# Deep Learning Applications for collider physics lecture 4





### Maurizio Pierini







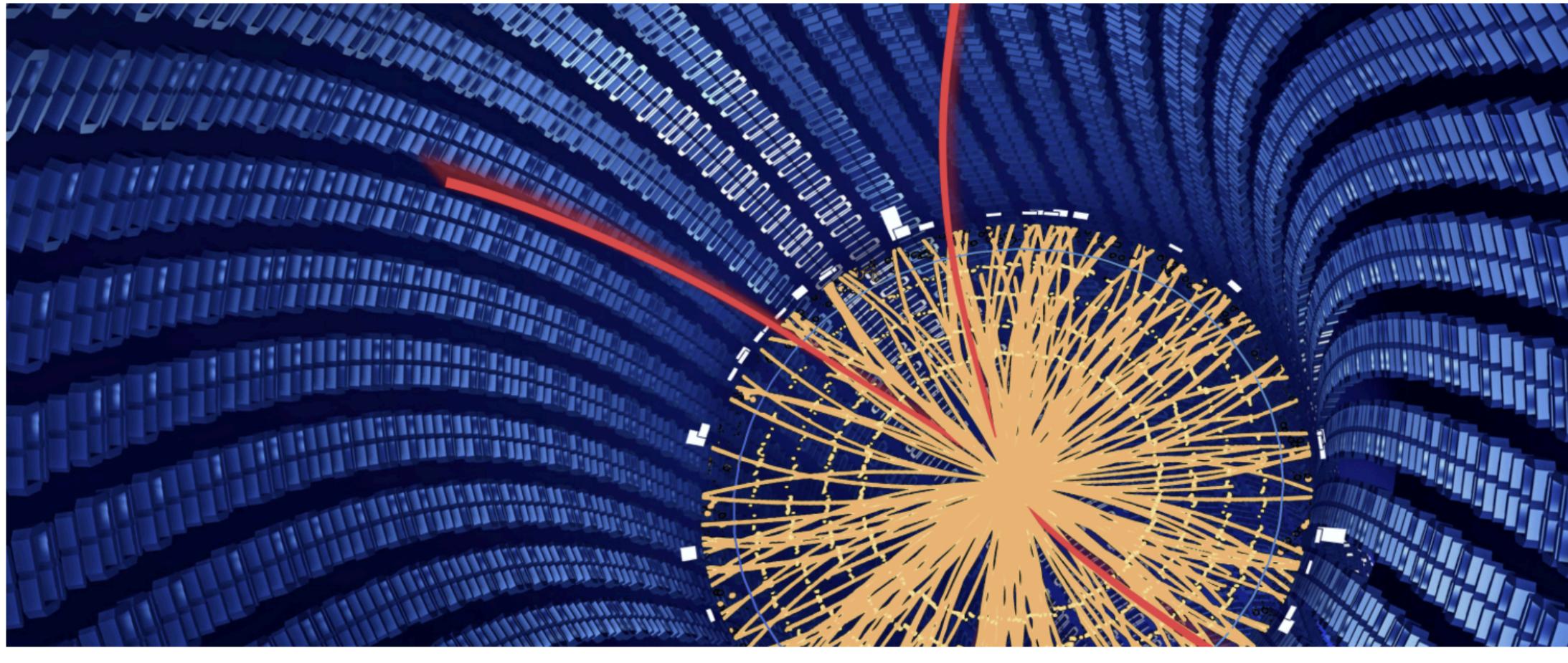




|          | Day1                          | Day2                 | Day3            | Day4              | Day5                     |
|----------|-------------------------------|----------------------|-----------------|-------------------|--------------------------|
| Lecture  | Introduction                  | ConvNN               | RNNs            | Graphs            | Unsupervised<br>Learning |
| Tutorial | Fully Connected<br>Classifier | ConvNN<br>Classifier | RNNs Classifier | Graphs Classifier | Anomaly<br>Detection     |







## HEP data and Graphs



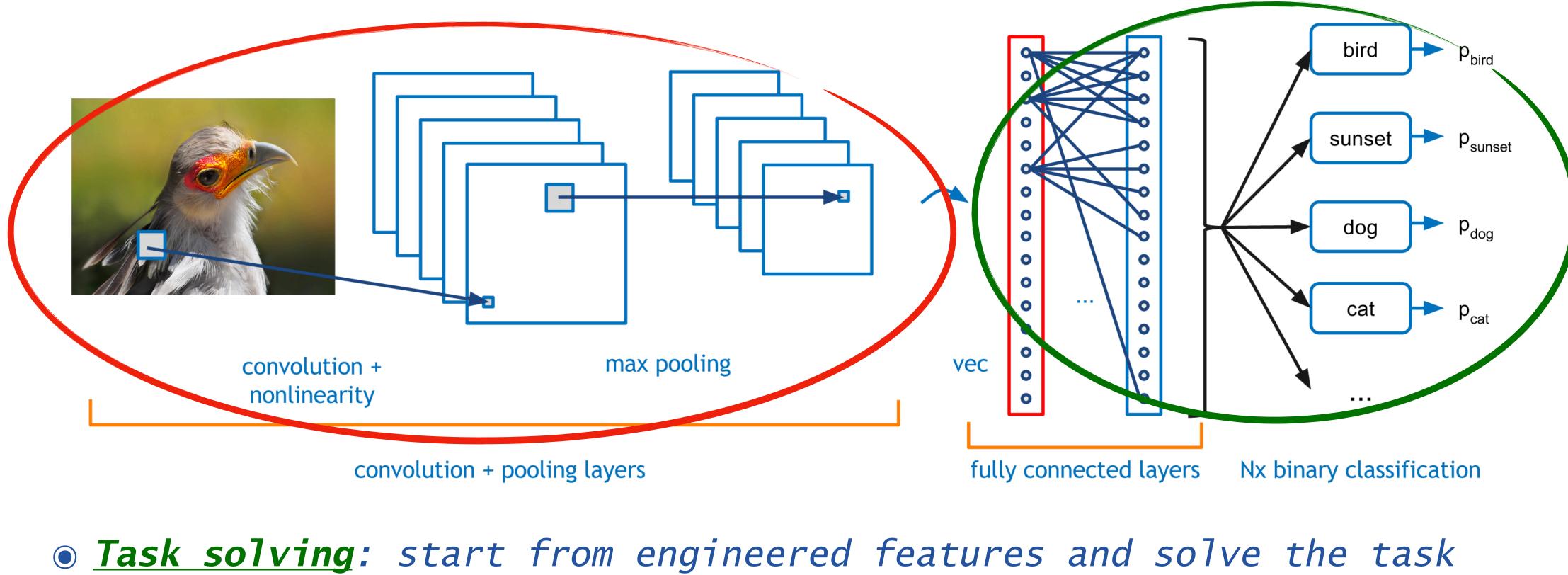








### • DNNs typically rely on two phases:



(classification, regression, etc.)

### Deep Neural Network in a nutshell

• Feature engineering from Raw Data. This is where new & exotic architectures (depending on data type) take the best out of your data







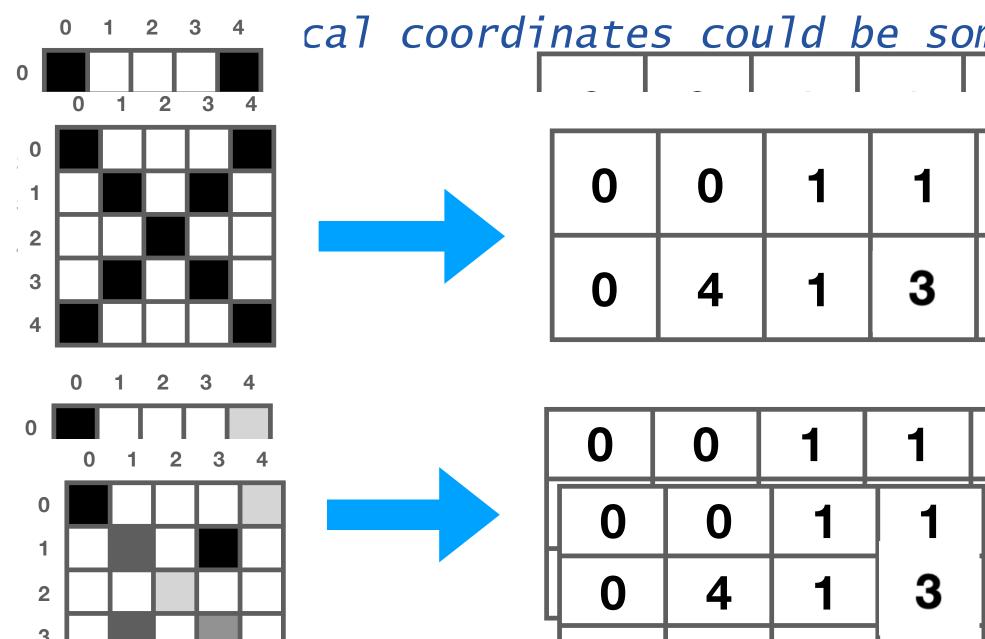




## Uhat about irregular data?

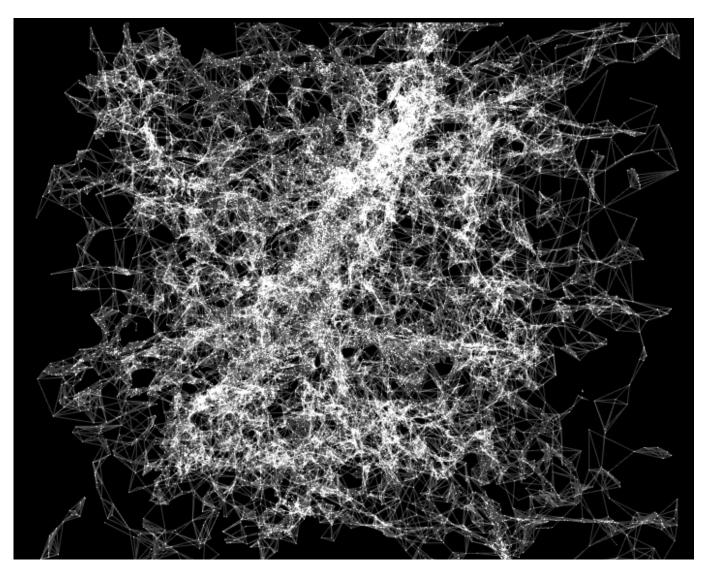
• Unfortunately, many scientific domains deal with data which are not regular arrays (neither images nor sequences)

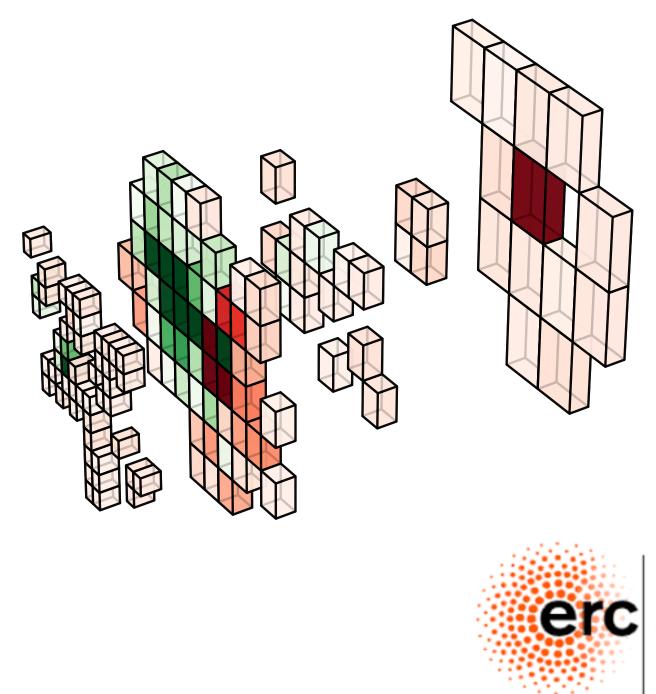
- Galaxies or star populations in sky
- Sensors from HEP detector
- Molecules in chemistry
- These data can all be seen as sparse sets in some abstract space
  - each element of the set being specified by some array of features



| <u>me o</u><br>_ | f the | ese f | <u>Featu</u> | res |
|------------------|-------|-------|--------------|-----|
| 2                | 3     | 3     | 4            | 4   |
| 2                | 1     | 3     | 0            | 4   |

| 2 | 3 | 3 | 4 | 4 |
|---|---|---|---|---|
| 2 | 3 | 3 | 4 | 4 |
| 2 | 1 | 3 | 0 | 4 |





