
Maurizio Pierini

Deep Learning Applications
for collider physics

Lecture 4

Plan for this week

2

Day1 Day2 Day3 Day4 Day5

Lecture Introduction ConvNN RNNs Graphs Unsupervised
Learning

Tutorial Fully Connected
Classifier

ConvNN
Classifier RNNs Classifier Graphs Classifier Anomaly

Detection

HEP data and Graphs

Deep Neural Network in a nutshell
๏ DNNs typically rely on two phases:

๏ Feature engineering from Raw Data. This is where new & exotic
architectures (depending on data type) take the best out of your data

๏ Task solving: start from engineered features and solve the task
(classification, regression, etc.)

What about irregular data?
๏ Unfortunately, many scientific domains deal with data which
are not regular arrays (neither images nor sequences)

๏ Galaxies or star populations in sky
๏ Sensors from HEP detector
๏ Molecules in chemistry

๏ These data can all be seen as sparse sets in some abstract
space

๏ each element of the set being specified by some array of
features

๏ geometrical coordinates could be some of these features0 1 2 3 4

0

1

2

3

4

0 0 1 1 2 3 3 4 4

0 4 1 4 2 1 3 0 4

0 1 2 3 4

0

1

2

3

4

0 0 1 1 2 3 3 4 4
0 4 1 4 2 1 3 0 4

1.00 0.25 0.75 1.00 0.25 0.75 0.50 0.25 1.00

0 1 2 3 4

0

1

2

3

4

0 0 1 1 2 3 3 4 4

0 4 1 4 2 1 3 0 4

0 1 2 3 4

0

1

2

3

4

0 0 1 1 2 3 3 4 4
0 4 1 4 2 1 3 0 4

1.00 0.25 0.75 1.00 0.25 0.75 0.50 0.25 1.00

MB II simulation, animation credit: Kim Albrecht

Graph Neural Networks in Particle Physics 3

calorimeters, muon detector, etc — each using a di↵erent technology to measure the

trace of particles. The data in particle physics are therefore heterogeneous. Detectors

in astrophysics are typically bigger, with size up to kilometers (IceCube, Antares,

etc) constructed around a single measurement technology, the data are therefore

homogeneous. In both cases, the measurements are inherently sparse in space, due to

the design of the geometry of the sensors. The measurements therefore do not a-priori

fit homogeneous, grid-like data structures.

Deep learning is often applied on high level features derived from particle physics

data [1]. This can improve over more classical data analysis methods, but does not use

the full potential of deep learning, which can be e↵ective when operating on lower level

information.

(a)

(b)

(c) (d)

Figure 2. HEP data lend itself to being represented as a graph for many applications:
(a) clustering tracking detector hits into tracks, (b) segmenting calorimeter cells, (c)
classifying events with multiple types of physics objects, (d) jet classification based on
the particles associated to the jet.

From Sets to Graphs

Graph Neural Networks in Particle Physics 3

calorimeters, muon detector, etc — each using a di↵erent technology to measure the

trace of particles. The data in particle physics are therefore heterogeneous. Detectors

in astrophysics are typically bigger, with size up to kilometers (IceCube, Antares,

etc) constructed around a single measurement technology, the data are therefore

homogeneous. In both cases, the measurements are inherently sparse in space, due to

the design of the geometry of the sensors. The measurements therefore do not a-priori

fit homogeneous, grid-like data structures.

Deep learning is often applied on high level features derived from particle physics

data [1]. This can improve over more classical data analysis methods, but does not use

the full potential of deep learning, which can be e↵ective when operating on lower level

information.

(a)

(b)

(c) (d)

Figure 2. HEP data lend itself to being represented as a graph for many applications:
(a) clustering tracking detector hits into tracks, (b) segmenting calorimeter cells, (c)
classifying events with multiple types of physics objects, (d) jet classification based on
the particles associated to the jet.

Graph Neural Networks in Particle Physics 3

calorimeters, muon detector, etc — each using a di↵erent technology to measure the

trace of particles. The data in particle physics are therefore heterogeneous. Detectors

in astrophysics are typically bigger, with size up to kilometers (IceCube, Antares,

etc) constructed around a single measurement technology, the data are therefore

homogeneous. In both cases, the measurements are inherently sparse in space, due to

the design of the geometry of the sensors. The measurements therefore do not a-priori

fit homogeneous, grid-like data structures.

Deep learning is often applied on high level features derived from particle physics

data [1]. This can improve over more classical data analysis methods, but does not use

the full potential of deep learning, which can be e↵ective when operating on lower level

information.

(a)

(b)

(c) (d)

Figure 2. HEP data lend itself to being represented as a graph for many applications:
(a) clustering tracking detector hits into tracks, (b) segmenting calorimeter cells, (c)
classifying events with multiple types of physics objects, (d) jet classification based on
the particles associated to the jet.

๏ Given such a set, we want to generalise the
image representation as regular array that is
fed to a CNN

๏ Once that is done, we can generalise CNN
itself

๏ For images, a lot of information is carried
by pixels being next to each other. A metric
is intrinsic in the data representation as
image

๏ With a set, we need to specify a metric that
tell us who is close to who in the abstract
space of features that we have at hand

๏ SOLUTION: connect elements of sets and
learn (e.g., with a neural network) from
data which connections are relevant

๏ Each element of your set is a vertex V

๏ Edges E connect them

๏ Edges can be made directional

๏ Graphs can be fully connected (N2)

๏ Or you could use some criterion (e.g.,
nearest k neighbours in some space) to
reduce number of connections

๏ if more than one kind of vertex, you
could connect only Vs of same kind, of
different kind, etc

๏ The (V,E) construction is your graph.
Building it, you could enforce some
structure in your data

๏ If you have no prior, then go for a
directional fully connected graph

Building the Graph

7

Message Passing

๏ Imagine a concrete example: given a social-media user,
who will she vote for at the next elections?

๏ The graph here comes from social-media connections

๏ The features are what we know for a given user (gender,
age, education, etc.)

๏ We want to gather information on someone from the
social network of that person

๏ we might know who some of her connections voted for

๏ We will use NNs to model the influence (message passed)
of each user on her connection and learn from data
which are the relevant connections. We are engineering
features

๏ A final classifier will give us the answer we want

๏ You might become president with this + target pressure
(ads, fake news, etc.)

Learning from Graph: an example

9

๏ Imagine a concrete example: given a social-media user,
who will she vote for at the next elections?

๏ The graph here comes from social-media connections

๏ The features are what we know for a given user (gender,
age, education, etc.)

๏ We want to gather information on someone from the
social network of that person

๏ we might know who some of her connections voted for

๏ We will use NNs to model the influence (message passed)
of each user on her connection and learn from data
which are the relevant connections. We are engineering
features

๏ A final classifier will give us the answer we want

๏ You might become president with this + target pressure
(ads, fake news, etc.)

Learning from Graph: an example

10

 DON’T DO IT!!!!!!

๏ Graphs Nets are architectures based on
an abstract representation of a given
dataset

๏ Each example in a dataset is
represented as a set of vertices

๏ Each vertex is embedded in the
graph as a vector of features

๏ Vertices are connected through
links

๏ Messages are passed through links
and aggregated on the vertices

๏ A new representation of each node
is created, based on the
information gathered across the
graph

Graph Networks

v1 = (f1
1 , f 2

1 , . . . , f k
1)

v2 = (f1
2 , f 2

2 , . . . , f k
2)

v3 = (f1
3 , f 2

3 , . . . , f k
3)

v4 = (f1
4 , f 2

4 , . . . , f k
4)

v5 = (f1
5 , f 2

5 , . . . , f k
5)

v6 = (f1
6 , f 2

6 , . . . , f k
6)

https://arxiv.org/pdf/1704.01212.pdf11

https://arxiv.org/pdf/1704.01212.pdf

๏ Graphs Nets are architectures based on
an abstract representation of a given
dataset

๏ Each example in a dataset is
represented as a set of vertices

๏ Each vertex is embedded in the
graph as a vector of features

๏ Vertices are connected through
links (edges)

๏ Messages are passed through links
and aggregated on the vertices

๏ A new representation of each node
is created, based on the
information gathered across the
graph

Graph Networks

12 https://arxiv.org/pdf/1704.01212.pdf

https://arxiv.org/pdf/1704.01212.pdf

๏ Graphs Nets are architectures based on
an abstract representation of a given
dataset

๏ Each example in a dataset is
represented as a set of vertices

๏ Each vertex is embedded in the
graph as a vector of features

๏ Vertices are connected through
links (edges)

๏ Messages are passed through links
and aggregated on the vertices

๏ A new representation of each node
is created, based on the
information gathered across the
graph

Graph Networks

13

m3→2 = g(⃗f3, ⃗f2)

m1→2 = g(⃗f1, ⃗f2)

m4→2 = g(⃗f4, ⃗f2)

m5→2 = g(⃗f5, ⃗f2)

m6→2 = g(⃗f6, ⃗f2)

https://arxiv.org/pdf/1704.01212.pdf

https://arxiv.org/pdf/1704.01212.pdf

๏ Graphs Nets are architectures based on
an abstract representation of a given
dataset

๏ Each example in a dataset is
represented as a set of vertices

๏ Each vertex is embedded in the
graph as a vector of features

๏ Vertices are connected through
links (edges)

