

1 A jet is a spray of hadrons, typically originating from the hadronization of gluons and quarks produced in
the proton collisions.

2 In this paper, we set units in such a way that c = ~ = 1.

2

Photons

Barrel EndcapEndcapForward Forward Barrel EndcapEndcapForward Forward Barrel EndcapEndcapForward Forward

Charged Tracks Neutral Hadrons

Figure 2: An example of a tt̄ event as the input of the raw-image classifier.

hexagons for neutral hadrons. The images are digitized as arrays of size 5⇥ 150⇥ 94, where each
of the first four channels contains a separated particle class, and the last channel contains the E

miss
T ,

represented as a circle. As an example, the abstract representation for the event in Fig. 2 is shown in
Fig. 3.

This abstract representation allows mitigating the sparsity problem of the raw images. On the other
hand, there is no guarantee that the physics information is fully retained in this translation. As a result,
there could be a reduction of discrimination power. This is one of the points we aim to investigate in
this study.

(a) Photons (b) Charged Particles (c) Neutral Hadrons

(d) Lepton (e) Emiss
T

Figure 3: Example of a tt̄ event, represented as a 5-channel abstract image.

3 Model description

In this section, we describe five types of multi-class classifiers, trained on the four data representations
described in the previous section. We start by considering a state-of-the art HEP application, based
on the high-level features listed in Sec. 2. We then consider a convolutional neural network taking as
input the raw images. This model offers the baseline point of comparison for the classifier using the
abstract images. In order to have a fair comparison between the two approaches, the same kind of
network architecture is used for the two sets of images. Next, we consider recurrent neural networks
based on LSTMs and GRUs, trained directly on the lists of 801 particles. Finally, we consider a
classifier taking both the high-level features and the list of 801 particles as inputs, using a combination
of recurrent neural networks and fully connected neural networks.

The CNNs are implemented in PyTorch [12]. The recurrent neural networks and feed-forward
neural networks are implemented in Keras and trained using Theano [13] as a back-end. The Adam
optimizer [14] is used to adapt the learning rate. The training is capped at 50 epochs, and can be

5

๏ sparse image with many pixels

๏ not the kind of image that CNNs usually deal with

๏ still, reasonable performances (AUC~90%) can be
obtained

What the event looks like

23

Event Representations

24

Inspired from https://
arxiv.org/abs/1708.07034

Similar to https://
arxiv.org/abs/1702.00748

https://arxiv.org/abs/1708.07034
https://arxiv.org/abs/1708.07034
https://arxiv.org/abs/1702.00748
https://arxiv.org/abs/1702.00748

Event Representations

25

pT
η
φ
ID

pT
η
φ
ID

pT
η
φ
ID

pT
η
φ
ID

tt

QCD

W+j

…

DenseNet on images

Recurrent nets on the
list of particles
(LSTM, GRUs, etc)

Fully-Connected classifier on
physics-motivated features

Photons

Barrel EndcapEndcapForward Forward Barrel EndcapEndcapForward Forward Barrel EndcapEndcapForward Forward

Charged Tracks Neutral Hadrons

Figure 2: An example of a tt̄ event as the input of the raw-image classifier.

hexagons for neutral hadrons. The images are digitized as arrays of size 5⇥ 150⇥ 94, where each
of the first four channels contains a separated particle class, and the last channel contains the E

miss
T ,

represented as a circle. As an example, the abstract representation for the event in Fig. 2 is shown in
Fig. 3.

This abstract representation allows mitigating the sparsity problem of the raw images. On the other
hand, there is no guarantee that the physics information is fully retained in this translation. As a result,
there could be a reduction of discrimination power. This is one of the points we aim to investigate in
this study.

(a) Photons (b) Charged Particles (c) Neutral Hadrons

(d) Lepton (e) Emiss
T

Figure 3: Example of a tt̄ event, represented as a 5-channel abstract image.

3 Model description

In this section, we describe five types of multi-class classifiers, trained on the four data representations
described in the previous section. We start by considering a state-of-the art HEP application, based
on the high-level features listed in Sec. 2. We then consider a convolutional neural network taking as
input the raw images. This model offers the baseline point of comparison for the classifier using the
abstract images. In order to have a fair comparison between the two approaches, the same kind of
network architecture is used for the two sets of images. Next, we consider recurrent neural networks
based on LSTMs and GRUs, trained directly on the lists of 801 particles. Finally, we consider a
classifier taking both the high-level features and the list of 801 particles as inputs, using a combination
of recurrent neural networks and fully connected neural networks.

The CNNs are implemented in PyTorch [12]. The recurrent neural networks and feed-forward
neural networks are implemented in Keras and trained using Theano [13] as a back-end. The Adam
optimizer [14] is used to adapt the learning rate. The training is capped at 50 epochs, and can be

5

๏ The GRU provides the best discrimination power

๏ The HLFs come second

๏ The combination of the two further improve

Performance

26

(a) tt̄ selector (b) W selector

Figure 5: ROC curves for the tt̄ (left) and W (right) selectors described in the paper.

Figure 6: Pearson correlation coefficients between the ytt̄ (left) and yW (right) scores of the Particle-
sequence classifier and the 14 quantities of the HLF dataset.