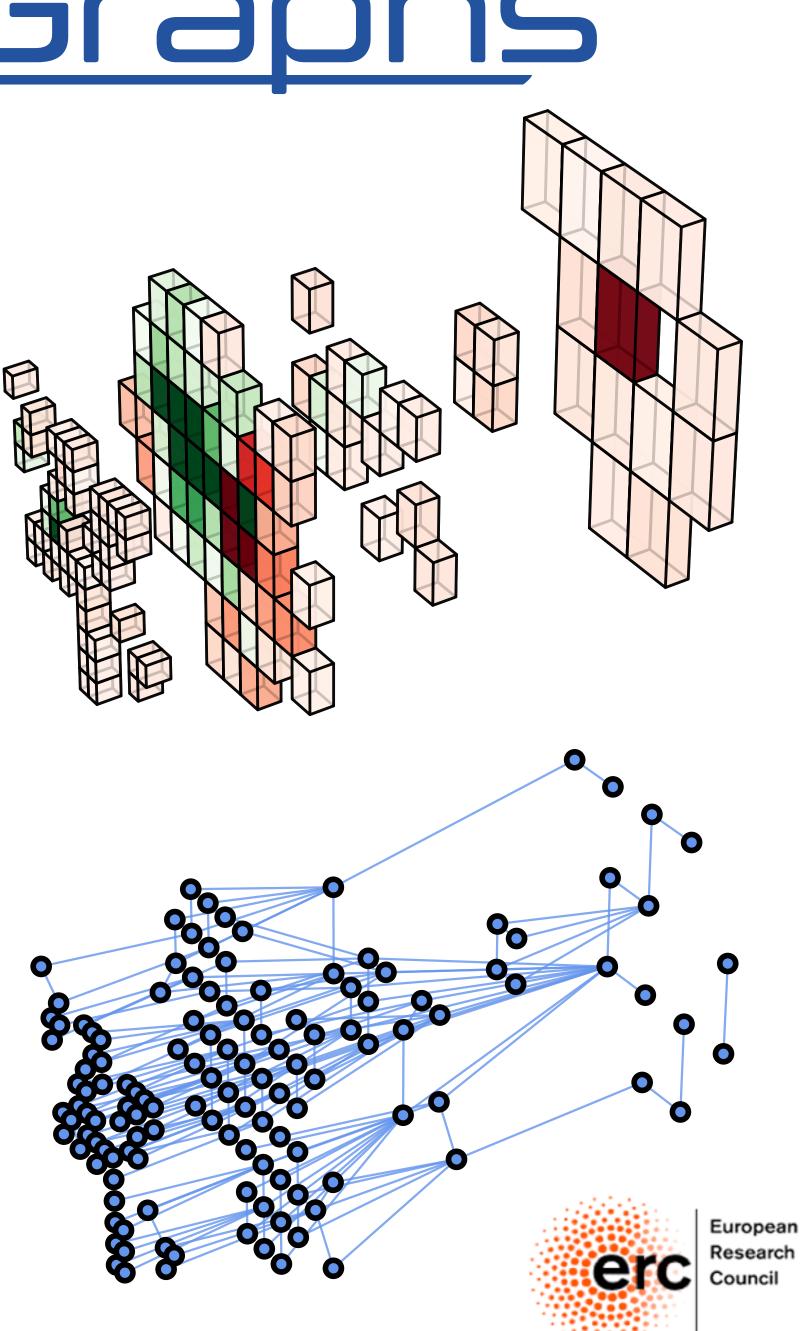






- Given such a set, we want to generalise the image representation as regular array that is fed to a CNN
  - Once that is done, we can generalise CNN itself
- For images, a lot of information is carried by pixels being next to each other. A metric is intrinsic in the data representation as image
- With a set, we need to specify a metric that tell us who is close to who in the abstract space of features that we have at hand
  - SOLUTION: connect elements of sets and learn (e.g., with a neural network) from data which connections are relevant

## F<u>rom Sets to Graphs</u>

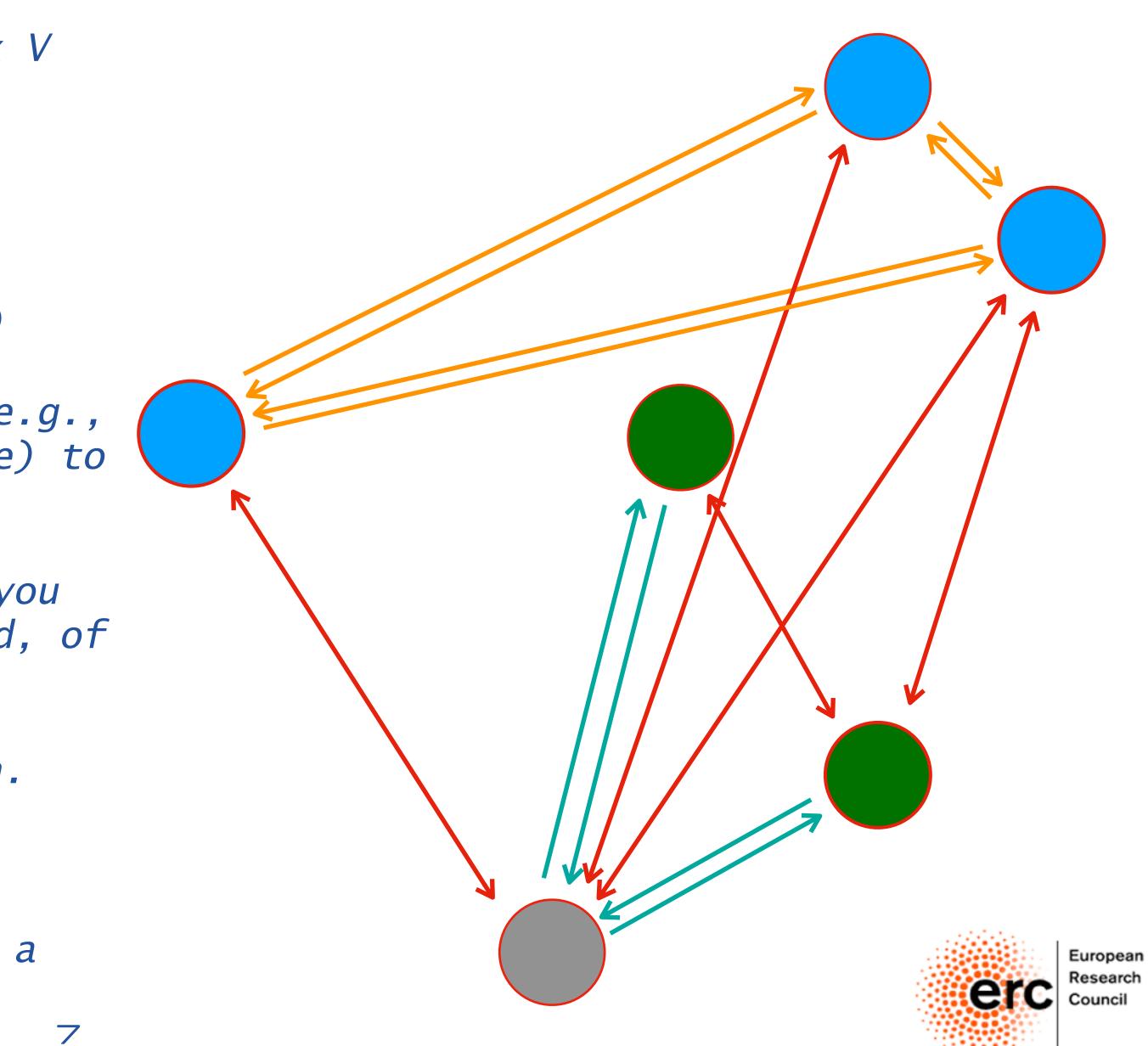






- Each element of your set is a vertex V
- Edges E connect them
  - Edges can be made directional
  - $\odot$  Graphs can be fully connected (N<sup>2</sup>)
  - Or you could use some criterion (e.g., nearest k neighbours in some space) to reduce number of connections
  - if more than one kind of vertex, you could connect only Vs of same kind, of different kind, etc
- The (V,E) construction is your graph. Building it, you could enforce some structure in your data
  - If you have no prior, then go for a directional fully connected graph

# <u>Building the Graph</u>









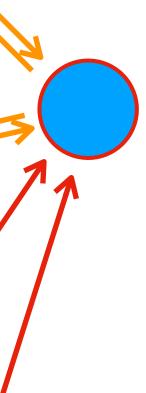


## Learning from Graph: an example

- Imagine a concrete example: given a social-media user, who will she vote for at the next elections?
- The graph here comes from social-media connections
- The features are what we know for a given user (gender, age, education, etc.)
- We want to gather information on someone from the social network of that person
  - we might know who some of her connections voted for
- We will use NNs to model the influence (message passed) of each user on her connection and learn from data which are the relevant connections. We are engineering features
- A final classifier will give us the answer we want
- You might become president with this + target pressure (ads, fake news, etc.)









## Learning from Graph: an example

- Imagine a concrete example: given a social-media user, who will she vote for at the next elections?
- The graph here comes from social-media connections
- The features are what we know for a given user (gender, oducation age, • We w SOCI
- We will use NNs to model the influence (message passed) of each user on her connection and learn from data which are the relevant connections. We are engineering features
- A final classifier will give us the answer we want
- You might become president with this + target pressure (ads, fake news, etc.)



10

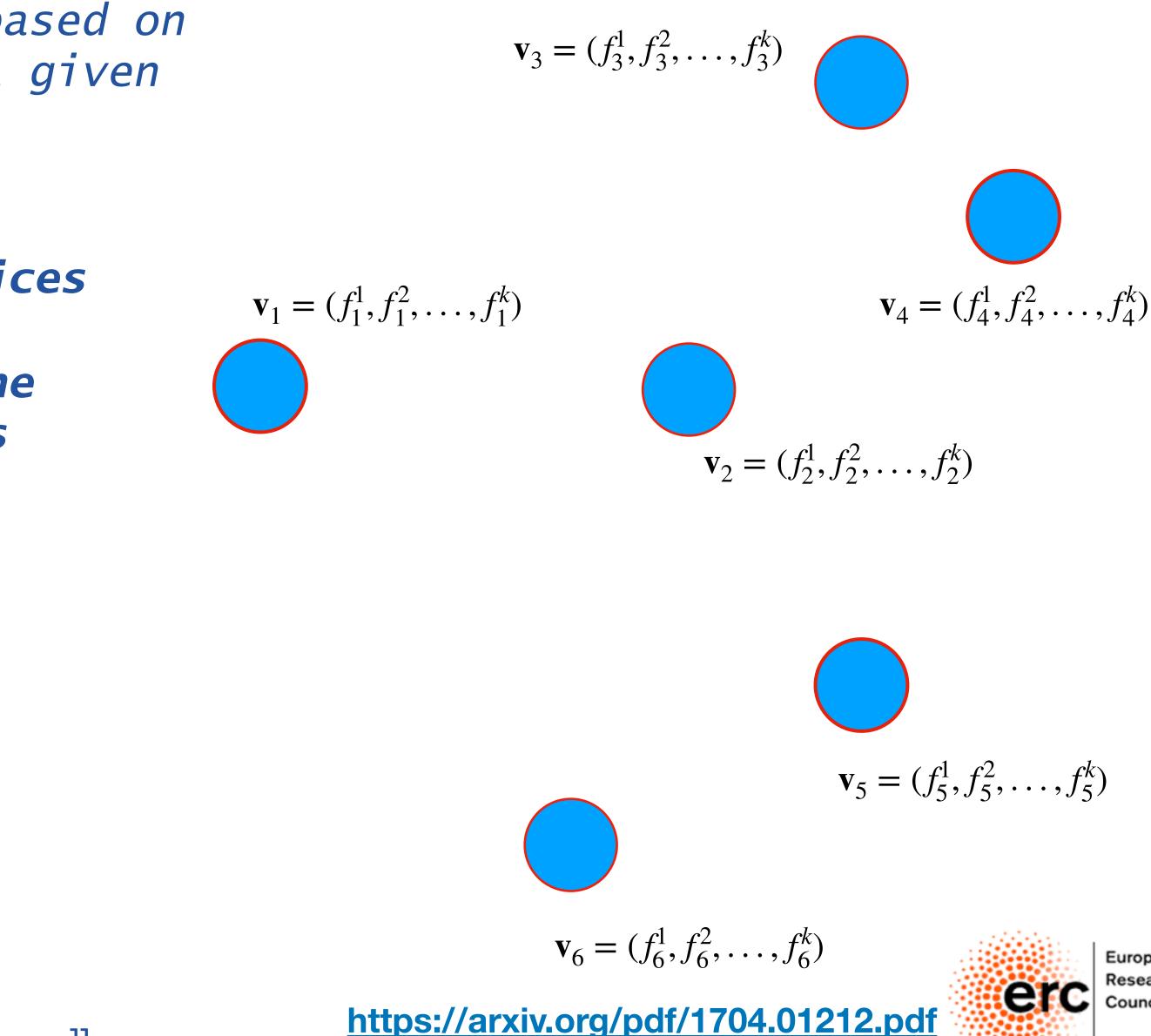


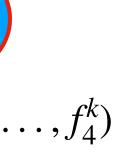






- Graphs Nets are architectures based on an abstract representation of a given dataset
  - Each example in a dataset is represented as a set of vertices
  - Each vertex is embedded in the graph as a vector of features