๏ Messages are passed through links
and aggregated on the vertices

๏ A new representation of each node
is created, based on the
information gathered across the
graph

Graph Networks

14

v′ 1 = ⃗f ′ 1(m2→1, . . . , m6→1)

v′ 2 = ⃗f ′ 2(m1→2, . . . , m6→2)

v′ 4 = ⃗f ′ 4(m1→4, . . . , m6→4)

v′ 5 = ⃗f ′ 5(m1→5, . . . , m6→5)

v′ 6 = ⃗f ′ 6(m1→6, . . . , m5→6)

v′ 3 = ⃗f ′ 3(m1→3, . . . , m6→3)

https://arxiv.org/pdf/1704.01212.pdf

https://arxiv.org/pdf/1704.01212.pdf

๏ The inference step usually
happens on each vertex

๏ But, depending on the problem,
it might happen across the
graph

๏ Usually, this is done with a
DNN taking

๏ the initial features fi

๏ the learned representation
fi’

๏ [optional] some ground-truth
label (for classifiers)

The inference step

15

v1 = (⃗f1
⃗f ′ 1)

v3 = (⃗f3
⃗f ′ 3)

v4 = (⃗f4
⃗f ′ 4)

v2 = (⃗f2
⃗f ′ 2)

v5 = (⃗f5
⃗f ′ 5)

v6 = (⃗f6
⃗f ′ 6)

Jennifer Ngadiuba - hls4ml: deep neural networks in FPGAs25.04.2018

Efficient NN design: compression

 27

Train
with L1

Retrain
with L1

Prune

Prune

Retrain
with L1 Prune

…

1st iteration

2nd iteration

7th iteration

……

Prune and repeat the train for 7 iterations

CHAPTER 3. PRUNING DEEP NEURAL NETWORKS 20

SUXQLQJ�
QHXURQV

SUXQLQJ�
V\QDSVHV

DIWHU�SUXQLQJEHIRUH�SUXQLQJ

Figure 3.1: Pruning the synapses and neurons of a deep neural network.

the connections that have been removed. The phases of pruning and retraining may be repeated
iteratively to further reduce network complexity. In effect, this training process learns the network
connectivity in addition to the weights — this parallels the human brain development [109] [110],
where excess synapses formed in the first few months of life are gradually "pruned", with neurons
losing little-used connections while preserving the functionally important connections.

On the ImageNet dataset, the pruning method reduced the number of parameters of AlexNet
by a factor of 9× (61 to 6.7 million), without incurring accuracy loss. Similar experiments with
VGG-16 found that the total number of parameters can be reduced by 13× (138 to 10.3 million),
again with no loss of accuracy. We also experimented with the more efficient fully-convolutional
neural networks: GoogleNet (Inception-V1), SqueezeNet, and ResNet-50, which have zero or very
thin fully connected layers. From these experiments we find that they share very similar pruning
ratios before the accuracy drops: 70% of the parameters in those fully-convolutional neural networks
can be pruned. GoogleNet is pruned from 7 million to 2 million parameters, SqueezeNet from 1.2
million to 0.38 million, and ResNet-50 from 25.5 million to 7.47 million, all with no loss of Top-1 and
Top-5 accuracy on Imagenet.

In the following sections, we provide solutions on how to prune neural networks and how to
retrain the pruned model to recover prediction accuracy. We also demonstrate the speedup and
energy efficiency improvements of the pruned model when run on commodity hardware.

3.2 Pruning Methodology

Our pruning method employs a three-step process: training connectivity, pruning connections,
and retraining the remaining weights. The last two steps can be done iteratively to obtain better
compression ratios. The process is illustrated in Figure 3.2 and Algorithm 1.

→ 70% reduction of weights
and multiplications w/o
performance loss

Jennifer Ngadiuba - hls4ml: deep neural networks in FPGAs25.04.2018

Efficient NN design: compression

 27

Train
with L1

Retrain
with L1

Prune

Prune

Retrain
with L1 Prune

…

1st iteration

2nd iteration

7th iteration

……

Prune and repeat the train for 7 iterations

CHAPTER 3. PRUNING DEEP NEURAL NETWORKS 20

SUXQLQJ�
QHXURQV

SUXQLQJ�
V\QDSVHV

DIWHU�SUXQLQJEHIRUH�SUXQLQJ

Figure 3.1: Pruning the synapses and neurons of a deep neural network.

the connections that have been removed. The phases of pruning and retraining may be repeated
iteratively to further reduce network complexity. In effect, this training process learns the network
connectivity in addition to the weights — this parallels the human brain development [109] [110],
where excess synapses formed in the first few months of life are gradually "pruned", with neurons
losing little-used connections while preserving the functionally important connections.

On the ImageNet dataset, the pruning method reduced the number of parameters of AlexNet
by a factor of 9× (61 to 6.7 million), without incurring accuracy loss. Similar experiments with
VGG-16 found that the total number of parameters can be reduced by 13× (138 to 10.3 million),
again with no loss of accuracy. We also experimented with the more efficient fully-convolutional
neural networks: GoogleNet (Inception-V1), SqueezeNet, and ResNet-50, which have zero or very
thin fully connected layers. From these experiments we find that they share very similar pruning
ratios before the accuracy drops: 70% of the parameters in those fully-convolutional neural networks
can be pruned. GoogleNet is pruned from 7 million to 2 million parameters, SqueezeNet from 1.2
million to 0.38 million, and ResNet-50 from 25.5 million to 7.47 million, all with no loss of Top-1 and
Top-5 accuracy on Imagenet.

In the following sections, we provide solutions on how to prune neural networks and how to
retrain the pruned model to recover prediction accuracy. We also demonstrate the speedup and
energy efficiency improvements of the pruned model when run on commodity hardware.

3.2 Pruning Methodology

Our pruning method employs a three-step process: training connectivity, pruning connections,
and retraining the remaining weights. The last two steps can be done iteratively to obtain better
compression ratios. The process is illustrated in Figure 3.2 and Algorithm 1.

→ 70% reduction of weights
and multiplications w/o
performance loss

Jennifer Ngadiuba - hls4ml: deep neural networks in FPGAs25.04.2018

Efficient NN design: compression

 27

Train
with L1

Retrain
with L1

Prune

Prune

Retrain
with L1 Prune

…

1st iteration

2nd iteration

7th iteration

……

Prune and repeat the train for 7 iterations

CHAPTER 3. PRUNING DEEP NEURAL NETWORKS 20

SUXQLQJ�
QHXURQV

SUXQLQJ�
V\QDSVHV

DIWHU�SUXQLQJEHIRUH�SUXQLQJ

Figure 3.1: Pruning the synapses and neurons of a deep neural network.

the connections that have been removed. The phases of pruning and retraining may be repeated
iteratively to further reduce network complexity. In effect, this training process learns the network
connectivity in addition to the weights — this parallels the human brain development [109] [110],
where excess synapses formed in the first few months of life are gradually "pruned", with neurons
losing little-used connections while preserving the functionally important connections.

On the ImageNet dataset, the pruning method reduced the number of parameters of AlexNet
by a factor of 9× (61 to 6.7 million), without incurring accuracy loss. Similar experiments with
VGG-16 found that the total number of parameters can be reduced by 13× (138 to 10.3 million),
again with no loss of accuracy. We also experimented with the more efficient fully-convolutional
neural networks: GoogleNet (Inception-V1), SqueezeNet, and ResNet-50, which have zero or very
thin fully connected layers. From these experiments we find that they share very similar pruning
ratios before the accuracy drops: 70% of the parameters in those fully-convolutional neural networks
can be pruned. GoogleNet is pruned from 7 million to 2 million parameters, SqueezeNet from 1.2
million to 0.38 million, and ResNet-50 from 25.5 million to 7.47 million, all with no loss of Top-1 and
Top-5 accuracy on Imagenet.

In the following sections, we provide solutions on how to prune neural networks and how to
retrain the pruned model to recover prediction accuracy. We also demonstrate the speedup and
energy efficiency improvements of the pruned model when run on commodity hardware.

3.2 Pruning Methodology

Our pruning method employs a three-step process: training connectivity, pruning connections,
and retraining the remaining weights. The last two steps can be done iteratively to obtain better
compression ratios. The process is illustrated in Figure 3.2 and Algorithm 1.

→ 70% reduction of weights
and multiplications w/o
performance loss

Jennifer Ngadiuba - hls4ml: deep neural networks in FPGAs25.04.2018

Efficient NN design: compression

 27

Train
with L1

Retrain
with L1

Prune

Prune

Retrain
with L1 Prune

…

1st iteration

2nd iteration

7th iteration

……

Prune and repeat the train for 7 iterations

CHAPTER 3. PRUNING DEEP NEURAL NETWORKS 20

SUXQLQJ�
QHXURQV

SUXQLQJ�
V\QDSVHV

DIWHU�SUXQLQJEHIRUH�SUXQLQJ

Figure 3.1: Pruning the synapses and neurons of a deep neural network.

the connections that have been removed. The phases of pruning and retraining may be repeated
iteratively to further reduce network complexity. In effect, this training process learns the network
connectivity in addition to the weights — this parallels the human brain development [109] [110],
where excess synapses formed in the first few months of life are gradually "pruned", with neurons
losing little-used connections while preserving the functionally important connections.

