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Recurrent networks

® Recurrent architectures are
designed to process
sequences of data

® Then 1dea 1s to have
information flowing 1n the
network while the sequence
1s sequentially processed

® Through this 1dea, recurrent
networks mimic memory
persistence

® Advantages

https://towardsdatascience.com/

understanding-rnn-and-Istm-f7cdf6édfci14e
® the Tnput 1s not fixed- -
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https://towardsdatascience.com/understanding-rnn-and-lstm-f7cdf6dfc14e
https://towardsdatascience.com/understanding-rnn-and-lstm-f7cdf6dfc14e

RMMs for particle physics

® RNN can be used to deal
with Tist of I S
reconstructed particles id

Muon
Electron
Charged Hadron (e.g. Pion)

— — — - Neutral Hadron (e.g. Neutron)
----- Photon

® Their architecture
better fits our needs

® No underlying
assumption on the
detector geometry

® This comes at two costs

® Some ordering
principle needs to be

specified
Calorimeter Superconducting
: Solenoid Iron return yoke interspersed
® Inference 1s with muen chambers
sequential (not 1i1deal L | e
for L1 real time) e}, C e
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LHC events & lanquage processing

® RNNs learn sentence meaning by order, which (for a given
language) carries a lot of the 1nformation about the

underlying grammar m /}

® One could attempt something similar with physics, e.g., Fermilab has a herd of bisons
understanding the hadronization processes 1n jets from a
sequence of jet constituents >

A\

Which order: not a clear answer. One can use pT ordering,
angular ordering, etc. as 1n parton-shower MC simulation

(pythia, sherpa, ..) and jet clustering algorithms (KT, /X /N
anti-kT, etc.) Fermilab has a herd of bisons
_ , K -:kﬁ““~~~un\
® particles as words 1n a sentence L e
® QCD 1s the grammar A Do ARG A oL Dl AL e AL XL
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Ol Recurrent NMeural Networks

® Given an ordered list of jet
constituents, one could then
learn jet features

® Jet ID, as 1n our problem

® Jet substructure quantities, A ? A A A
jet kinematic, etc

® One could use the same
approach on the whole event,
w/o jet clustering (topology
classifier)

Particle
Particle
Particle
Particle
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® Not my best option as of
today: graph networks emerged
as a more suitable
architecture for this (can R | s
process unordered sets) erc Research




® Recurrent networks can be operated
1n two ways

® one can 1nject a sequence and
received a sequence

® one could just focus on the
result of the last i1teration,

translating a sequence 1n a
quantity (%)

e return_sequences: Boolean. Whether to return the last output in the output sequence, or the

full sequence. Default: False.
From Keras

® One typically operates many
recurrent units at once 1n a
recurrent layer (like nodes 1n a
dense layer, or kernels for CNN)

(*) This 1s what we will be doing

R ) 0 0)
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Recurrent networks

® Several architectures proposed

Recurrent layers

LSTM layer From Keras

GRU layer
SimpleRNN layer
TimeDistributed layer
Bidirectional layer
ConvLSTM2D layer
Base RNN layer

® what changes 1s what happens 1n the
A block

@ We will focus on the first three

® LSTMs (1995): the most popular (and
performing) choice for serial-data
processing

® GRUs (2014): essentially an LSTM
with a forget gate, with less
parameters (and similar
performance) as LSTM

® SRNs, aka Elman (1990) and Jordan
(1997) networks: simplest
realisation of the idea

(*) This 1s what we will be doing


https://arxiv.org/pdf/1905.00689.pdf
https://www.mitpressjournals.org/doi/abs/10.1162/neco.1997.9.8.1735
https://arxiv.org/abs/1406.1078
https://onlinelibrary.wiley.com/doi/abs/10.1207/s15516709cog1402_1
https://www.sciencedirect.com/science/article/pii/S0166411597801112?via=ihub
https://www.sciencedirect.com/science/article/pii/S0166411597801112?via=ihub