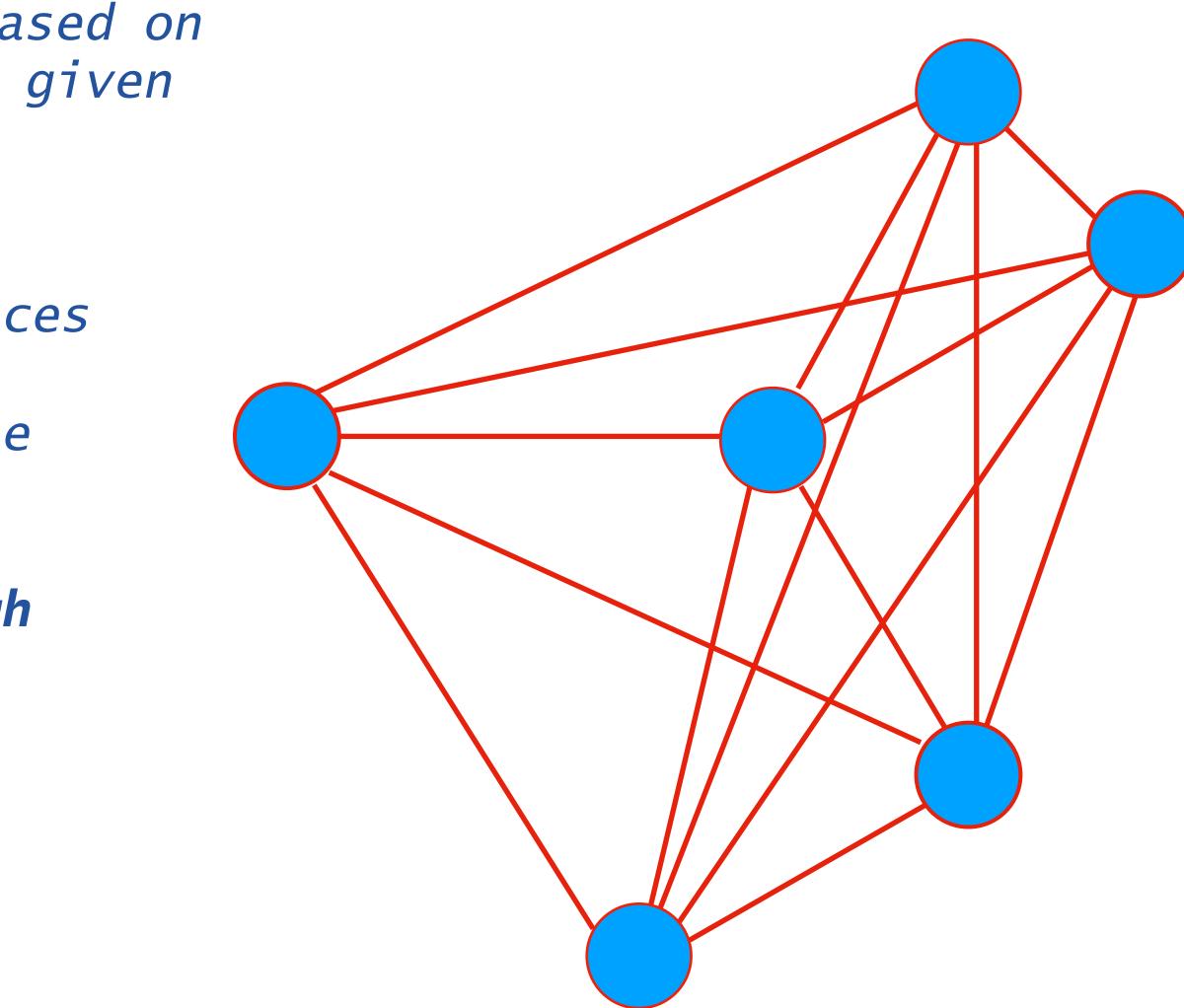








- Graphs Nets are architectures based on an abstract representation of a given dataset
  - Each example in a dataset is represented as a set of vertices
  - Each vertex is embedded in the graph as a vector of features
  - Vertices are connected through links (edges)









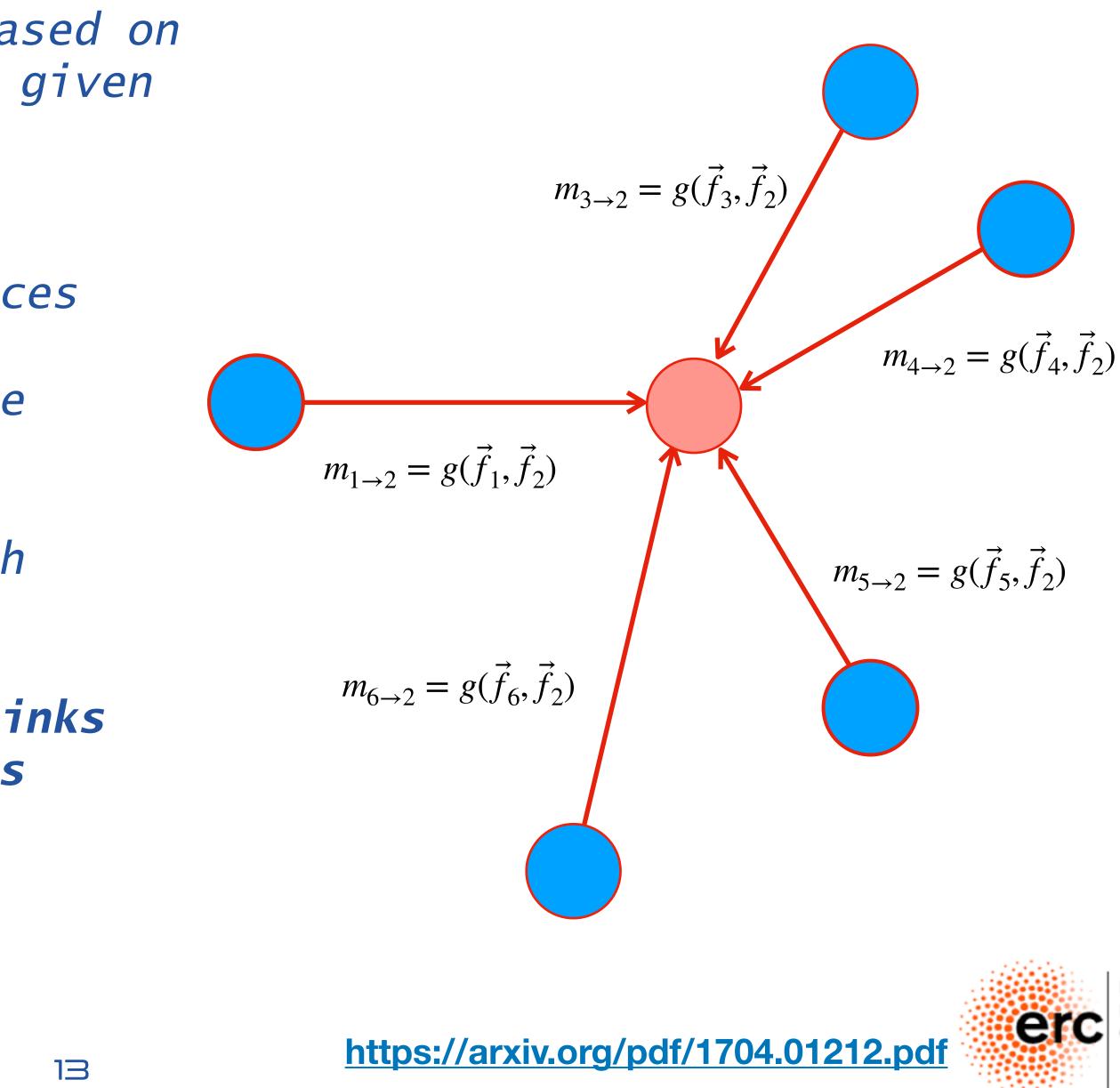






- Graphs Nets are architectures based on an abstract representation of a given dataset
  - Each example in a dataset is represented as a set of vertices
  - Each vertex is embedded in the graph as a vector of features
  - Vertices are connected through links (edges)
  - Messages are passed through links and aggregated on the vertices

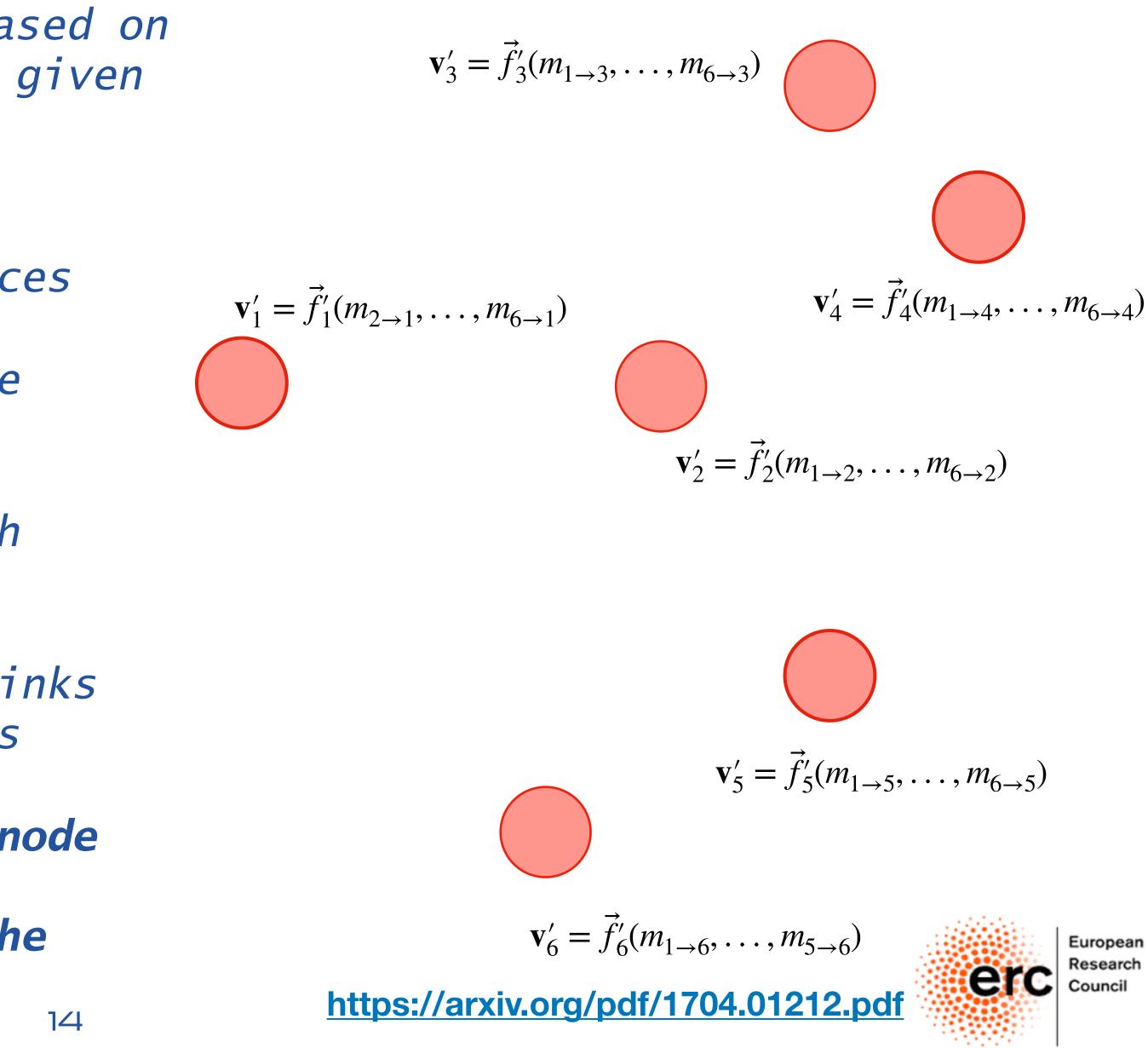
## Graph Networks







- Graphs Nets are architectures based on an abstract representation of a given dataset
  - Each example in a dataset is represented as a set of vertices
  - Each vertex is embedded in the graph as a vector of features
  - Vertices are connected through links (edges)
  - Messages are passed through links and aggregated on the vertices
  - A new representation of each node is created, based on the information gathered across the graph