On the ImageNet dataset, the pruning method reduced the number of parameters of AlexNet
by a factor of 9× (61 to 6.7 million), without incurring accuracy loss. Similar experiments with
VGG-16 found that the total number of parameters can be reduced by 13× (138 to 10.3 million),
again with no loss of accuracy. We also experimented with the more efficient fully-convolutional
neural networks: GoogleNet (Inception-V1), SqueezeNet, and ResNet-50, which have zero or very
thin fully connected layers. From these experiments we find that they share very similar pruning
ratios before the accuracy drops: 70% of the parameters in those fully-convolutional neural networks
can be pruned. GoogleNet is pruned from 7 million to 2 million parameters, SqueezeNet from 1.2
million to 0.38 million, and ResNet-50 from 25.5 million to 7.47 million, all with no loss of Top-1 and
Top-5 accuracy on Imagenet.

In the following sections, we provide solutions on how to prune neural networks and how to
retrain the pruned model to recover prediction accuracy. We also demonstrate the speedup and
energy efficiency improvements of the pruned model when run on commodity hardware.

3.2 Pruning Methodology

Our pruning method employs a three-step process: training connectivity, pruning connections,
and retraining the remaining weights. The last two steps can be done iteratively to obtain better
compression ratios. The process is illustrated in Figure 3.2 and Algorithm 1.

→ 70% reduction of weights
and multiplications w/o
performance loss

Jennifer Ngadiuba - hls4ml: deep neural networks in FPGAs25.04.2018

Efficient NN design: compression

 27

Train
with L1

Retrain
with L1

Prune

Prune

Retrain
with L1 Prune

…

1st iteration

2nd iteration

7th iteration

……

Prune and repeat the train for 7 iterations

CHAPTER 3. PRUNING DEEP NEURAL NETWORKS 20

SUXQLQJ�
QHXURQV

SUXQLQJ�
V\QDSVHV

DIWHU�SUXQLQJEHIRUH�SUXQLQJ

Figure 3.1: Pruning the synapses and neurons of a deep neural network.

the connections that have been removed. The phases of pruning and retraining may be repeated
iteratively to further reduce network complexity. In effect, this training process learns the network
connectivity in addition to the weights — this parallels the human brain development [109] [110],
where excess synapses formed in the first few months of life are gradually "pruned", with neurons
losing little-used connections while preserving the functionally important connections.

On the ImageNet dataset, the pruning method reduced the number of parameters of AlexNet
by a factor of 9× (61 to 6.7 million), without incurring accuracy loss. Similar experiments with
VGG-16 found that the total number of parameters can be reduced by 13× (138 to 10.3 million),
again with no loss of accuracy. We also experimented with the more efficient fully-convolutional
neural networks: GoogleNet (Inception-V1), SqueezeNet, and ResNet-50, which have zero or very
thin fully connected layers. From these experiments we find that they share very similar pruning
ratios before the accuracy drops: 70% of the parameters in those fully-convolutional neural networks
can be pruned. GoogleNet is pruned from 7 million to 2 million parameters, SqueezeNet from 1.2
million to 0.38 million, and ResNet-50 from 25.5 million to 7.47 million, all with no loss of Top-1 and
Top-5 accuracy on Imagenet.

In the following sections, we provide solutions on how to prune neural networks and how to
retrain the pruned model to recover prediction accuracy. We also demonstrate the speedup and
energy efficiency improvements of the pruned model when run on commodity hardware.

3.2 Pruning Methodology

Our pruning method employs a three-step process: training connectivity, pruning connections,
and retraining the remaining weights. The last two steps can be done iteratively to obtain better
compression ratios. The process is illustrated in Figure 3.2 and Algorithm 1.

→ 70% reduction of weights
and multiplications w/o
performance loss

Jennifer Ngadiuba - hls4ml: deep neural networks in FPGAs25.04.2018

Efficient NN design: compression

 27

Train
with L1

Retrain
with L1

Prune

Prune

Retrain
with L1 Prune

…

1st iteration

2nd iteration

7th iteration

……
Prune and repeat the train for 7 iterations

CHAPTER 3. PRUNING DEEP NEURAL NETWORKS 20

SUXQLQJ�
QHXURQV

SUXQLQJ�
V\QDSVHV

DIWHU�SUXQLQJEHIRUH�SUXQLQJ

Figure 3.1: Pruning the synapses and neurons of a deep neural network.

the connections that have been removed. The phases of pruning and retraining may be repeated
iteratively to further reduce network complexity. In effect, this training process learns the network
connectivity in addition to the weights — this parallels the human brain development [109] [110],
where excess synapses formed in the first few months of life are gradually "pruned", with neurons
losing little-used connections while preserving the functionally important connections.

On the ImageNet dataset, the pruning method reduced the number of parameters of AlexNet
by a factor of 9× (61 to 6.7 million), without incurring accuracy loss. Similar experiments with
VGG-16 found that the total number of parameters can be reduced by 13× (138 to 10.3 million),
again with no loss of accuracy. We also experimented with the more efficient fully-convolutional
neural networks: GoogleNet (Inception-V1), SqueezeNet, and ResNet-50, which have zero or very
thin fully connected layers. From these experiments we find that they share very similar pruning
ratios before the accuracy drops: 70% of the parameters in those fully-convolutional neural networks
can be pruned. GoogleNet is pruned from 7 million to 2 million parameters, SqueezeNet from 1.2
million to 0.38 million, and ResNet-50 from 25.5 million to 7.47 million, all with no loss of Top-1 and
Top-5 accuracy on Imagenet.

In the following sections, we provide solutions on how to prune neural networks and how to
retrain the pruned model to recover prediction accuracy. We also demonstrate the speedup and
energy efficiency improvements of the pruned model when run on commodity hardware.

3.2 Pruning Methodology

Our pruning method employs a three-step process: training connectivity, pruning connections,
and retraining the remaining weights. The last two steps can be done iteratively to obtain better
compression ratios. The process is illustrated in Figure 3.2 and Algorithm 1.

→ 70% reduction of weights
and multiplications w/o
performance loss

…and repeat
๏ Once message is passed,
aggregated at each vertex V
and processed, it creates a
new representation of each
vertex

๏ You could start from
coordinates in real space
+ some feature

๏ Build function of them

๏ Build functions of
functions of them

๏ At each step, you improve
knowledge on your vertex V

16

…and repeat

17

๏ Once message is passed,
aggregated at each vertex V
and processed, it creates a
new representation of each
vertex

๏ You could start from
coordinates in real space
+ some feature

๏ Build function of them

๏ Build functions of
functions of them

๏ At each step, you improve
knowledge on your vertex V

…and repeat

18

๏ Once message is passed,
aggregated at each vertex V
and processed, it creates a
new representation of each
vertex

๏ You could start from
coordinates in real space
+ some feature

๏ Build function of them

๏ Build functions of
functions of them

๏ At each step, you improve
knowledge on your vertex V

…and repeat

19

๏ Once message is passed,
aggregated at each vertex V
and processed, it creates a
new representation of each
vertex

๏ You could start from
coordinates in real space
+ some feature

๏ Build function of them

๏ Build functions of
functions of them

๏ At each step, you improve
knowledge on your vertex V

…and repeat

20

๏ Once message is passed,
aggregated at each vertex V
and processed, it creates a
new representation of each
vertex

๏ You could start from
coordinates in real space
+ some feature

๏ Build function of them

๏ Build functions of
functions of them

๏ At each step, you improve
knowledge on your vertex V

With equations…
๏ Your message at iteration t is some function M of
the sending and receiving features, plus some vertex
features (e.g., business relation vs friendship in
social media)

ht
w

ht
v

evw

Mt(ht
v, ht

w, evw)
๏ The message carried to a vertex v is aggregated by
some function (typically sum, but also Max, Min,
etc.)

mt+1
v = ∑

w∈G(v)

Mt(ht
v, ht

w, evw)

21

With equations…
๏ The state of vertex v is updated by some function U
of the current state and the gathered message

ht+1
v = Ut(ht

v, mt+1
v)

๏ After T iterations, the last representations of the
graph vertices are used to derive the final output
answering the question asked (classification,
regression, etc.), typically through a NN

̂y = R(hT
v |v ∈ G)

Jennifer Ngadiuba - hls4ml: deep neural networks in FPGAs25.04.2018

Efficient NN design: compression

 27

Train
with L1

Retrain
with L1

Prune

Prune

Retrain
with L1 Prune

…

1st iteration

2nd iteration

7th iteration

……

Prune and repeat the train for 7 iterations

CHAPTER 3. PRUNING DEEP NEURAL NETWORKS 20

SUXQLQJ�
QHXURQV

SUXQLQJ�
V\QDSVHV

DIWHU�SUXQLQJEHIRUH�SUXQLQJ

Figure 3.1: Pruning the synapses and neurons of a deep neural network.

the connections that have been removed. The phases of pruning and retraining may be repeated
iteratively to further reduce network complexity. In effect, this training process learns the network
connectivity in addition to the weights — this parallels the human brain development [109] [110],
where excess synapses formed in the first few months of life are gradually "pruned", with neurons
losing little-used connections while preserving the functionally important connections.