SR

® The simplest recurrent @ Ekman nahwork
architecture he = op(Whay + Ulhe_y ¥ by)
" - y = oy (Wyhe + by)
. . Jordan network
® The processing unit —— _,‘ he = on (Wi, + + by)
receives an i1nput x and ye = oy (Wyhe + by)
the output of the
previous-particle .
processing h (the _ _
The network processing essentially works as
contex t) @ memory gates ->
One typically uses sigmoids or tanh as activation
® The product of the two is functions
. 1.0 e —
activated by a tank s
function it A
0.0 /
® the result can be used as /
1t 1s and/or passed to 051 /
the next processing ol
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Neural Network Pointwise Vector
Layer Operation Transfer

Concatenate Copy
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® Information 1n the network flows through the memory cell
® simple operations on 1t (to make the flow easy)

® depending on gates (computed from next i1nput), memory cell can

be reset (yes/no decision taken by adequate activation function)
12




LS T processing

® Layerl: decide 1f the context stored 1n the memory cell 1s
to be forgotten or not

® yes/no question -> sigmoid function

® decision taken based on context and 1nput

13



LS T processing

® Layer2: two networks act to update the memory cell

@ a sigmoid (as 1n layer 1) decides which values 1n (0,1)
to pass through

® a tanh function assigns a weight 1n (-1,1) to 1t

..' °
.....
.....
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LS T processing

® Layer3: fixes the output value to be passed next

® the cell content C: 1s pushed 1n (-1,1) by a tanh

® a gate function (sigmoid) sets which fraction of the cell
content 1s passed through

1

Ot = U(Wo [ht—laajt] + b())
ht — Ot X tanh (Ct)

s s ...:..o European
R LI Research
| -:::'.'.erc Council
. _'.o.o:.:.....: .,




Ol Goted Recurrent Unit

ht
heq o . hy
E@
ﬂ t https://
@ towardsdatascience.com/
+ understanding-gru-
networks-2ef37df6c9be
h,t
2, ?' 2t
MY
Xt 6
@ [tanh}
“plus™ operation “sigmoid” function “Hadamard product™ operation “tanh” function
(aka element-wise product) LS| Europesn

,_-_‘.'..'.-..“o : Research
| ".:‘.'.'.erc Council
BRI S Y

16


http://www.apple.com/uk

GRU processing

® Layerl: update gate

@emultiply 1nput and context by update weights

® based on that, decide how much of the previous 1nformation should
be passes through hy

t-1

z, =c(Wx, + U%h,_))
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GRU processing

® Layer2: reset gate

emultiply 1nput and context by reset weights

® decide how much of the previous 1nformation 1s to be forgotten

n

t-1 [

o r,=oc(W"x, + U"h,_))

0.' °
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GRU processing

® Layer3: determine the current memory content

® the context 1nformation 1s partially removed to an element-by-element product
with the reset gate

® the result 1s summed to the (weighted) T1nput and passed through a tank

activation function

h

t-1

: h; = tanh(Wx, +r,© Uh,_,)
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GRU processing

® Layer4: compute the new memory state, to pass through

® mixes the current memory state with the 1nput one

® uses the update gate to weight the two contributions
h

t

ht_ ‘I 4 N ht

ht':Zt@ht—l+(1_Zt)®ht
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@ Example: topology classification GLHC

® Finding which process
generated an event 1s a
typical task @LHC
experiments

CMS Experiment at the LHC, },.
Data recorded: 2016-May-292 /} 221
. Run / Event / LS: 274199 / 5487 14092028¢

® Let’s take as 1nput the
events with one energetic
electron or muon (lepton)

® After some loose selection, Lepton Isolation + p, threshold
mainly three processes ot

left: jet production (QCD, Qch

the background) + W or tt

productions (the signals)

® We want to separate the

three components __ ‘ercl




Ol WJhat the event looks like

® sparse 1mage with many pixels
® nhot the kind of 1mage that CNNs usually deal with

@ st1ll, reasonable performances (AUC~90%) can be
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Event Representations

t —
Deep
— Topology o
Classifier °

Abstract Image

High-level Feature

Calo Image Particle Sequence
Classifier

Classifier Classifier Classifier

Raw images of the aA rt?slce]lsjetgﬁ:nogs Based on an abstract Use high-level features
calorimetry hits fed to P o : representation of the as inputs to a fully
a convolutional NN. NpULto a recurren reconstructed particles connected NN.
NN. as an image to feed to
Similar to https:// a convolutional NN.