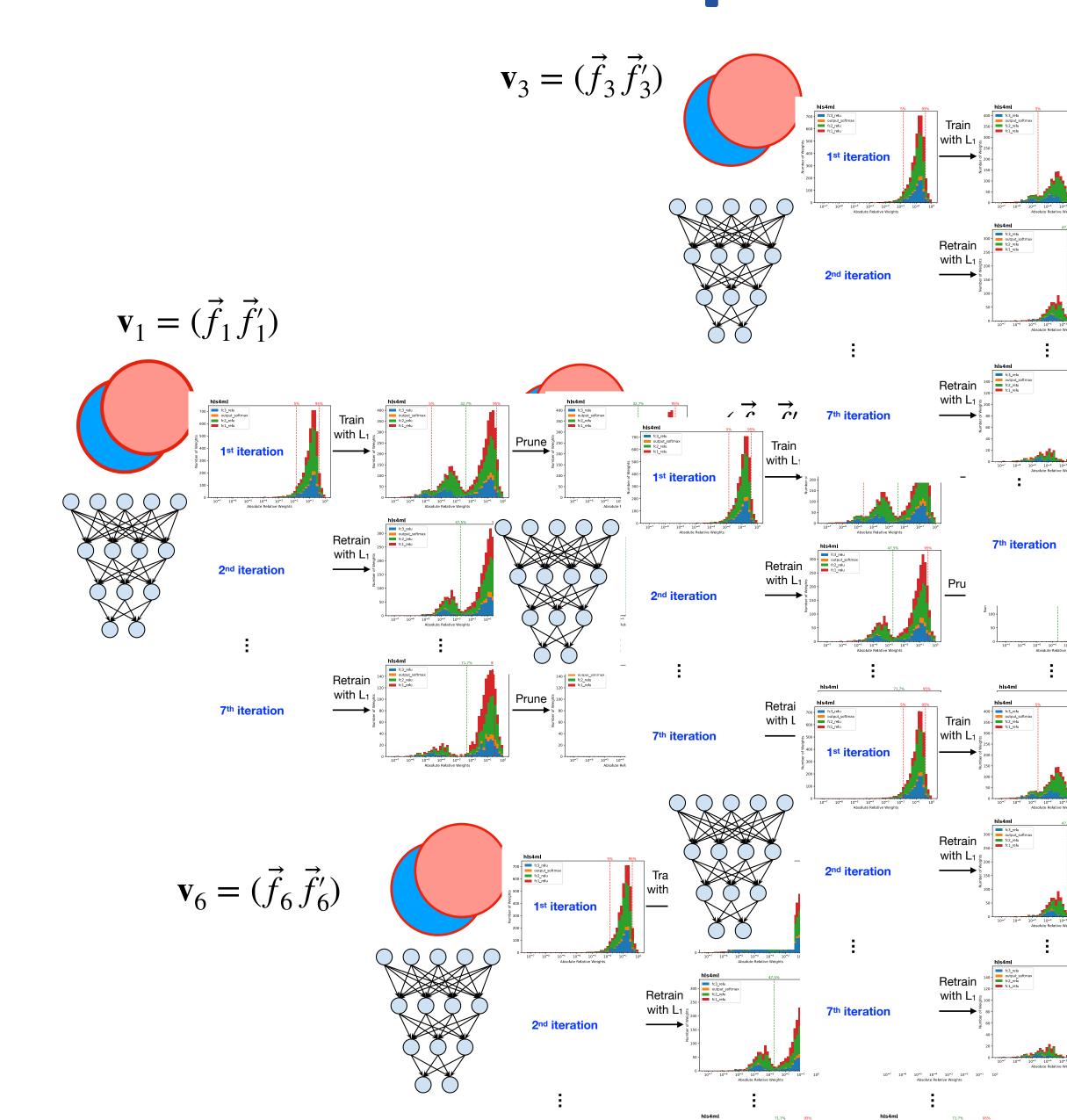




- The inference step usually happens on each vertex
- But, depending on the problem, it might happen across the graph
- Usually, this is done with a DNN taking
  - the initial features  $f_i$
  - the learned representation  $f_i$
  - [optional] some ground-truth label (for classifiers)