On the ImageNet dataset, the pruning method reduced the number of parameters of AlexNet
by a factor of 9× (61 to 6.7 million), without incurring accuracy loss. Similar experiments with
VGG-16 found that the total number of parameters can be reduced by 13× (138 to 10.3 million),
again with no loss of accuracy. We also experimented with the more efficient fully-convolutional
neural networks: GoogleNet (Inception-V1), SqueezeNet, and ResNet-50, which have zero or very
thin fully connected layers. From these experiments we find that they share very similar pruning
ratios before the accuracy drops: 70% of the parameters in those fully-convolutional neural networks
can be pruned. GoogleNet is pruned from 7 million to 2 million parameters, SqueezeNet from 1.2
million to 0.38 million, and ResNet-50 from 25.5 million to 7.47 million, all with no loss of Top-1 and
Top-5 accuracy on Imagenet.

In the following sections, we provide solutions on how to prune neural networks and how to
retrain the pruned model to recover prediction accuracy. We also demonstrate the speedup and
energy efficiency improvements of the pruned model when run on commodity hardware.

3.2 Pruning Methodology

Our pruning method employs a three-step process: training connectivity, pruning connections,
and retraining the remaining weights. The last two steps can be done iteratively to obtain better
compression ratios. The process is illustrated in Figure 3.2 and Algorithm 1.

→ 70% reduction of weights
and multiplications w/o
performance loss

ht+1
v

22

Learning Message
๏ Typically, the M, U, and R functions are learned from data

๏ Expressed as neural networks (fully connected NNs, recurrent NNs, etc.)

๏ Which networks to use depends on the specific problem, as much as the
graph-building rules

๏ But you could inject domain knowledge in the game

๏ You might know that SOME message is carried by some specific functions
(e.,g., Netwon’s low for N-body system simulation)

๏ You could then use analytic functions for some message

๏ You could still use a learned function for other messages

๏ The trick is dealing with differentiable functions not to spoil your back
propagation

๏ Graph networks become a tool for probabilistic programming

23

A little bit of History
๏ (in this millenium) Graph
networks started (as often
it is the case) with a
Yann LeCun et al. paper

๏ They tried to generalise
CNNs beyond the regular-
array dataset paradigm

๏ They replaced the
translation-invariant
kernel structure of CNNs
with hierarchical
clustering

https://arxiv.org/abs/1312.6203

multiscale clusterings that are provably guaranteed to behave well w.r.t. Laplacian on the graph is
still an open area of research. In this work we will use a naive agglomerative method.

Figure 1 illustrates a multiresolution clustering of a graph with the corresponding neighborhoods.

Figure 1: Undirected Graph G = (⌦0,W) with two levels of clustering. The original points are
drawn in gray.

2.3 Deep Locally Connected Networks

The spatial construction starts with a multiscale clustering of the graph, similarly as in [3] We
consider K scales. We set ⌦0 = ⌦, and for each k = 1 . . .K, we define ⌦k, a partition of ⌦k�1

into dk clusters; and a collection of neighborhoods around each element of ⌦k�1:

Nk = {Nk,i ; i = 1 . . . dk�1} .

With these in hand, we can now define the k-th layer of the network. We assume without loss of
generality that the input signal is a real signal defined in ⌦0, and we denote by fk the number of
“filters” created at each layer k. Each layer of the network will transform a fk�1-dimensional signal
indexed by ⌦k�1 into a fk-dimensional signal indexed by ⌦k, thus trading-off spatial resolution
with newly created feature coordinates.

More formally, if xk = (xk,i ; i = 1 . . . fk�1) is the dk�1 ⇥ fk�1 is the input to layer k, its the
output xk+1 is defined as

xk+1,j = Lkh

0

@
fk�1X

i=1

Fk,i,jxk,i

1

A (j = 1 . . . fk) , (2.1)

where Fk,i,j is a dk�1 ⇥ dk�1 sparse matrix with nonzero entries in the locations given by Nk, and
Lk outputs the result of a pooling operation over each cluster in ⌦k. This construcion is illustrated
in Figure 2.

In the current code, to build ⌦k and Nk we use the following construction:

W0 = W

Ak(i, j) =
X

s2⌦k(i)

X

t2⌦k(j)

Wk�1(s, t) , (k K)

Wk = rownormalize(Ak) , (k K)

Nk = supp(Wk) . (k K)

3

https://arxiv.org/abs/1312.6203

A little bit of History
๏ The idea of message passing can be
tracked to a ’15 paper by Duvenaud et al.

๏ The paper introduces “a convolutional
neural network that operates directly on
graphs”

๏ Language is different, but if you look at
the algorithm it is pretty much what we
discussed (for specific network
architecture choices)

Figure
1:

Left:
A

visualrepresentation
of

the
com

putationalgraph
of

both
standard

circular
fin-

gerprints
and

neuralgraph
fingerprints.

First,a
graph

is
constructed

m
atching

the
topology

of
the

m
olecule

being
fingerprinted,in

w
hich

nodes
representatom

s,and
edges

representbonds.
A

teach
layer,inform

ation
flow

s
betw

een
neighbors

in
the

graph.
Finally,each

node
in

the
graph

turns
on

one
bit

in
the

fixed-length
fingerprint

vector.
Right:

A
m

ore
detailed

sketch
including

the
bond

inform
ation

used
in

each
operation.

2
C

ircular
fingerprints

The
state

of
the

art
in

m
olecular

fingerprints
are

extended-connectivity
circular

fingerprints
(EC

FP)
[21].

C
ircular

fingerprints
[6]

are
a

refinem
ent

of
the

M
organ

algorithm
[17],

designed
to

encode
w

hich
substructuresare

presentin
a

m
olecule

in
a

w
ay

thatisinvariantto
atom

-relabeling.

C
ircularfingerprintsgenerate

each
layer’sfeaturesby

applying
a

fixed
hash

function
to

the
concate-

nated
featuresofthe

neighborhood
in

the
previouslayer.The

resultsofthese
hashesare

then
treated

as
integer

indices,w
here

a
1

is
w

ritten
to

the
fingerprintvector

atthe
index

given
by

the
feature

vector
ateach

node
in

the
graph.

Figure
1(left)

show
s

a
sketch

of
this

com
putationalarchitecture.

Ignoring
collisions,each

index
ofthe

fingerprintdenotes
the

presence
ofa

particularsubstructure.
The

size
ofthe

substructures
represented

by
each

index
depends

on
the

depth
ofthe

netw
ork.Thus

the
num

beroflayers
is

referred
to

as
the

‘radius’ofthe
fingerprints.

C
ircularfingerprints

are
analogous

to
convolutionalnetw

orks
in

thatthey
apply

the
sam

e
operation

locally
everyw

here,and
com

bine
inform

ation
in

a
globalpooling

step.

3
C

reating
a

differentiable
fingerprint

The
space

ofpossible
netw

ork
architecturesislarge.In

the
spiritofstarting

from
a

know
n-good

con-
figuration,w

e
designed

a
differentiable

generalization
ofcircularfingerprints.Thissection

describes
ourreplacem

entofeach
discrete

operation
in

circularfingerprints
w

ith
a

differentiable
analog.

H
ashing

The
purpose

of
the

hash
functions

applied
at

each
layer

of
circular

fingerprints
is

to
com

bine
inform

ation
about

each
atom

and
its

neighboring
substructures.

This
ensures

that
any

change
in

a
fragm

ent,no
m

atterhow
sm

all,w
illlead

to
a

differentfingerprintindex
being

activated.
W

e
replace

the
hash

operation
w

ith
a

single
layer

of
a

neuralnetw
ork.

U
sing

a
sm

ooth
function

allow
s

the
activations

to
be

sim
ilarw

hen
the

localm
olecularstructure

varies
in

unim
portantw

ays.

Indexing
C

ircularfingerprintsuse
an

indexing
operation

to
com

bine
allthe

nodes’feature
vectors

into
a

single
fingerprintofthe

w
hole

m
olecule.Each

node
sets

a
single

bitofthe
fingerprintto

one,
atan

index
determ

ined
by

the
hash

of
its

feature
vector.

This
pooling-like

operation
converts

an
arbitrary-sized

graph
into

a
fixed-sized

vector.
For

sm
allm

olecules
and

a
large

fingerprintlength,
the

fingerprints
are

alw
ays

sparse.
W

e
use

the
s
o
f
t
m
a
x

operation
as

a
differentiable

analog
of

indexing.In
essence,each

atom
isasked

to
classify

itselfasbelonging
to

a
single

category.The
sum

ofallthese
classification

labelvectors
produces

the
finalfingerprint.This

operation
is

analogous
to

the
pooling

operation
in

standard
convolutionalneuralnetw

orks.

2

https://arxiv.org/pdf/1509.09292.pdf

Figure 3: Left: Comparison of pairwise distances between molecules, measured using circular fin-
gerprints and neural graph fingerprints with large random weights. Right: Predictive performance
of circular fingerprints (red), neural graph fingerprints with fixed large random weights (green) and
neural graph fingerprints with fixed small random weights (blue). The performance of neural graph
fingerprints with large random weights closely matches the performance of circular fingerprints.