The trigger baseline selection we use in this study, looser than what is used nowadays in CMS, gives
an overall trigger rate (i.e., summing electron and muon events) of ⇠ 690 Hz, more than a factor
two larger than what is currently allocated. Using the 99% working points of the two classifiers, one
would reduce the overall rate to ⇠ 280 Hz (counting the overlap between the two triggers). This
would be comparable to what is currently allocated for these triggers, but with a looser selection,
i.e., with a less severe bias on the offline analysis. In addition, the trigger efficiency (the TPR) is so
large that the bias imposed on offline quantities is quite minimal. This is illustrated in Fig. 7, where
the dependence of the TPR on the most relevant HLF quantities is shown. In our experience, any
rule-based algorithm with the same target trigger rate would result in larger inefficiencies at small
values of at least some of these quantities, e.g., the lepton pT . One should also consider that the
principle of a topology classifier could be generalized to other physics cases, as well as to other uses
(e.g., labels for fast reprocessing or access to specific subsets of the triggered samples).

5 Impact on other topologies

While reducing the resource consumption of standard physics analyses is the main motivation behind
this study, it is important to evaluate the impact of the proposed classifiers on other kind of topologies.
For this purpose, we consider a handful of beyond-the-standard-model (BSM) scenarios, and we
compute the TPR as a function of the most relevant kinematic quantities, similar to what was done in
Fig. 7 for the standard topologies.

We consider the following BSM processes:

8

https://dl4physicalsciences.github.io/files/nips_dlps_2017_3.pdf

Selection performances

27

What is the network learning?
• tt events are more crowded that W events

• leptons in W and tt events are isolated from other

particles

(a) tt̄ selector (b) W selector

Figure 5: ROC curves for the tt̄ (left) and W (right) selectors described in the paper.

Figure 6: Pearson correlation coefficients between the ytt̄ (left) and yW (right) scores of the Particle-
sequence classifier and the 14 quantities of the HLF dataset.

The trigger baseline selection we use in this study, looser than what is used nowadays in CMS, gives
an overall trigger rate (i.e., summing electron and muon events) of ⇠ 690 Hz, more than a factor
two larger than what is currently allocated. Using the 99% working points of the two classifiers, one
would reduce the overall rate to ⇠ 280 Hz (counting the overlap between the two triggers). This
would be comparable to what is currently allocated for these triggers, but with a looser selection,
i.e., with a less severe bias on the offline analysis. In addition, the trigger efficiency (the TPR) is so
large that the bias imposed on offline quantities is quite minimal. This is illustrated in Fig. 7, where
the dependence of the TPR on the most relevant HLF quantities is shown. In our experience, any
rule-based algorithm with the same target trigger rate would result in larger inefficiencies at small
values of at least some of these quantities, e.g., the lepton pT . One should also consider that the
principle of a topology classifier could be generalized to other physics cases, as well as to other uses
(e.g., labels for fast reprocessing or access to specific subsets of the triggered samples).

5 Impact on other topologies

While reducing the resource consumption of standard physics analyses is the main motivation behind
this study, it is important to evaluate the impact of the proposed classifiers on other kind of topologies.
For this purpose, we consider a handful of beyond-the-standard-model (BSM) scenarios, and we
compute the TPR as a function of the most relevant kinematic quantities, similar to what was done in
Fig. 7 for the standard topologies.

We consider the following BSM processes:

8

A typical example: leptonic triggers

๏ at the LHC, producing an isolated
electron or muon is very rare.
Typical smoking gun that something
interesting happened (Z,W,top,H
production)

๏ Triggers like those are very central
to ATLAS/CMS physics

๏ The sample selected is enriched in
interesting events, but still
contaminated by non-interesting ones

๏ Contamination can be reduced with a
DL classifier that rejects obvious
false positives looking at the full
event, not just at the lepton

Cleaning up selected sample

28

LSTM TOPCLASSifier

38%

56%

6%

tt
W+jets
QCD

Alternative approach
with 1D CNN

1D Convolution

30

๏ Rather than a sequential
processing, one could use a 1D
kernel

๏ Same as 2D conv, but acting
on 1D sequence

๏ The channels here are the
features of the i-th element
of the sequence (e.g., pT,
η, φ of jet constituents)

๏ Advantage comes from
parallel processing (no
memory cell) -> faster

๏ Performance can be
comparable, but usually
LSTMs are better

{

yj = f(∑
i

∑
c

wci
j xc + bj)

{

yj = f(∑
i

∑
c

wci
j xc + bj)

{

yj = f(∑
i

∑
c

wci
j xc + bj)

4x1 kernels

4x1 kernels

7x1 pooling

4x1 kernels

1 output per filter (same as 1
output per RNN unit)

1x1 kernel for pre-processing

31

๏ Sometimes, 1x1 kernels
are used (in 1D, 2D,
etc) as pre-processing
networks

๏ If you look at the
math, it’s the same as
running a DNN in
parallel on the c
features of each
element

yj = f(∑
c

wc
j xc + bj)

1x1 kernels

yj = f(∑
c

wc
j xc + bj)

1x1 kernels

yj = f(∑
c

wc
j xc + bj)

1x1 kernels

๏ We discuss recurrent NNs and their potential usage to save processing
resources @LHC

๏ Learn underlying “particle physics grammar” by sequential processing of
ordered lists of particles

๏ Can be used in jets (our exercise of today)

๏ Can be used on whole event

๏ A step fwd wrt CNNs: don’t require regular detector geometry

๏ Not yet the ultimate solution: require ordering principle, not always
uniquely defined

๏ We also saw 1D CNN as an alternative solution to the same problem

๏ parallel process -> faster

๏ no memory gate mechanism -> might not work that well

Summary

32