15

### <u>he inference step</u>



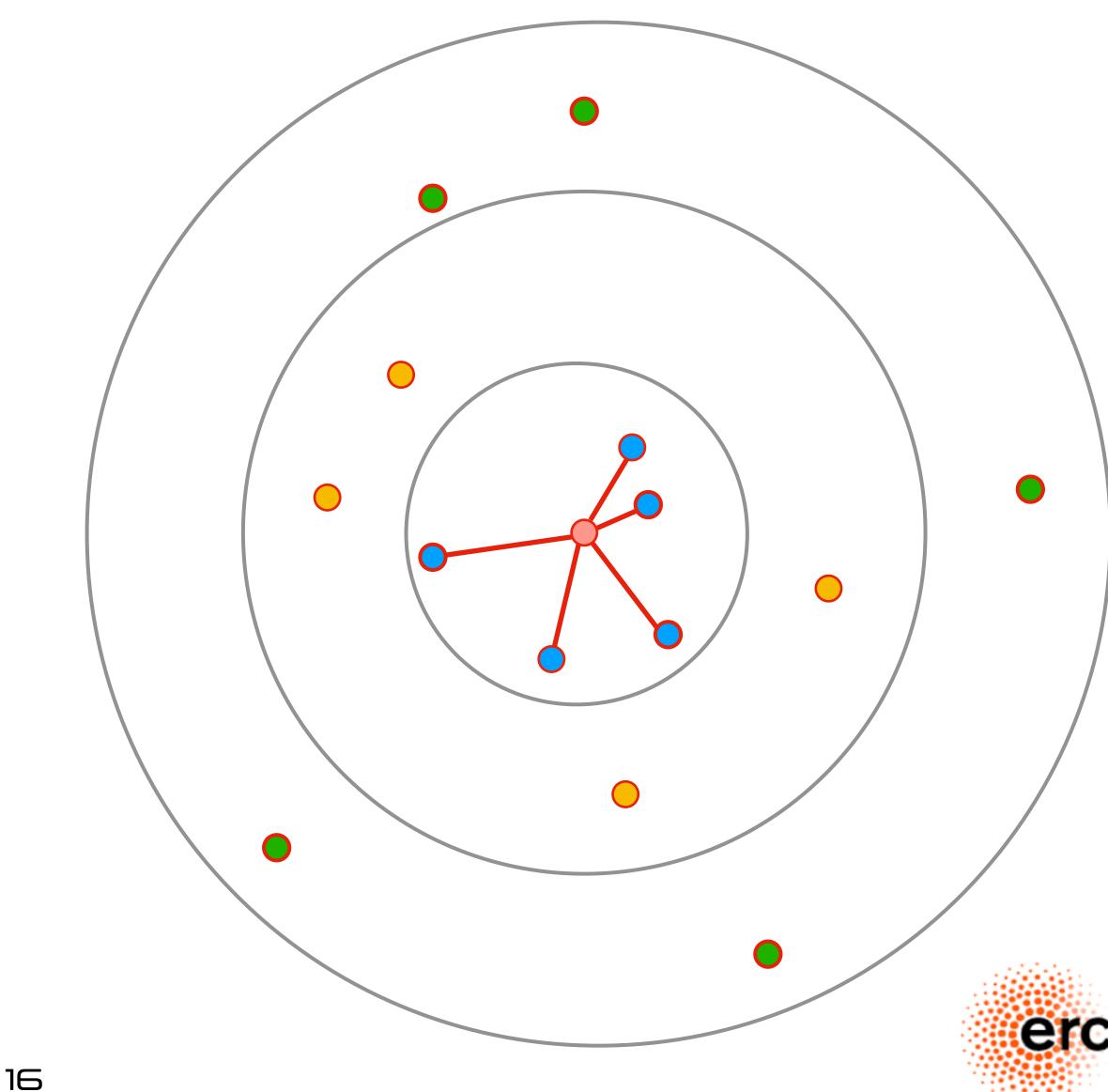




• You could start from coordinates in real space + some feature

- Build function of them
- Build functions of
   functions of them

• At each step, you improve knowledge on your vertex V







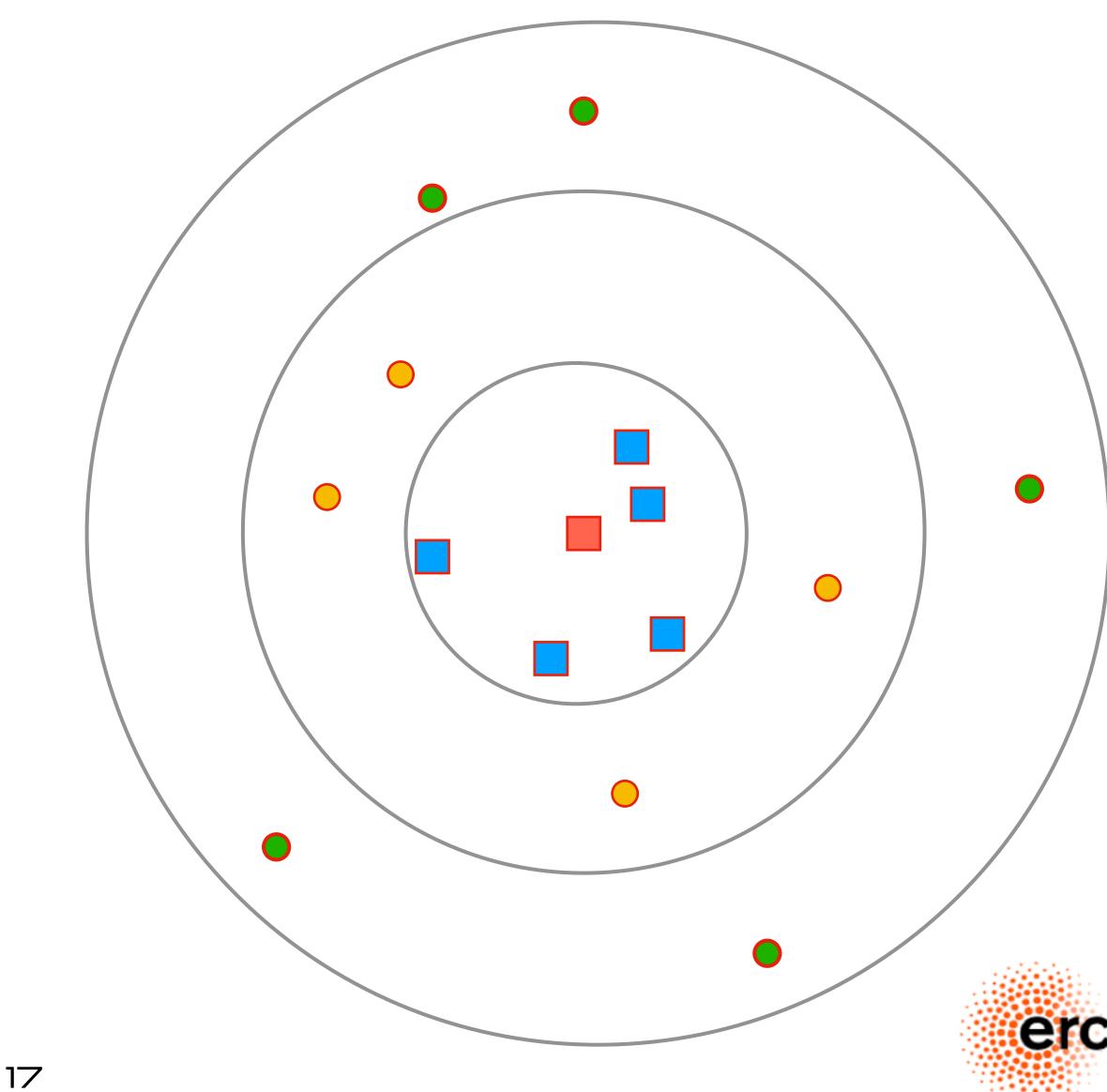




• You could start from coordinates in real space + some feature

- Build function of them
- Build functions of
   functions of them

• At each step, you improve knowledge on your vertex V







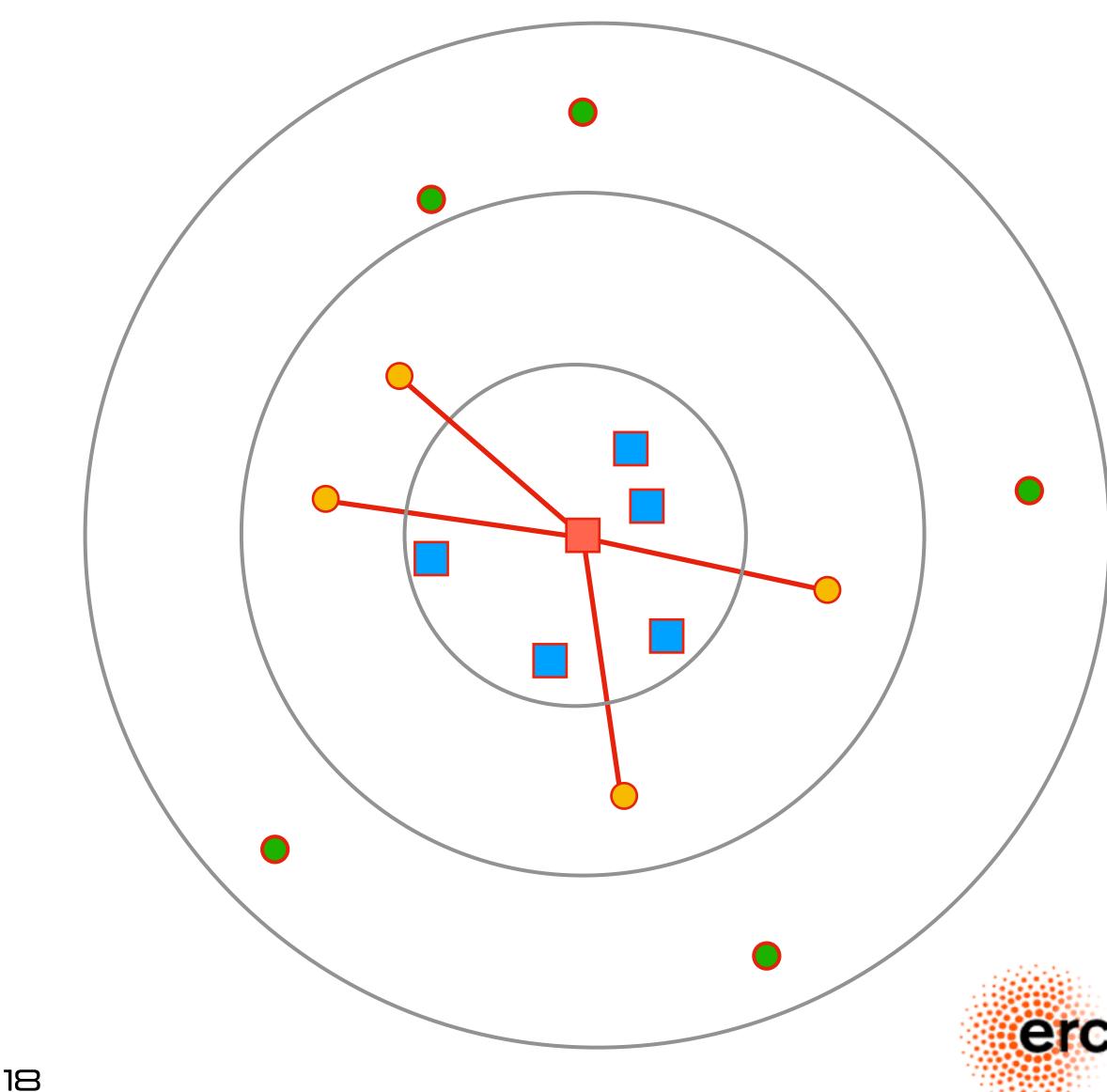




• You could start from coordinates in real space + some feature

- Build function of them
- Build functions of
   functions of them

• At each step, you improve knowledge on your vertex V







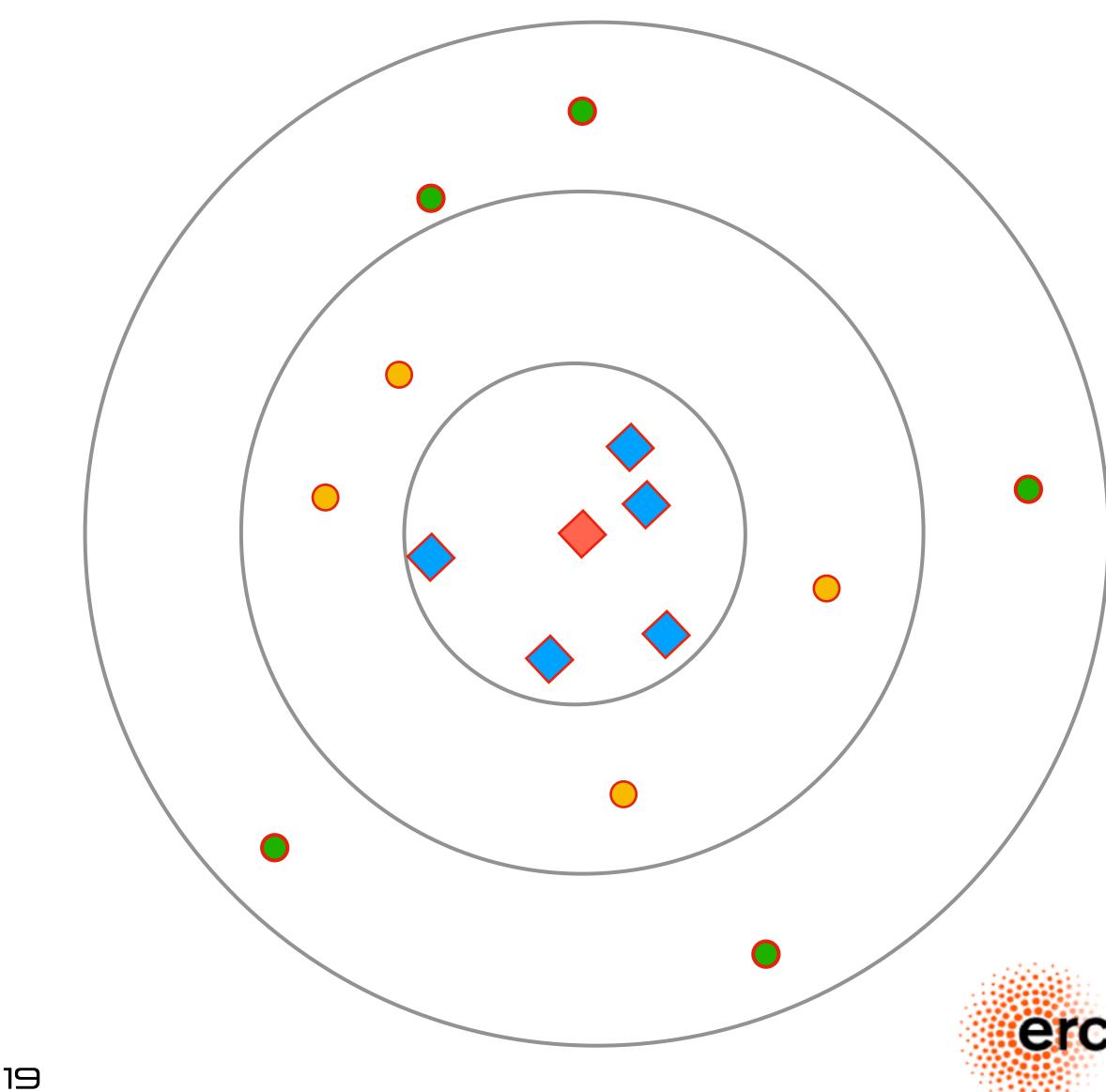




• You could start from coordinates in real space + some feature

- Build function of them
- Build functions of
   functions of them

• At each step, you improve knowledge on your vertex V







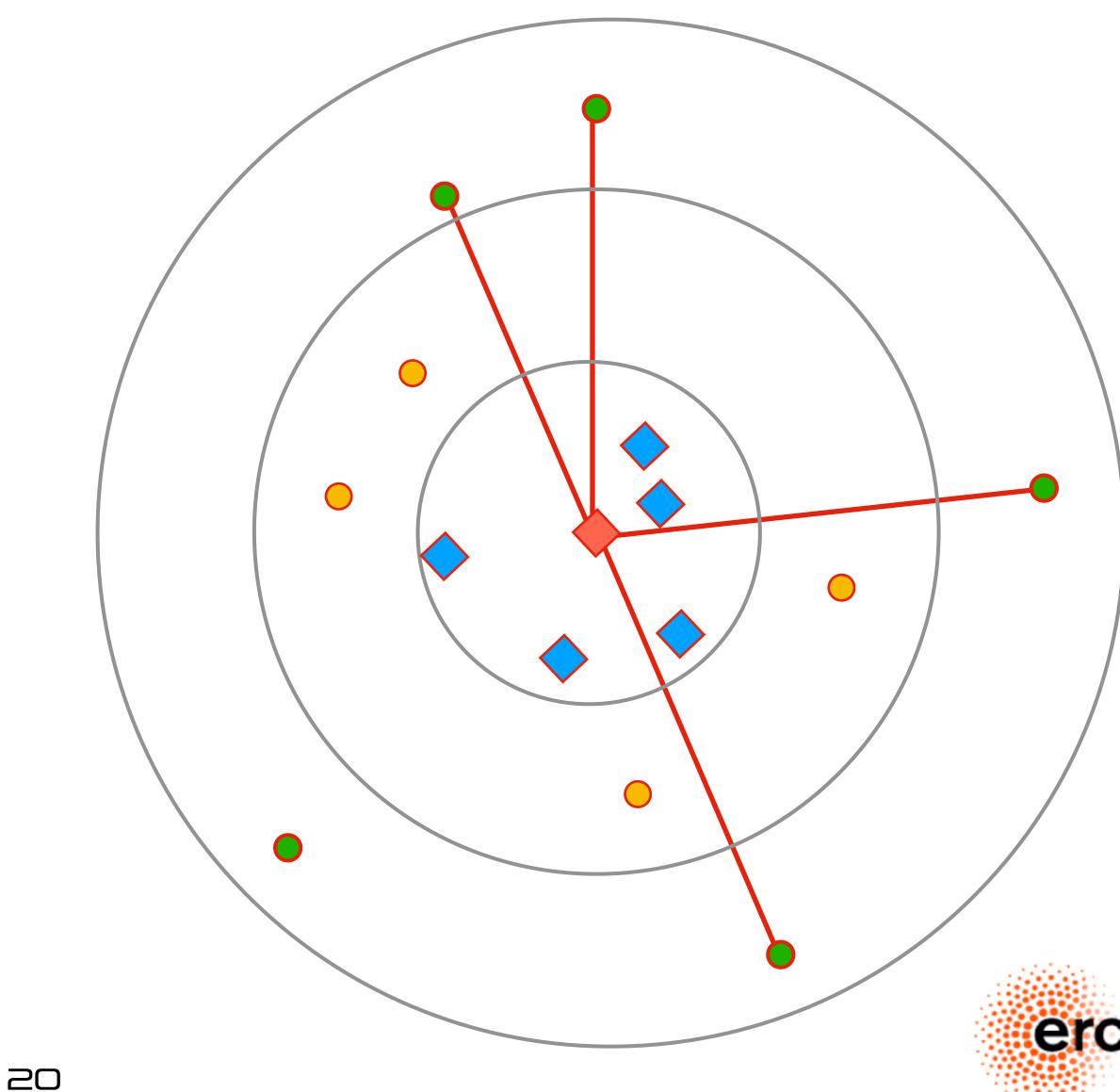




• You could start from coordinates in real space + some feature

- Build function of them
- Build functions of
   functions of them

• At each step, you improve knowledge on your vertex V











• Your message at iteration t is some function M of the sending and receiving features, plus some vertex features (e.g., business relation vs friendship in social media)

 $M_t(h_v^t, h_w^t, e_{vw})$ 

 $\odot$  The message carried to a vertex v is aggregated by some function (typically sum, but also Max, Min, etc.)



21



 $h_{\cdot}^{t}$ 

 $e_{vw}$ 





 $\odot$  The state of vertex v is updated by some function Uof the current state and the gathered message

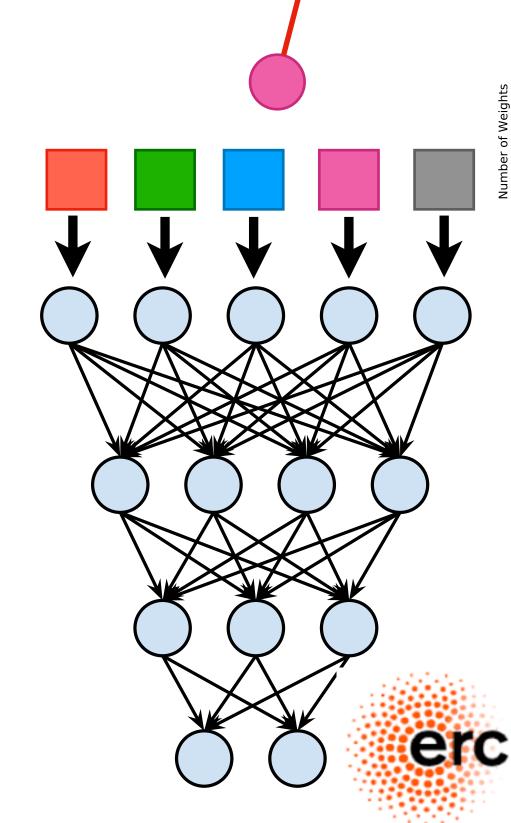
$$h_v^{t+1} = U_t(h_v^t),$$

• After T iterations, the last representations of the graph vertices are used to derive the final output answering the question asked (classification, regression, etc.), typically through a NN

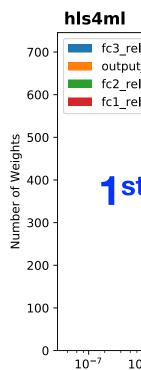
$$\hat{y} = R(h_v^T \mid v)$$

## Uith equations...

$$m_{v}^{t+1}$$
)















• Typically, the M, U, and R functions are learned from data

- Expressed as neural networks (fully connected NNs, recurrent NNs, etc.)
- Which networks to use depends on the specific problem, as much as the graph-building rules
- But you could inject domain knowledge in the game
  - You might know that SOME message is carried by some specific functions (e.,g., Netwon's low for N-body system simulation)
  - You could then use analytic functions for some message
  - You could still use a learned function for other messages
- The trick is dealing with differentiable functions not to spoil your back propagation