4.1 Examining learned features

To demonstrate that neural graph fingerprints are interpretable, we show substructures which most
activate individual features in a fingerprint vector. Each feature of a circular fingerprint vector can
each only be activated by a single fragment of a single radius, except for accidental collisions.
In contrast, neural graph fingerprint features can be activated by variations of the same structure,
making them more interpretable, and allowing shorter feature vectors.

Solubility features Figure 4 shows the fragments that maximally activate the most predictive fea-
tures of a fingerprint. The fingerprint network was trained as inputs to a linear model predicting
solubility, as measured in [4]. The feature shown in the top row has a positive predictive relationship
with solubility, and is most activated by fragments containing a hydrophilic R-OH group, a standard
indicator of solubility. The feature shown in the bottom row, strongly predictive of insolubility, is
activated by non-polar repeated ring structures.

Fragments most
activated by

pro-solubility
feature

O
OH

O

NH

O

OH

OH

Fragments most
activated by

anti-solubility
feature

Figure 4: Examining fingerprints optimized for predicting solubility. Shown here are representative
examples of molecular fragments (highlighted in blue) which most activate different features of the
fingerprint. Top row: The feature most predictive of solubility. Bottom row: The feature most
predictive of insolubility.

4

https://arxiv.org/pdf/1509.09292.pdf

๏ A few recent reviews that could guide you through the many
applications and networks

๏ A nice BLOG article on GNNs

๏ Another nice BLOG article on GNNs

๏ A generic review

๏ A particle-physics specific one

๏ A few GitHub examples

๏ JEDI-net Interaction Networks for jet tagging on these data

๏ PUPPIML: GGNN for pileup subtraction

๏ A small GarNet example that fits an FPGA on these data

Further Reading & Coding

26

https://towardsdatascience.com/introduction-to-message-passing-neural-networks-e670dc103a87
https://towardsdatascience.com/a-gentle-introduction-to-graph-neural-network-basics-deepwalk-and-graphsage-db5d540d50b3
https://arxiv.org/abs/1812.08434
https://arxiv.org/pdf/2007.13681.pdf
https://github.com/jmduarte/JEDInet-code
https://zenodo.org/record/3602260#.X6ysrS9h2L8
https://github.com/vlimant/PUPPIML
https://zenodo.org/record/3992780#.X6ysJC9h2L9
https://zenodo.org/record/3888910#.X6ytBi9h2L8

Interaction Networks

27

https://arxiv.org/abs/1612.00222

https://arxiv.org/abs/1612.00222

๏ INs process a list of
No x P inputs in pairs,
through Receiving and
Sending matrices

๏ The effect of the
interaction is learned
by fR and combined with
the input to learn
(through fo) a post-
interaction
representation

๏ The procedure can then
be iterated to produce
further steps i the
interactions

Interaction Networks

28

�
�∙ RR [NO x NE] �

∙ RS [NO x NE]
B [2P x NE]

…

…

!R

� �
E [DE x NE]

…

∙ RR [NE x NO]
T

� �
ℰ [DE x NO]

�
C [(P+DE) x NO]

!O

!R

!R

!R

…

!O
!O

� �
O [DO x NO]

ŷq

ŷg

ŷW

ŷZ

ŷt

"C

�

�P features

NO constituents

…

…
… … … …

…

…

…

… … … …

…

…

…

… … … … … … … …

…

…

Jennifer Ngadiuba - hls4ml: deep neural networks in FPGAs25.04.2018

Efficient NN design: compression

 27

Train
with L1

Retrain
with L1

Prune

Prune

Retrain
with L1 Prune

…

1st iteration

2nd iteration

7th iteration

……

Prune and repeat the train for 7 iterations

CHAPTER 3. PRUNING DEEP NEURAL NETWORKS 20

SUXQLQJ�
QHXURQV

SUXQLQJ�
V\QDSVHV

DIWHU�SUXQLQJEHIRUH�SUXQLQJ

Figure 3.1: Pruning the synapses and neurons of a deep neural network.

the connections that have been removed. The phases of pruning and retraining may be repeated
iteratively to further reduce network complexity. In effect, this training process learns the network
connectivity in addition to the weights — this parallels the human brain development [109] [110],
where excess synapses formed in the first few months of life are gradually "pruned", with neurons
losing little-used connections while preserving the functionally important connections.

On the ImageNet dataset, the pruning method reduced the number of parameters of AlexNet
by a factor of 9× (61 to 6.7 million), without incurring accuracy loss. Similar experiments with
VGG-16 found that the total number of parameters can be reduced by 13× (138 to 10.3 million),
again with no loss of accuracy. We also experimented with the more efficient fully-convolutional
neural networks: GoogleNet (Inception-V1), SqueezeNet, and ResNet-50, which have zero or very
thin fully connected layers. From these experiments we find that they share very similar pruning
ratios before the accuracy drops: 70% of the parameters in those fully-convolutional neural networks
can be pruned. GoogleNet is pruned from 7 million to 2 million parameters, SqueezeNet from 1.2
million to 0.38 million, and ResNet-50 from 25.5 million to 7.47 million, all with no loss of Top-1 and
Top-5 accuracy on Imagenet.

In the following sections, we provide solutions on how to prune neural networks and how to
retrain the pruned model to recover prediction accuracy. We also demonstrate the speedup and
energy efficiency improvements of the pruned model when run on commodity hardware.

3.2 Pruning Methodology

Our pruning method employs a three-step process: training connectivity, pruning connections,
and retraining the remaining weights. The last two steps can be done iteratively to obtain better
compression ratios. The process is illustrated in Figure 3.2 and Algorithm 1.

→ 70% reduction of weights
and multiplications w/o
performance loss

NO: # of constituents

P: # of features

NE = NO(NO-1): # of edges

DE: size of internal representations

DO: size of post-interaction internal representation

𝟇C, 𝒇O , 𝒇R
parameterized as
neural networks

�
�∙ RR [NO x NE] �

∙ RS [NO x NE]
B [2P x NE]

…

…

!R

� �
E [DE x NE]

…

∙ RR [NE x NO]
T

� �
ℰ [DE x NO]

�
C [(P+DE) x NO]

!O

!R

!R

!R

…

!O
!O

� �
O [DO x NO]

ŷq

ŷg

ŷW

ŷZ

ŷt

"C

�

�P features

NO constituents

…

…
… … … …

…

…

…

… … … …

…

…

…

… … … … … … … …

…

…

�∙ RR [Np × Np-p] �
∙ RS [Np × Np-p]

Bp-p [2P × Np-p]

…

…

�Rp-p

…

�Rp-p

�Rp-p

�Rp-p�

�P features
Np particles

…

…

… … … …

… Ep-p [DE × Np-p]

��

�
∙ RK [Np × Np-v,]

∙ RV [Nv × Np-v]

Bp-v [(P+S) × Np-v]

…

…�

S
fe

at
ur

es …

… … …

… �Nv vertices

� �…

�Rp-v
�Rp-v

�Rp-v

�Rp-v

Ep-v [DE × Np-v]

� � �
Ep-v [DE × Np]

… … … …

…

…
—

� �… … … …

…

…

Ep-p [DE × Np]
—

∙ RR [Np-p × Np]
T

∙ RK [Np-v × Np]
T

… … … …

…

…

)(C [(P+2DE) × Np]
…

…

… … … …

…

…

…

… … … …

�O �O
�O

…� �
O [DO × Np]

O [DO]
—

Sum
rows

� �ŷH(bb) �C

ŷQCD

Figure 2: Illustration of the IN classifier. The particle feature matrix X is multiplied by the receiving
and sending matrices RR and RS to build the particle-particle interaction feature matrix Bp�p.
Similarly, the particle feature matrix X and the vertex feature matrix Y are multiplied by the
adjacency matrices RK and RV , respectively, to build the particle-vertex interaction feature matrix
Bp�v. These pairs are then processed by the interaction functions f

p�p

R
and f

p�v

R
, and the post-

interaction function fO, which are expressed as neural networks and learned in the training process.
This procedure creates a learned representation of the each particle’s post-interaction features, given
by Np vectors of size DO. The Np vectors are summed, giving Do features for the entire jet, which is
given as input to a classifier �C , also represented by a neural network. More details on the various
steps are given in the text.

p3

p1 p2
(p-p)1

(p-p)2 (p-p)3

(p-p)4

(p-p)5 (p-p)6

p3

p1 p2

v1 v2

(p-v)1 (p-v)4
(p-v)2 (p-v)3

(p-v)5 (p-v)6

Figure 3: Two example graphs with 3 particles and 2 vertices and the corresponding edges.

each other through Np�v = NpNv undirected edges. This is pictorially represented in Fig. 3 for the
case of a three particles and two vertices.

For the first graph, a receiving matrix (RR) and a sending matrix (RS) are defined, both of size
Np ⇥ Np�p. The element (RR)ij is set to 1 when the i

th particle receives the j
th edge and is 0

otherwise. Similarly, the element (RS)ij is set to 1 when the i
th particle sends the j

th edge and is 0
otherwise. For the second graph, the corresponding adjacency matrices RK (of size Np ⇥Np�v) and
RV (of size Nv ⇥ Np�v are defined. In the example of Fig. 3, the RR, RS , RK , and RV matrices

7

Figure 4. Distributions of the jet constituent kinematic features described in the text.