LLilgadenis European
ey .

arxiyv. Org/ab5/1702. 00748 Insp-ir'ed from https =)/ :-.:.é-rc Research

arxiv.org/abs/1708.07034
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https://arxiv.org/abs/1708.07034
https://arxiv.org/abs/1708.07034
https://arxiv.org/abs/1702.00748
https://arxiv.org/abs/1702.00748

Event Regresentatlons

DenseNet on 1mages

ool

DenseNet121
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Recurrent nets on the
list of particles
(LSTM, GRUs, etc)
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Fully-Connected classifier on
physics-motivated features
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Performance

® The GRU provides the best discrimination power

® The HLFs come second

® The combination of the two further 1mprove

1.0

Signal Efficiency (TPR)

—
N

0.0
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v
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Raw-image classifier (AUC): 0.9099
Abstract-image classifier (AUC): 0.9681
HLF classifier (AUC): 0.9809

.~ —— Particle-sequence classifier (AUC): 0.9907
Inclusive classifier (AUC): 0.9955

0.2 0.4 0.6 0.8
Background Contamination (FPR)

1.0

(a) tt selector
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Signal Efficiency (TPR)
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Raw-image classifier (AUC): 0.8036
Abstract-image classifier (AUC): 0.9287
HLF classifier (AUC): 0.9774

.~ —— Particle-sequence classifier (AUC): 0.9851
Inclusive classifier (AUC): 0.9942

0.2 0.4 0.6 0.8
Background Contamination (FPR)

(b) W selector

1.0
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https://dl4physicalsciences.github.io/files/nips_dlps_2017_3.pdf

Selection performances

0.4

0.21

0.0

_0.2_

Pearson correlation coefficient
Pearson correlation coefficient

0.01 ---I--.- ..—-
0.2-

_0.4_
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What is the network learning?
* tt events are more crowded that W events
e |eptons in W and tt events are isolated from other
particles
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Cleaning up selected sample

A typical example: leptonic triggers

LSTM TOPCLASSIfier

® at the LHC, producing an 1solated
electron or muon 1s very rare.
Typical smoking gun that something
interesting happened (Z,W, top,H
production)

® Triggers like those are very central
to ATLAS/CMS physics

® The sample selected 1s enriched 1n
Tnteresting events, but still
contaminated by non-interesting ones

® Contamination can be reduced with a
DL classifier that rejects obvious
false positives looking at the full
event, not just at the lepton
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1D Convolution

® Rather than a sequential EEEEEEEEEE
processing, one could use a 1D —— 4x1 kernels
kernel .__|| y=FCY Xwn+b)
® Same as 2D conv, but acting EEEEEEEEEE

on 1D sequence

® The channels here are the
features of the 1-th element

of the sequence (e.g., pT, HEEEEEEEEEE
n, @ of jet constituents) —— 4x1kernels

Yj = Wi + b
EEEEEE' - CXvn

® Advantage comes from

parallel processing (no ===
memory cell) -> faster ..fﬁffﬂﬁl
W_J 7x1 pooling
® Performance can be _
compa rab7e, but usual 7y —_lTl 1 output per filter (same as 1

output per RNN unit
[STMs are better PULP )

30



X1 kernel for pre-processing

EEEEEREEEEE
H,J1x1 kernels
| 1
® Sometimes, 1x1 kernels  _.5.. .,
are used (1n 1D, 2D, C..........

etc) as pre-processing
networks

@ IT you look at the
math, 1t’s the same as
running a DNN 1n
parallel on the c
features of each
element

........
......
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Summary

® We discuss recurrent NNs and their potential usage to save processing
resources @LHC

® Learn underlying “particle physics grammar” by sequential processing of
ordered 1i1sts of particles

® Can be used 1n jets (our exercise of today)
® Can be used on whole event
@A step fwd wrt CNNs: don’t require regular detector geometry

® Not yet the ultimate solution: require ordering principle, not always
uniquely defined

® We also saw 1D CNN as an alternative solution to the same problem
® parallel process -> faster

® ho memory gate mechanism -> might not work that well Curopean
@Y C) councit
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