23

• Graph networks become a tool for probabilistic programming













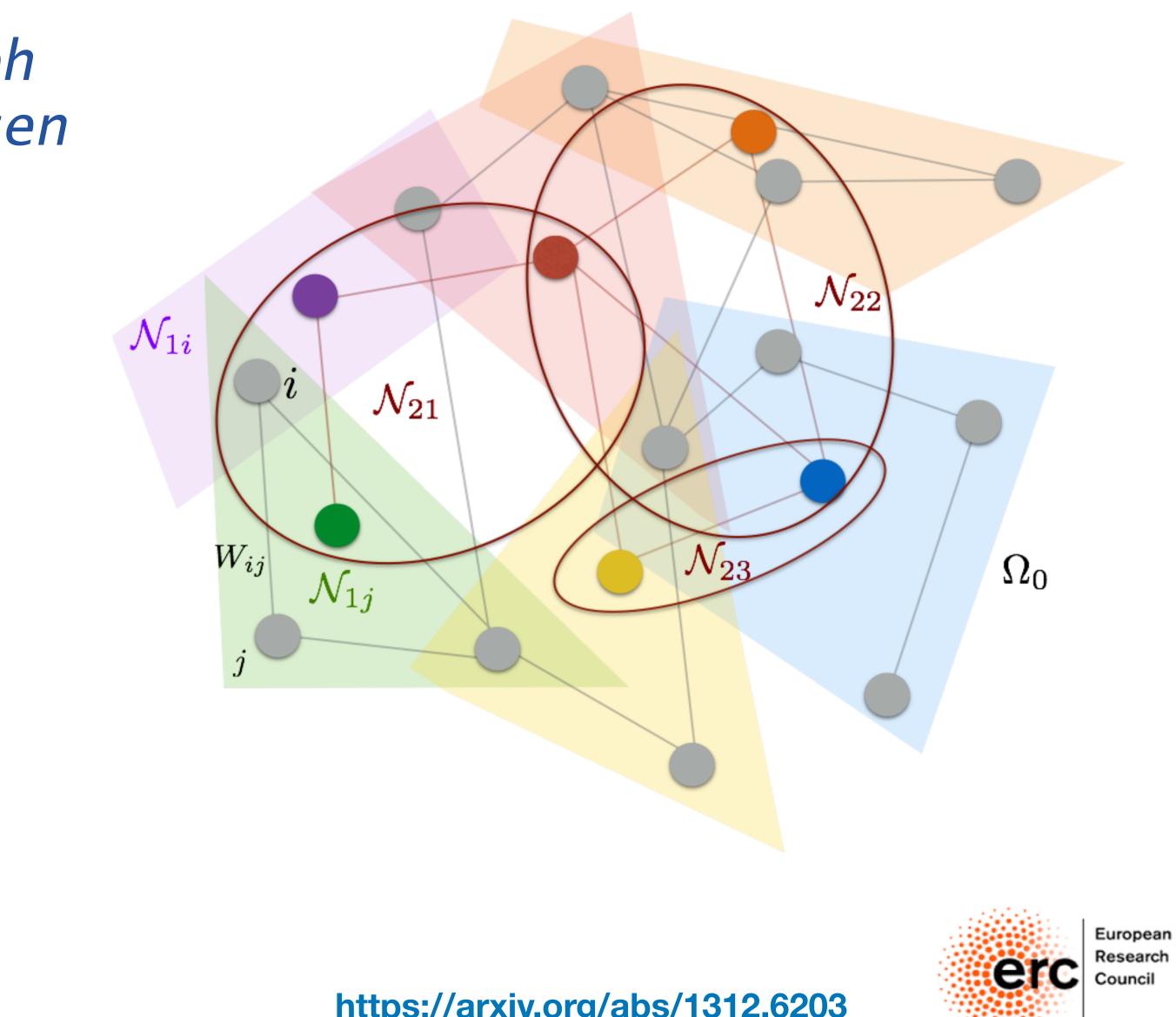


• (in this millenium) Graph networks started (as often it is the case) with a Yann LeCun et al. paper

• They tried to generalise CNNs beyond the regulararray dataset paradigm

• They replaced the translation-invariant kernel structure of CNNs with hierarchical clustering

## A little bit of History



https://arxiv.org/abs/1312.6203





- The idea of message passing can be tracked to a '15 paper by Duvenaud et al.
- The paper introduces "a convolutional neural network that operates directly on graphs"

• Language is different, but if you look at the algorithm it is pretty much what we discussed (for specific network architecture choices)

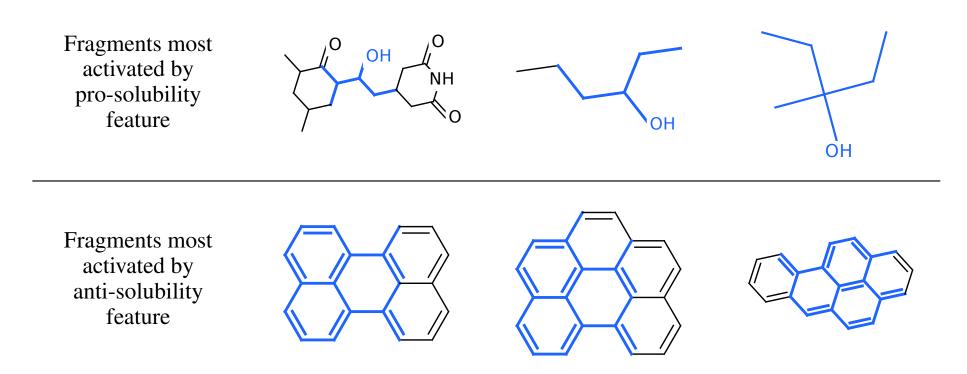
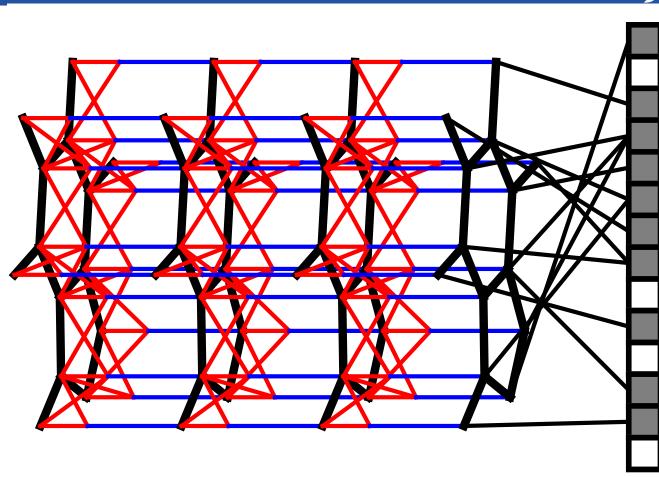


Figure 4: Examining fingerprints optimized for predicting solubility. Shown here are representative examples of molecular fragments (highlighted in blue) which most activate different features of the fingerprint. Top row: The feature most predictive of solubility. Bottom row: The feature most predictive of insolubility.

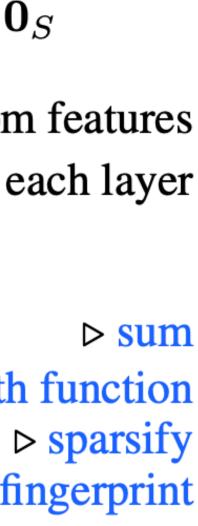
# A little bit of Historu



Algorithm 2 Neural graph fingerprints

- 1: Input: molecule, radius R, hidden weights  $H_1^1 \dots H_R^5$ , output weights  $W_1 \dots W_R$
- 2: Initialize: fingerprint vector  $\mathbf{f} \leftarrow \mathbf{0}_S$
- 3: for each atom a in molecule
- 4:  $\mathbf{r}_a \leftarrow g(a)$   $\triangleright$  lookup atom features
- 5: **for** L = 1 to R $\triangleright$  for each layer
- for each atom a in molecule 6:
- $\mathbf{r}_1 \dots \mathbf{r}_N = \text{neighbors}(a)$ 7:
- $\mathbf{v} \leftarrow \mathbf{r}_a + \sum_{i=1}^N \mathbf{r}_i$ 8:
- $\mathbf{r}_a \leftarrow \sigma(\mathbf{v}H_L^N) > \mathsf{smooth function}$ 9:
- $\mathbf{i} \leftarrow \operatorname{softmax}(\mathbf{r}_a W_L)$ 10:
- $\mathbf{f} \leftarrow \mathbf{f} + \mathbf{i}$ ▷ add to fingerprint 11:
- 12: **Return:** real-valued vector **f**

https://arxiv.org/pdf/1509.09292.pdf







- A few recent reviews that could guide you through the many applications and networks
  - A nice BLOG article on GNNs
  - Another nice BLOG article on GNNs
  - <u>A generic review</u>
  - A particle-physics specific one
     A particle-physics spe
- A few GitHub examples

  - <u>PUPPIML</u>: GGNN for pileup subtraction
  - A small <u>GarNet</u> example that fits an FPGA on <u>these data</u>



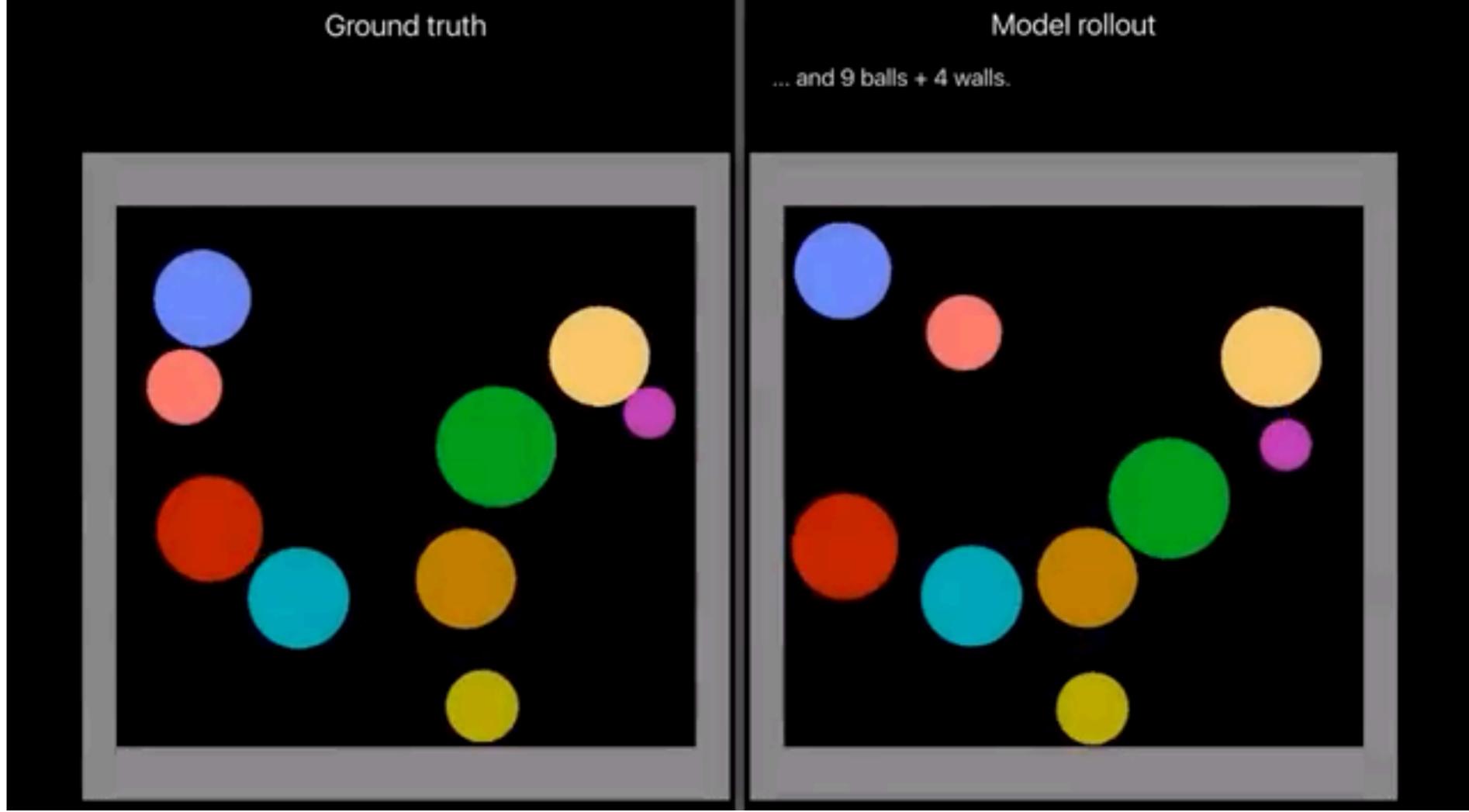
• <u>JEDI-net</u> Interaction Networks for jet tagging on <u>these data</u>