O3

O1 O2E1

E2 E3

E4

E5 E6

Figure 5. An example graph with three fully connected vertices and the corresponding six edges.

case of a three-vertex graph. The vertices and edges are labeled for practical reasons, but
the network architecture ensures that the labeling convention plays no role in creating the
new representation.

Once the graph is built, a receiving matrix (RR), and a sending matrix (RS) are defined.
Both matrices have dimensions NO⇥NE . The element (RR)ij is set to 1 when the i

th vertex
receives the j

th edge and is 0 otherwise. Similarly, the element (RS)ij is set to 1 when the

– 6 –

E1

E2 E3

E4

E5 E6

Interaction Networks

29

�
�∙ RR [NO x NE] �

∙ RS [NO x NE]
B [2P x NE]

…

…

!R

� �
E [DE x NE]

…

∙ RR [NE x NO]
T

� �
ℰ [DE x NO]

�
C [(P+DE) x NO]

!O

!R

!R

!R

…

!O
!O

� �
O [DO x NO]

ŷq

ŷg

ŷW

ŷZ

ŷt

"C

�

�P features

NO constituents

…

…
… … … …

…

…

…

… … … …

…

…

…

… … … … … … … …

…

…

NO: # of constituents

P: # of features

NE = NO(NO-1): # of edges

DE: size of internal representations

DO: size of post-interaction internal representation

"C, !O , !R

parameterized as
neural networks

Jennifer Ngadiuba - hls4ml: deep neural networks in FPGAs25.04.2018

Efficient NN design: compression

 27

Train
with L1

Retrain
with L1

Prune

Prune

Retrain
with L1 Prune

…

1st iteration

2nd iteration

7th iteration

……

Prune and repeat the train for 7 iterations

CHAPTER 3. PRUNING DEEP NEURAL NETWORKS 20

Figure 3.1: Pruning the synapses and neurons of a deep neural network.

the connections that have been removed. The phases of pruning and retraining may be repeated
iteratively to further reduce network complexity. In effect, this training process learns the network
connectivity in addition to the weights — this parallels the human brain development [109] [110],
where excess synapses formed in the first few months of life are gradually "pruned", with neurons
losing little-used connections while preserving the functionally important connections.

On the ImageNet dataset, the pruning method reduced the number of parameters of AlexNet
by a factor of 9× (61 to 6.7 million), without incurring accuracy loss. Similar experiments with
VGG-16 found that the total number of parameters can be reduced by 13× (138 to 10.3 million),
again with no loss of accuracy. We also experimented with the more efficient fully-convolutional
neural networks: GoogleNet (Inception-V1), SqueezeNet, and ResNet-50, which have zero or very
thin fully connected layers. From these experiments we find that they share very similar pruning
ratios before the accuracy drops: 70% of the parameters in those fully-convolutional neural networks
can be pruned. GoogleNet is pruned from 7 million to 2 million parameters, SqueezeNet from 1.2
million to 0.38 million, and ResNet-50 from 25.5 million to 7.47 million, all with no loss of Top-1 and
Top-5 accuracy on Imagenet.

In the following sections, we provide solutions on how to prune neural networks and how to
retrain the pruned model to recover prediction accuracy. We also demonstrate the speedup and
energy efficiency improvements of the pruned model when run on commodity hardware.

3.2 Pruning Methodology

Our pruning method employs a three-step process: training connectivity, pruning connections,
and retraining the remaining weights. The last two steps can be done iteratively to obtain better
compression ratios. The process is illustrated in Figure 3.2 and Algorithm 1.

→ 70% reduction of weights
and multiplications w/o
performance loss

Figure 6. A flowchart illustrating the interaction network scheme.

i
th vertex sends the j

th edge and is 0 otherwise. In the case of the graph of Fig. 5, the two
matrices take the form:

RR =

0

BB@

E1 E2 E3 E4 E5 E6

O1 0 0 0 1 1 0

O2 1 0 0 0 0 1

O3 0 1 1 0 0 0

1

CCA (4.1)

RS =

0

BB@

E1 E2 E3 E4 E5 E6

O1 1 1 0 0 0 0

O2 0 0 1 1 0 0

O3 0 0 0 0 1 1

1

CCA. (4.2)

The input graph is represented by a matrix I. Each column of the matrix corresponds
to one of the graph vertices (the jet particles in our case), while the rows correspond to
the P features used to represent each vertex (the 16 features shown in Fig. 4 in our case).
Therefore, the I matrix has dimensions P ⇥ NO.

The I matrix is processed by the IN in a series of steps, represented in Fig. 6. The I

matrix is multiplied by the RR and RS matrices and the two resulting matrices are then

– 7 –

๏ INs process a list of
No x P inputs in pairs,
through Receiving and
Sending matrices

๏ The effect of the
interaction is learned
by fR and combined with
the input to learn
(through fo) a post-
interaction
representation

๏ The procedure can then
be iterated to produce
further steps i the
interactions

�
�∙ RR [NO x NE] �

∙ RS [NO x NE]
B [2P x NE]

…

…

!R

� �
E [DE x NE]

…

∙ RR [NE x NO]
T

� �
ℰ [DE x NO]

�
C [(P+DE) x NO]

!O

!R

!R

!R

…

!O
!O

� �
O [DO x NO]

ŷq

ŷg

ŷW

ŷZ

ŷt

"C

�

�P features

NO constituents

…

…
… … … …

…

…

…

… … … …

…

…

…

… … … … … … … …

…

…

NO: # of constituents

P: # of features

NE = NO(NO-1): # of edges

DE: size of internal representations

DO: size of post-interaction internal representation

"C, !O , !R

parameterized as
neural networks

Jennifer Ngadiuba - hls4ml: deep neural networks in FPGAs25.04.2018

Efficient NN design: compression

 27

Train
with L1

Retrain
with L1

Prune

Prune

Retrain
with L1 Prune

…

1st iteration

2nd iteration

7th iteration

……

Prune and repeat the train for 7 iterations

CHAPTER 3. PRUNING DEEP NEURAL NETWORKS 20

Figure 3.1: Pruning the synapses and neurons of a deep neural network.

the connections that have been removed. The phases of pruning and retraining may be repeated
iteratively to further reduce network complexity. In effect, this training process learns the network
connectivity in addition to the weights — this parallels the human brain development [109] [110],
where excess synapses formed in the first few months of life are gradually "pruned", with neurons
losing little-used connections while preserving the functionally important connections.

On the ImageNet dataset, the pruning method reduced the number of parameters of AlexNet
by a factor of 9× (61 to 6.7 million), without incurring accuracy loss. Similar experiments with
VGG-16 found that the total number of parameters can be reduced by 13× (138 to 10.3 million),
again with no loss of accuracy. We also experimented with the more efficient fully-convolutional
neural networks: GoogleNet (Inception-V1), SqueezeNet, and ResNet-50, which have zero or very
thin fully connected layers. From these experiments we find that they share very similar pruning
ratios before the accuracy drops: 70% of the parameters in those fully-convolutional neural networks
can be pruned. GoogleNet is pruned from 7 million to 2 million parameters, SqueezeNet from 1.2
million to 0.38 million, and ResNet-50 from 25.5 million to 7.47 million, all with no loss of Top-1 and
Top-5 accuracy on Imagenet.

In the following sections, we provide solutions on how to prune neural networks and how to
retrain the pruned model to recover prediction accuracy. We also demonstrate the speedup and
energy efficiency improvements of the pruned model when run on commodity hardware.

3.2 Pruning Methodology

Our pruning method employs a three-step process: training connectivity, pruning connections,
and retraining the remaining weights. The last two steps can be done iteratively to obtain better
compression ratios. The process is illustrated in Figure 3.2 and Algorithm 1.

→ 70% reduction of weights
and multiplications w/o
performance loss

Figure 6. A flowchart illustrating the interaction network scheme.

i
th vertex sends the j

th edge and is 0 otherwise. In the case of the graph of Fig. 5, the two
matrices take the form:

RR =

0

BB@

E1 E2 E3 E4 E5 E6

O1 0 0 0 1 1 0

O2 1 0 0 0 0 1

O3 0 1 1 0 0 0

1

CCA (4.1)

RS =

0

BB@

E1 E2 E3 E4 E5 E6

O1 1 1 0 0 0 0

O2 0 0 1 1 0 0

O3 0 0 0 0 1 1

1

CCA. (4.2)

The input graph is represented by a matrix I. Each column of the matrix corresponds
to one of the graph vertices (the jet particles in our case), while the rows correspond to
the P features used to represent each vertex (the 16 features shown in Fig. 4 in our case).
Therefore, the I matrix has dimensions P ⇥ NO.