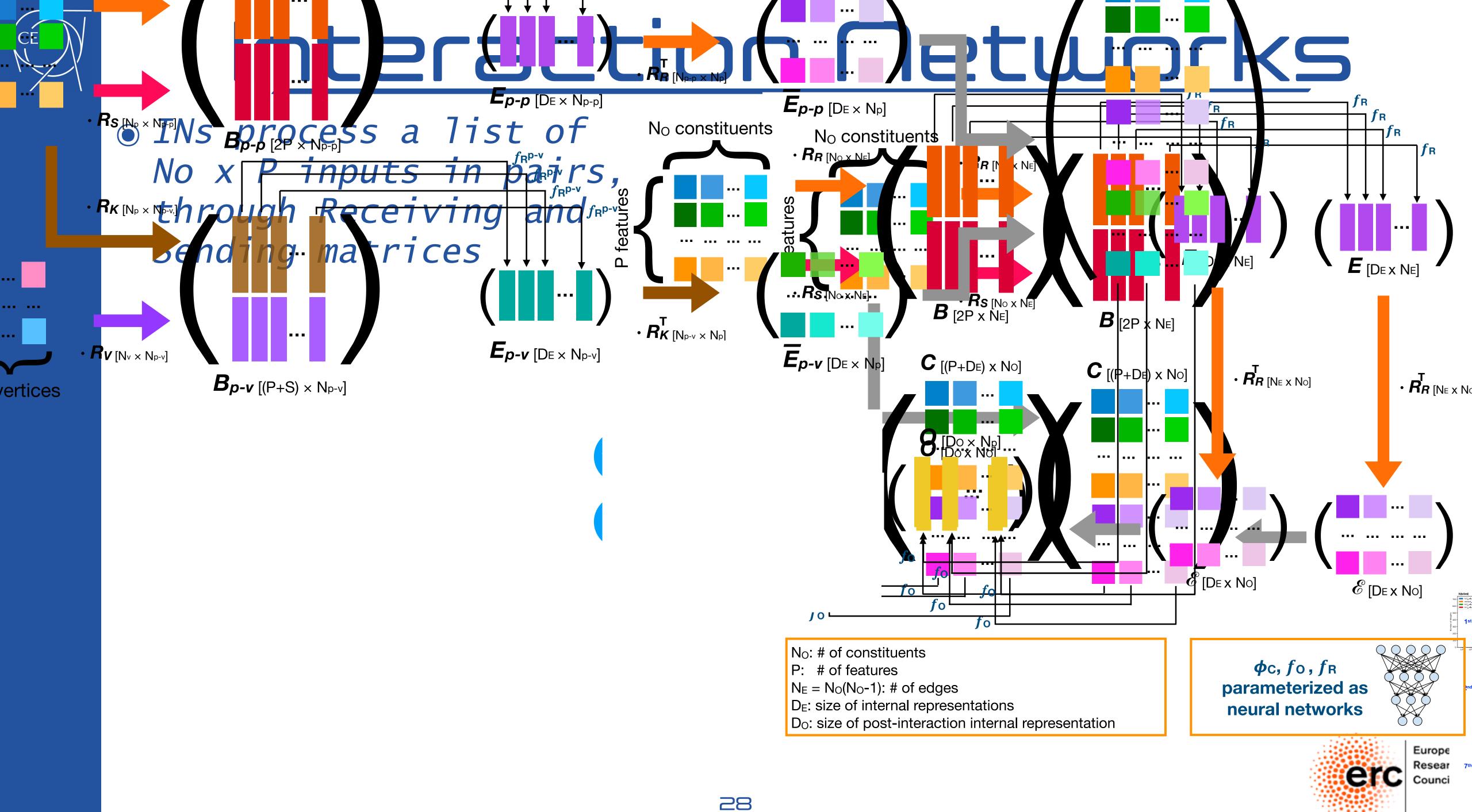


## Interaction Networks





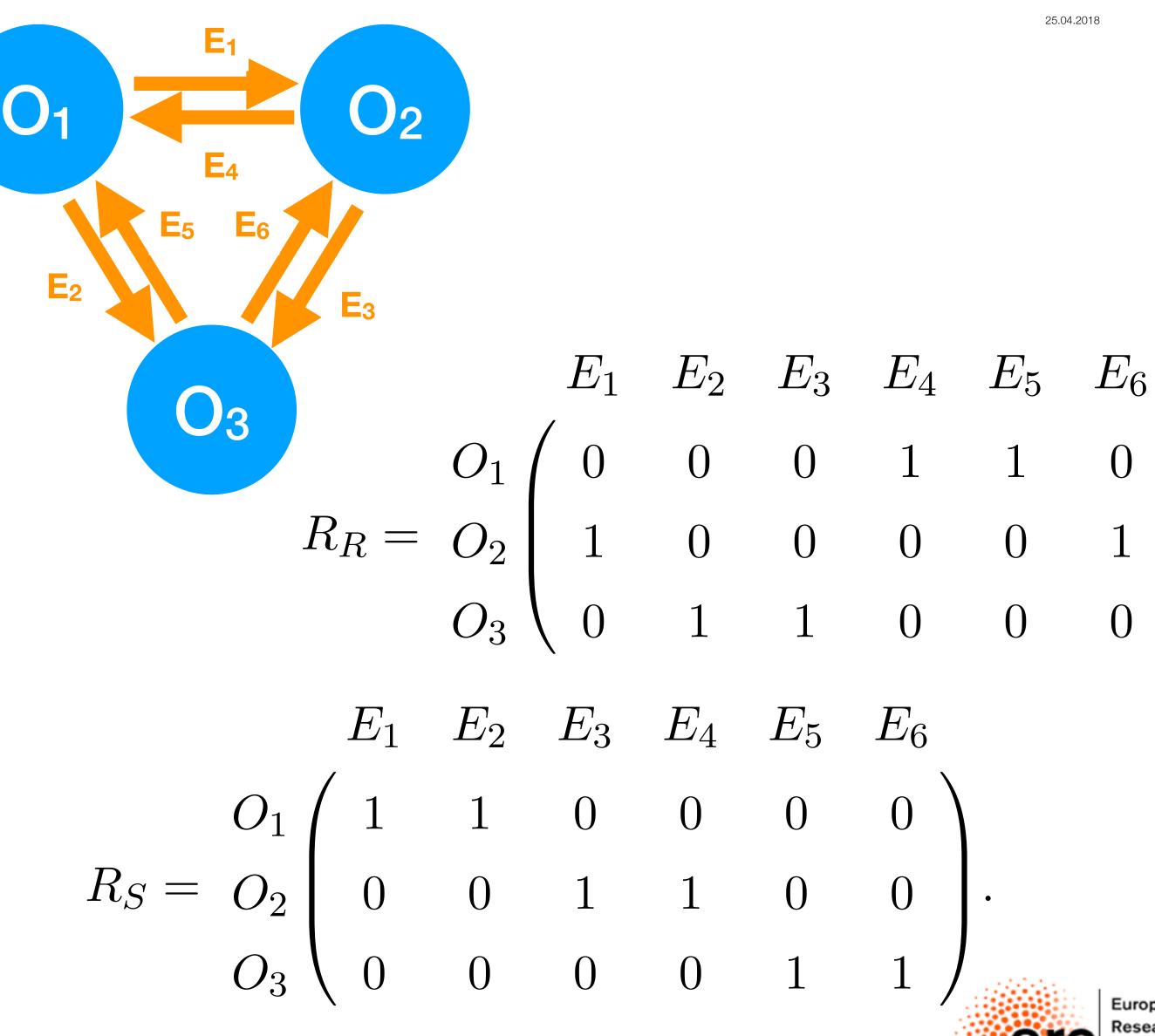
27

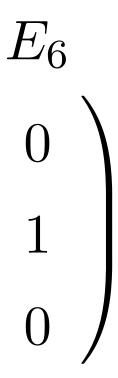






- INs process a list of No x P inputs in pairs, through Receiving and Sending matrices
- The effect of the interaction is learned by fR and combined with the input to learn (through fo) a postinteraction representation







vertices

of the **V** [Nv × Np-v] **tect** by fR and combined with the input to learn (through fo) a postinteraction representation

ng matrices

 $R_{S} = I N_{S} = P_{S} P_{S$ 

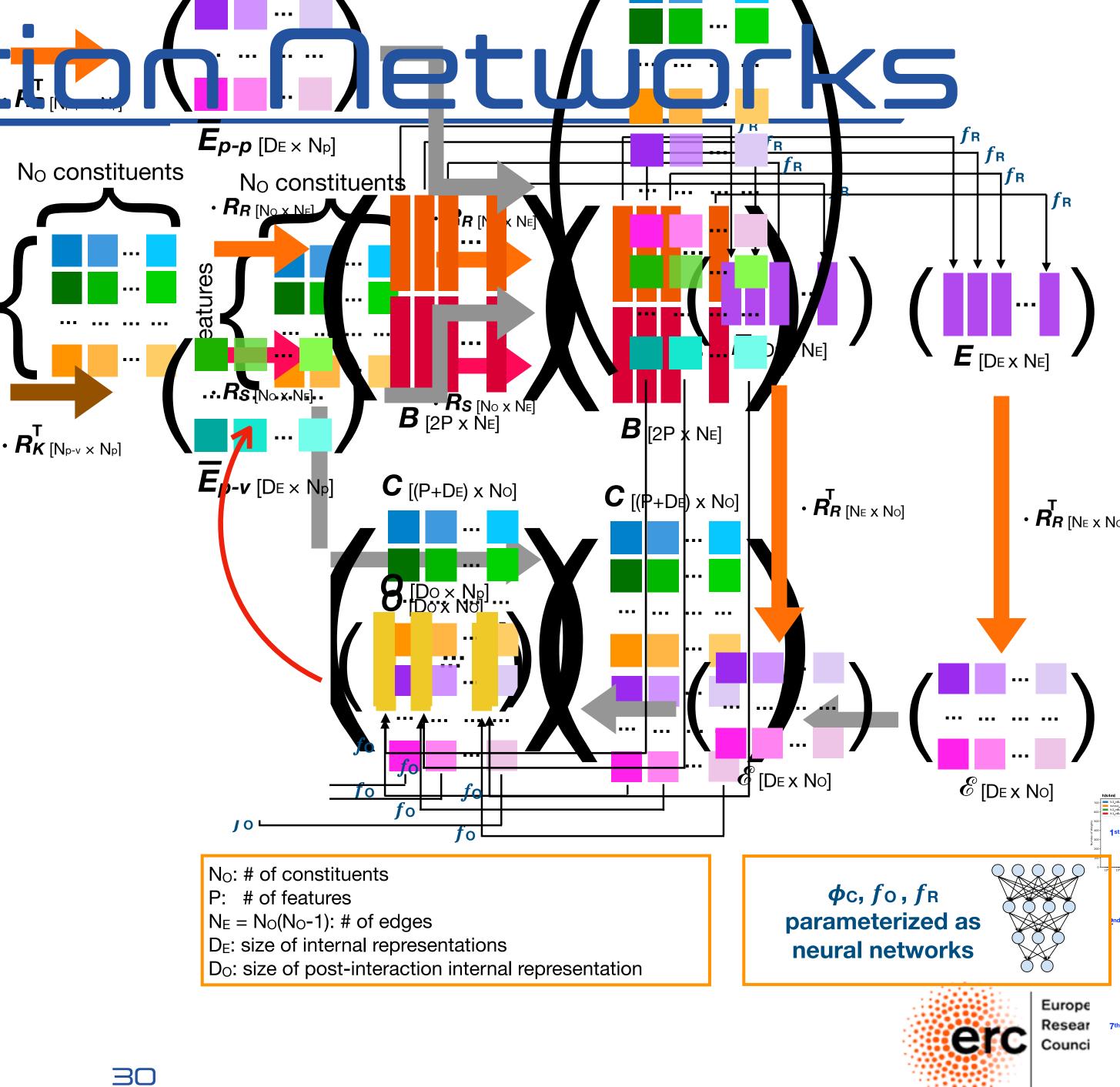
Receiving

*L***p-p** [DE × Np-p]

*ba***rrs** 

list of

• The procedure can then be iterated to produce further steps i the interactions



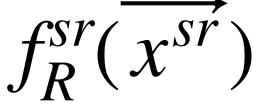




The input is a vector, obtained concatenating sender and receiver feature

$$\overrightarrow{x^{sr}} = (\overrightarrow{x^s}, \overrightarrow{x^r})$$

The input is processed by a network, that compute "kernel" functions of these inputs