The I matrix is processed by the IN in a series of steps, represented in Fig. 6. The I

matrix is multiplied by the RR and RS matrices and the two resulting matrices are then

– 7 –

�
�∙ RR [NO x NE] �

∙ RS [NO x NE]
B [2P x NE]

…

…

!R

� �
E [DE x NE]

…

∙ RR [NE x NO]
T

� �
ℰ [DE x NO]

�
C [(P+DE) x NO]

!O

!R

!R

!R

…

!O
!O

� �
O [DO x NO]

ŷq

ŷg

ŷW

ŷZ

ŷt

"C

�

�P features

NO constituents

…

…
… … … …

…

…

…

… … … …

…

…

…

… … … … … … … …

…

…

Jennifer Ngadiuba - hls4ml: deep neural networks in FPGAs25.04.2018

Efficient NN design: compression

 27

Train
with L1

Retrain
with L1

Prune

Prune

Retrain
with L1 Prune

…

1st iteration

2nd iteration

7th iteration

……

Prune and repeat the train for 7 iterations

CHAPTER 3. PRUNING DEEP NEURAL NETWORKS 20

SUXQLQJ�
QHXURQV

SUXQLQJ�
V\QDSVHV

DIWHU�SUXQLQJEHIRUH�SUXQLQJ

Figure 3.1: Pruning the synapses and neurons of a deep neural network.

the connections that have been removed. The phases of pruning and retraining may be repeated
iteratively to further reduce network complexity. In effect, this training process learns the network
connectivity in addition to the weights — this parallels the human brain development [109] [110],
where excess synapses formed in the first few months of life are gradually "pruned", with neurons
losing little-used connections while preserving the functionally important connections.

On the ImageNet dataset, the pruning method reduced the number of parameters of AlexNet
by a factor of 9× (61 to 6.7 million), without incurring accuracy loss. Similar experiments with
VGG-16 found that the total number of parameters can be reduced by 13× (138 to 10.3 million),
again with no loss of accuracy. We also experimented with the more efficient fully-convolutional
neural networks: GoogleNet (Inception-V1), SqueezeNet, and ResNet-50, which have zero or very
thin fully connected layers. From these experiments we find that they share very similar pruning
ratios before the accuracy drops: 70% of the parameters in those fully-convolutional neural networks
can be pruned. GoogleNet is pruned from 7 million to 2 million parameters, SqueezeNet from 1.2
million to 0.38 million, and ResNet-50 from 25.5 million to 7.47 million, all with no loss of Top-1 and
Top-5 accuracy on Imagenet.

In the following sections, we provide solutions on how to prune neural networks and how to
retrain the pruned model to recover prediction accuracy. We also demonstrate the speedup and
energy efficiency improvements of the pruned model when run on commodity hardware.

3.2 Pruning Methodology

Our pruning method employs a three-step process: training connectivity, pruning connections,
and retraining the remaining weights. The last two steps can be done iteratively to obtain better
compression ratios. The process is illustrated in Figure 3.2 and Algorithm 1.

→ 70% reduction of weights
and multiplications w/o
performance loss

NO: # of constituents

P: # of features

NE = NO(NO-1): # of edges

DE: size of internal representations

DO: size of post-interaction internal representation

𝟇C, 𝒇O , 𝒇R
parameterized as
neural networks

�
�∙ RR [NO x NE] �

∙ RS [NO x NE]
B [2P x NE]

…

…

!R

� �
E [DE x NE]

…

∙ RR [NE x NO]
T

� �
ℰ [DE x NO]

�
C [(P+DE) x NO]

!O

!R

!R

!R

…

!O
!O

� �
O [DO x NO]

ŷq

ŷg

ŷW

ŷZ

ŷt

"C

�

�P features

NO constituents

…

…
… … … …

…

…

…

… … … …

…

…

…

… … … … … … … …

…

…

�∙ RR [Np × Np-p] �
∙ RS [Np × Np-p]

Bp-p [2P × Np-p]

…

…

�Rp-p

…

�Rp-p

�Rp-p

�Rp-p�

�P features
Np particles

…

…

… … … …

… Ep-p [DE × Np-p]

��

�
∙ RK [Np × Np-v,]

∙ RV [Nv × Np-v]

Bp-v [(P+S) × Np-v]

…

…�

S
fe

at
ur

es …

… … …

… �Nv vertices

� �…

�Rp-v
�Rp-v

�Rp-v

�Rp-v

Ep-v [DE × Np-v]

� � �
Ep-v [DE × Np]

… … … …

…

…
—

� �… … … …

…

…

Ep-p [DE × Np]
—

∙ RR [Np-p × Np]
T

∙ RK [Np-v × Np]
T

… … … …

…

…

)(C [(P+2DE) × Np]
…

…

… … … …

…

…

…

… … … …

�O �O
�O

…� �
O [DO × Np]

O [DO]
—

Sum
rows

� �ŷH(bb) �C

ŷQCD

Figure 2: Illustration of the IN classifier. The particle feature matrix X is multiplied by the receiving
and sending matrices RR and RS to build the particle-particle interaction feature matrix Bp�p.
Similarly, the particle feature matrix X and the vertex feature matrix Y are multiplied by the
adjacency matrices RK and RV , respectively, to build the particle-vertex interaction feature matrix
Bp�v. These pairs are then processed by the interaction functions f

p�p

R
and f

p�v

R
, and the post-

interaction function fO, which are expressed as neural networks and learned in the training process.
This procedure creates a learned representation of the each particle’s post-interaction features, given
by Np vectors of size DO. The Np vectors are summed, giving Do features for the entire jet, which is
given as input to a classifier �C , also represented by a neural network. More details on the various
steps are given in the text.

p3

p1 p2
(p-p)1

(p-p)2 (p-p)3

(p-p)4

(p-p)5 (p-p)6

p3

p1 p2

v1 v2

(p-v)1 (p-v)4
(p-v)2 (p-v)3

(p-v)5 (p-v)6

Figure 3: Two example graphs with 3 particles and 2 vertices and the corresponding edges.

each other through Np�v = NpNv undirected edges. This is pictorially represented in Fig. 3 for the
case of a three particles and two vertices.

For the first graph, a receiving matrix (RR) and a sending matrix (RS) are defined, both of size
Np ⇥ Np�p. The element (RR)ij is set to 1 when the i

th particle receives the j
th edge and is 0

otherwise. Similarly, the element (RS)ij is set to 1 when the i
th particle sends the j

th edge and is 0
otherwise. For the second graph, the corresponding adjacency matrices RK (of size Np ⇥Np�v) and
RV (of size Nv ⇥ Np�v are defined. In the example of Fig. 3, the RR, RS , RK , and RV matrices

7

Interaction Networks

30

๏ INs process a list of
No x P inputs in pairs,
through Receiving and
Sending matrices

๏ The effect of the
interaction is learned
by fR and combined with
the input to learn
(through fo) a post-
interaction
representation

๏ The procedure can then
be iterated to produce
further steps i the
interactions

With equations

31

⃗xsr = (⃗x s, ⃗x r)

�
�∙ RR [NO x NE] �

∙ RS [NO x NE]
B [2P x NE]

…

…

!R

� �
E [DE x NE]

…

∙ RR [NE x NO]
T

� �
ℰ [DE x NO]

�
C [(P+DE) x NO]

!O

!R

!R

!R

…

!O
!O

� �
O [DO x NO]

ŷq

ŷg

ŷW

ŷZ

ŷt

"C

�

�P features

NO constituents

…

…
… … … …

…

…

…

… … … …

…

…

…

… … … … … … … …

…

…

f sr
R (⃗xsr)

⃗er = ∑
s

f sr
R (⃗xsr)

⃗cr = (⃗e r, ⃗x r)
⃗or = fO(⃗c r)

๏ The input is a vector, obtained
concatenating sender and receiver feature

๏ The input is processed by a network, that
compute “kernel” functions of these inputs

๏ Message across senders is gathered by summing

๏ The interaction features are concatenated to
the input

๏ A final neural network returns the post-
interaction representation

๏ You have a jet at LHC: spray of
hadrons coming from a “shower”
initiated by a fundamental
particle of some kind (quark,
gluon, W/Z/H bosons, top quark)

๏ You have a set of jet features
whose distribution depends on the
nature of the initial particle

๏ You can train a network to start
from the values of these
quantities and guess the nature
of your jet

๏ To do this you need a sample for
which you know the answer

Example: jet tagging

32

CASE STUDY: JET SUBSTRUCTURE 10

Just an illustrative example, lessons are generic!
Might not be the best application, but a familiar one

ML in substructure is well-studied

Figure 1. Pictorial representations of different jet substructures at the LHC. Left: jets originating
from quarks or gluons produce one cluster of particles, approximately cone-shaped, developing
along the flight direction of the particle starting the shower. Center: when produced with large
transverse momentum, a heavy boson decaying to quarks would result into a single jet, made of 2
particle clusters (usually referred to as sub-jets). Right: In its full decay chain, a high-momentum
t ! Wb ! qqb results into a jet composed of three sub-jets.

In this work, we compare the typical performances of some of these approaches to what
is achievable with a jet identification algorithm based on an IN (JEDI-net). Interaction
networks [5] (INs) have been introduced to predict the evolution of physical systems under
the influence of forces, e.g. gravitational force, springs, etc. This is achieved by constructing
a graph network representing the system and learning the interaction between the nodes of
the graph. This results into a post-interaction representation of the system, which is used
to predict the evolution of the system. In our case, we are interested to INs as a tool to
learn a fixed-size jet representation, that is used to train a jet classifier. In this respect,
INs are interesting because the can learn a sparse representation with an architecture that
(at least in principle) is similar to the 2 ! 1 recombination procedure that is followed to
cluster jets. To a certain extent, INs (and graph networks in general) seem to be more
QCD-compliant than other network architectures. For instance (see section 4), INs process
jet-constituent four-momenta in pairs and can potentially learn the metrics typically used
for jet clustering, such as the anti-kt [3], kt [2], or Cambridge-Aachen [1] jet algorithms. In
this paper, we investigate if this structural affinity to jet clustering algorithms translates
into a better tagging performance.

This paper is structured as follows: we provide in section 2 a list of related works. We
describe in section 3 the utilized dataset. The structure of the JEDI-net model is discussed
in section 4. Section 5 briefly introduces alternative benchmark models, based on other
DL architectures, whose design and optimization are discussed in Appendix A. Results are
shown in section 6. We conclude with a discussion and outlooks of this work in section 8.

– 2 –

�
�∙ RR [NO x NE] �

∙ RS [NO x NE]
B [2P x NE]

…

…

!R

� �
E [DE x NE]

…

∙ RR [NE x NO]
T

� �
ℰ [DE x NO]

�
C [(P+DE) x NO]

!O

!R

!R

!R

…

!O
!O

� �
O [DO x NO]

ŷq

ŷg

ŷW

ŷZ

ŷt

"C

�

�P features

NO constituents

…

…
… … … …

…

…

…

… … … …

…

…

…

… … … … … … … …

…

…

NO: # of constituents

P: # of features

NE = NO(NO-1): # of edges

DE: size of internal representations

DO: size of post-interaction internal representation

𝟇C, 𝒇O , 𝒇R
parameterized as
neural networks

Jennifer Ngadiuba - hls4ml: deep neural networks in FPGAs25.04.2018

Efficient NN design: compression

 27

Train
with L1

Retrain
with L1

Prune

Prune

Retrain
with L1 Prune

…

1st iteration

2nd iteration

7th iteration

……

Prune and repeat the train for 7 iterations

CHAPTER 3. PRUNING DEEP NEURAL NETWORKS 20

SUXQLQJ�
QHXURQV

SUXQLQJ�
V\QDSVHV

DIWHU�SUXQLQJEHIRUH�SUXQLQJ

Figure 3.1: Pruning the synapses and neurons of a deep neural network.

the connections that have been removed. The phases of pruning and retraining may be repeated
iteratively to further reduce network complexity. In effect, this training process learns the network
connectivity in addition to the weights — this parallels the human brain development [109] [110],
where excess synapses formed in the first few months of life are gradually "pruned", with neurons
losing little-used connections while preserving the functionally important connections.

On the ImageNet dataset, the pruning method reduced the number of parameters of AlexNet
by a factor of 9× (61 to 6.7 million), without incurring accuracy loss. Similar experiments with
VGG-16 found that the total number of parameters can be reduced by 13× (138 to 10.3 million),
again with no loss of accuracy. We also experimented with the more efficient fully-convolutional
neural networks: GoogleNet (Inception-V1), SqueezeNet, and ResNet-50, which have zero or very
thin fully connected layers. From these experiments we find that they share very similar pruning
ratios before the accuracy drops: 70% of the parameters in those fully-convolutional neural networks
can be pruned. GoogleNet is pruned from 7 million to 2 million parameters, SqueezeNet from 1.2
million to 0.38 million, and ResNet-50 from 25.5 million to 7.47 million, all with no loss of Top-1 and
Top-5 accuracy on Imagenet.

In the following sections, we provide solutions on how to prune neural networks and how to
retrain the pruned model to recover prediction accuracy. We also demonstrate the speedup and
energy efficiency improvements of the pruned model when run on commodity hardware.

3.2 Pruning Methodology

Our pruning method employs a three-step process: training connectivity, pruning connections,
and retraining the remaining weights. The last two steps can be done iteratively to obtain better
compression ratios. The process is illustrated in Figure 3.2 and Algorithm 1.

→ 70% reduction of weights
and multiplications w/o
performance loss

�
�∙ RR [NO x NE] �

∙ RS [NO x NE]
B [2P x NE]

…

…

!R

� �
E [DE x NE]

…

∙ RR [NE x NO]
T

� �
ℰ [DE x NO]

�
C [(P+DE) x NO]

!O

!R

!R

!R

…

!O
!O

� �
O [DO x NO]

ŷq

ŷg

ŷW

ŷZ

ŷt

"C

�

�P features

NO constituents

…

…
… … … …

…

…

…

… … … …

…

…

…

… … … … … … … …

…

…

�∙ RR [Np × Np-p] �
∙ RS [Np × Np-p]

Bp-p [2P × Np-p]

…

…

�Rp-p

…

�Rp-p

�Rp-p

�Rp-p�

�P features
Np particles

…

…

… … … …

… Ep-p [DE × Np-p]

��

�
∙ RK [Np × Np-v,]

∙ RV [Nv × Np-v]

Bp-v [(P+S) × Np-v]

…

…�

S
fe

at
ur

es …

… … …

… �Nv vertices

� �…

�Rp-v
�Rp-v

�Rp-v

�Rp-v

Ep-v [DE × Np-v]

� � �
Ep-v [DE × Np]

… … … …

…

…
—

� �… … … …

…

…

Ep-p [DE × Np]
—

∙ RR [Np-p × Np]
T

∙ RK [Np-v × Np]
T

… … … …

…

…

)(C [(P+2DE) × Np]
…

…

… … … …

…

…

…

… … … …

�O �O
�O

…� �
O [DO × Np]

O [DO]
—

Sum
rows

� �ŷH(bb) �C

ŷQCD

Figure 2: Illustration of the IN classifier. The particle feature matrix X is multiplied by the receiving
and sending matrices RR and RS to build the particle-particle interaction feature matrix Bp�p.
Similarly, the particle feature matrix X and the vertex feature matrix Y are multiplied by the
adjacency matrices RK and RV , respectively, to build the particle-vertex interaction feature matrix
Bp�v. These pairs are then processed by the interaction functions f

p�p

R
and f

p�v

R
, and the post-

interaction function fO, which are expressed as neural networks and learned in the training process.
This procedure creates a learned representation of the each particle’s post-interaction features, given
by Np vectors of size DO. The Np vectors are summed, giving Do features for the entire jet, which is
given as input to a classifier �C , also represented by a neural network. More details on the various
steps are given in the text.

p3

p1 p2
(p-p)1

(p-p)2 (p-p)3

(p-p)4

(p-p)5 (p-p)6

p3

p1 p2

v1 v2

(p-v)1 (p-v)4
(p-v)2 (p-v)3

(p-v)5 (p-v)6

Figure 3: Two example graphs with 3 particles and 2 vertices and the corresponding edges.

each other through Np�v = NpNv undirected edges. This is pictorially represented in Fig. 3 for the
case of a three particles and two vertices.

For the first graph, a receiving matrix (RR) and a sending matrix (RS) are defined, both of size
Np ⇥ Np�p. The element (RR)ij is set to 1 when the i

th particle receives the j
th edge and is 0

otherwise. Similarly, the element (RS)ij is set to 1 when the i
th particle sends the j

th edge and is 0
otherwise. For the second graph, the corresponding adjacency matrices RK (of size Np ⇥Np�v) and
RV (of size Nv ⇥ Np�v are defined. In the example of Fig. 3, the RR, RS , RK , and RV matrices

7

INs for Jet Identification

33

๏ In this case, there is
no system update needed
(i.e., no cycle)

๏ It is sufficient to use
the post-interaction
representation as input
to a classifier that
returns the jet
category

๏ The three networks are
simultaneously
optimized: the learned
representation is
chosen to help the
classification

Figure 7. ROC curves for JEDI-net and the three alternative models, computed for gluons (top-
left), light quarks (top-right), W (center-left) and Z (center-right) bosons, and top quarks (bottom).
The solid lines represent the average ROC curves derived from 10 k-fold trainings of each model.
The shaded bands around the average lines are represent one standard deviation, computed with
the same 10 k-fold trainings.

– 17 –

Figure 7. ROC curves for JEDI-net and the three alternative models, computed for gluons (top-
left), light quarks (top-right), W (center-left) and Z (center-right) bosons, and top quarks (bottom).
The solid lines represent the average ROC curves derived from 10 k-fold trainings of each model.
The shaded bands around the average lines are represent one standard deviation, computed with
the same 10 k-fold trainings.

– 17 –

Figure 7. ROC curves for JEDI-net and the three alternative models, computed for gluons (top-
left), light quarks (top-right), W (center-left) and Z (center-right) bosons, and top quarks (bottom).
The solid lines represent the average ROC curves derived from 10 k-fold trainings of each model.
The shaded bands around the average lines are represent one standard deviation, computed with
the same 10 k-fold trainings.

– 17 –

A comparison

34

\

๏ Graph Networks are a powerful tool to learn from sparse
data sets

๏ extend CNN concept beyond the case of geometrical
proximity -> learned representation

๏ allow to abstract from irregular geometry (molecules,
particle-physics detectors, stars in a galaxy, …)

๏ allow to inject domain knowledge in the game (e.g.,
enforcing physics rules for message-passing functions
[Newton’s law in N-body simulation]

๏ But can also be used to learn (how to simulate) physics

Summary

35