Message across senders is gathered by summing

$$\overrightarrow{e^r} = \sum f_R^{sr}(\overrightarrow{x^{sr}})$$

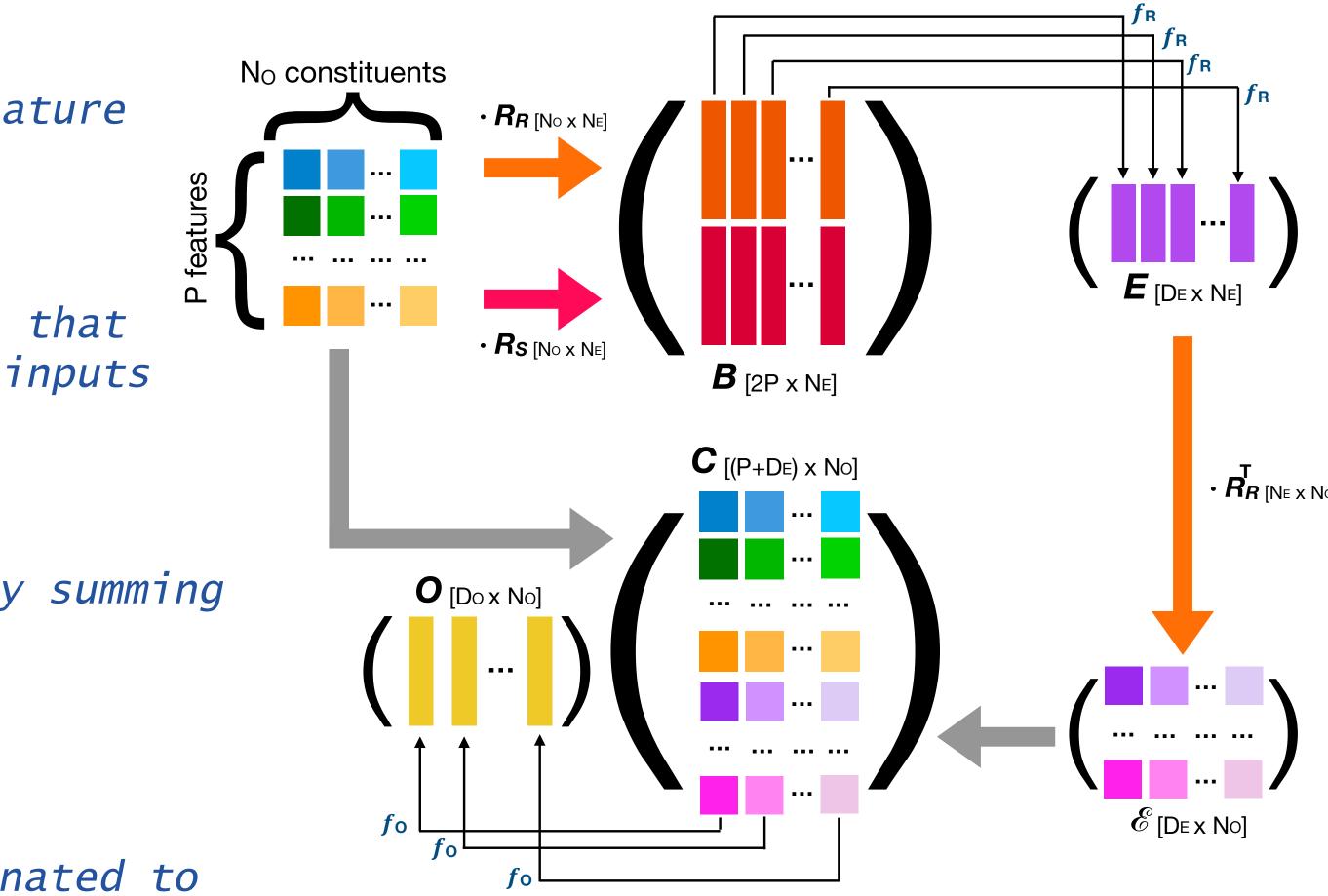
S

The interaction features are concatenated to the input

$$\overrightarrow{c^r} = (\overrightarrow{e^r}, \overrightarrow{x^r})$$

A final neural network returns the po interaction representation

## Uith equations



st- 
$$\overrightarrow{o^r} = f_O(\overrightarrow{c^r})$$



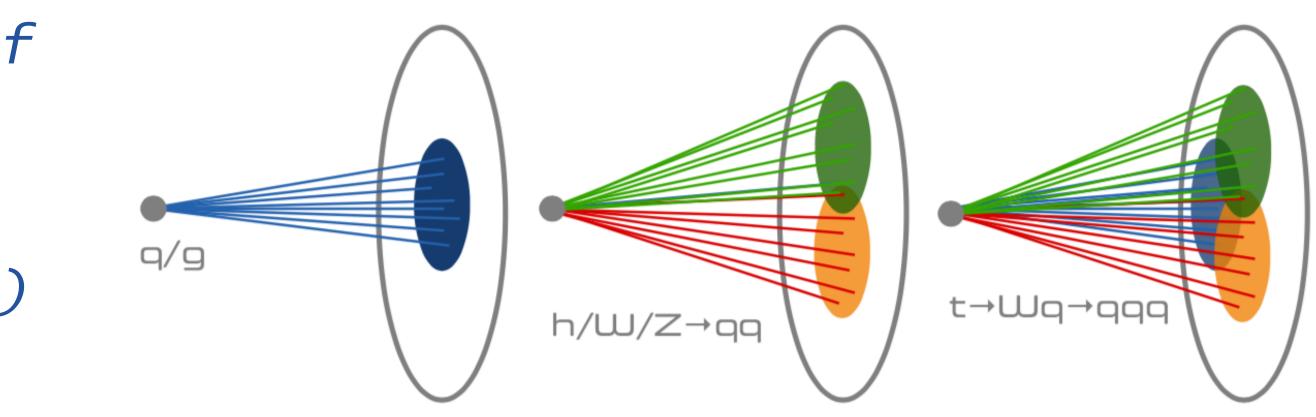




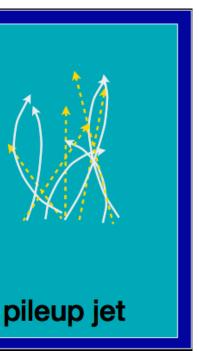


- You have a jet at LHC: spray of hadrons coming from a "shower" initiated by a fundamental particle of some kind (quark, gluon, W/Z/H bosons, top quark)
- You have a set of jet features whose distribution depends on the nature of the initial particle
- You can train a network to start from the values of these quantities and guess the nature of your jet
- To do this you need a sample for which you know the answer

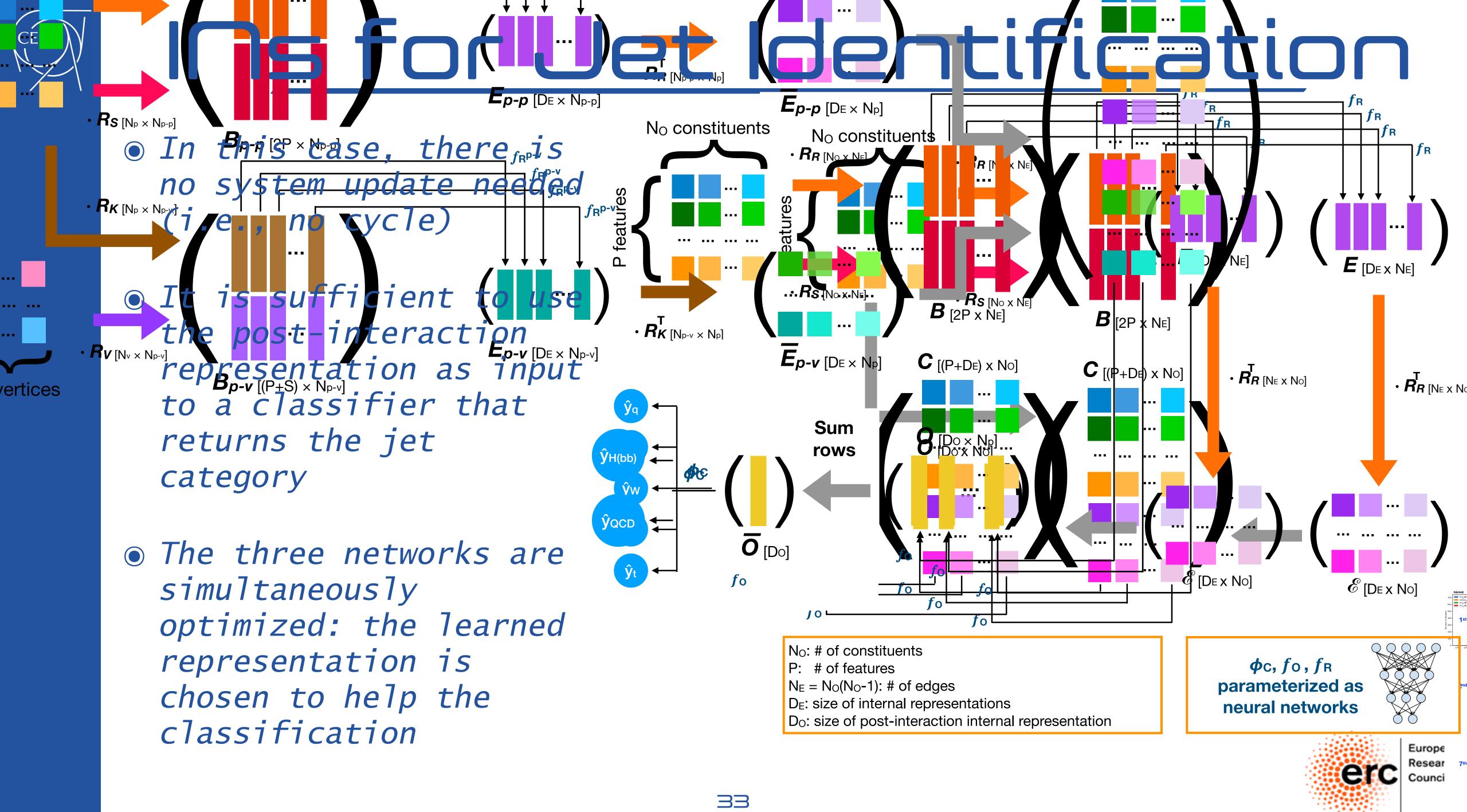
## Example: jet tagging



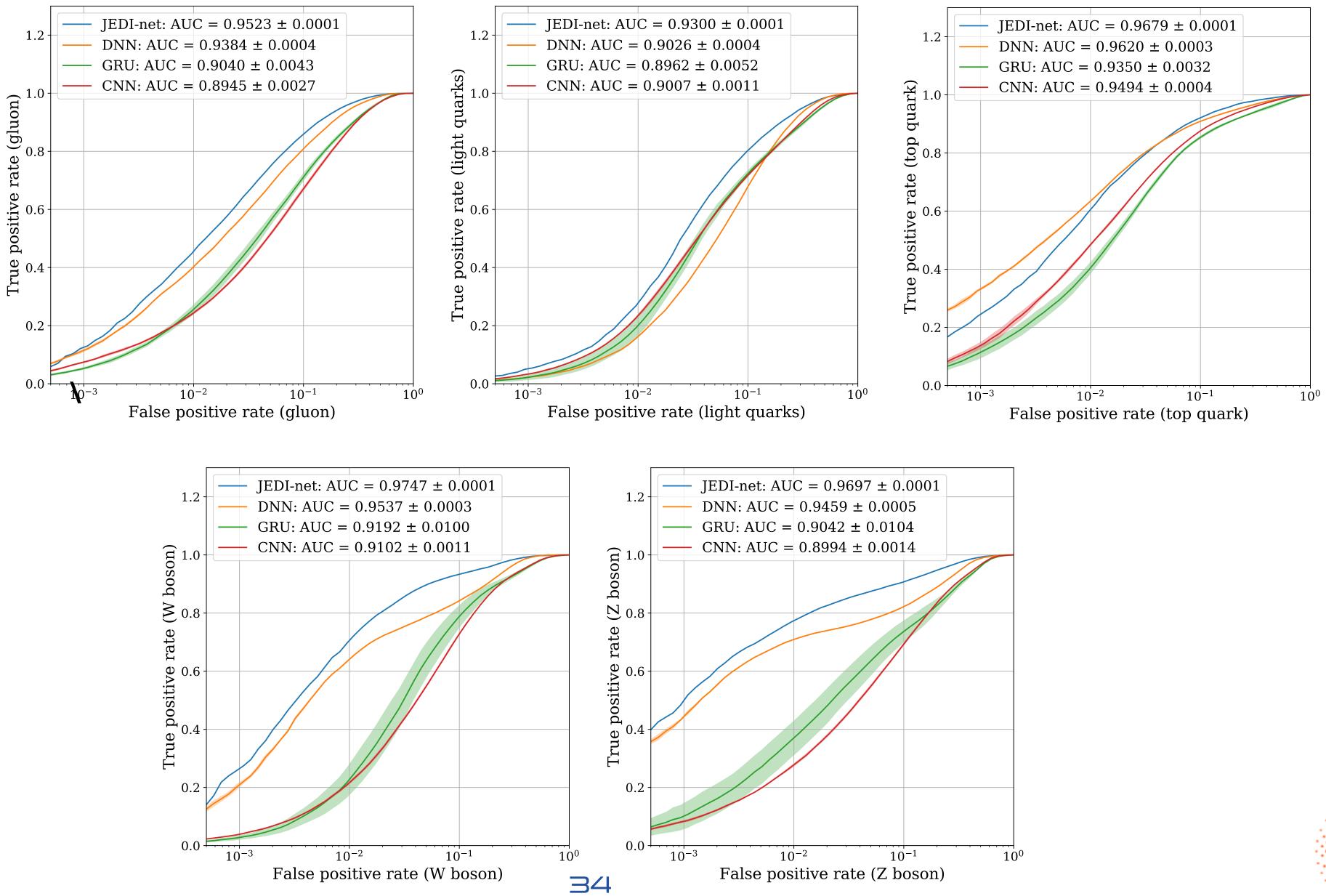
u,d or s jet c or b jet gluon jet top jet Higgs jet W or Z jet 32

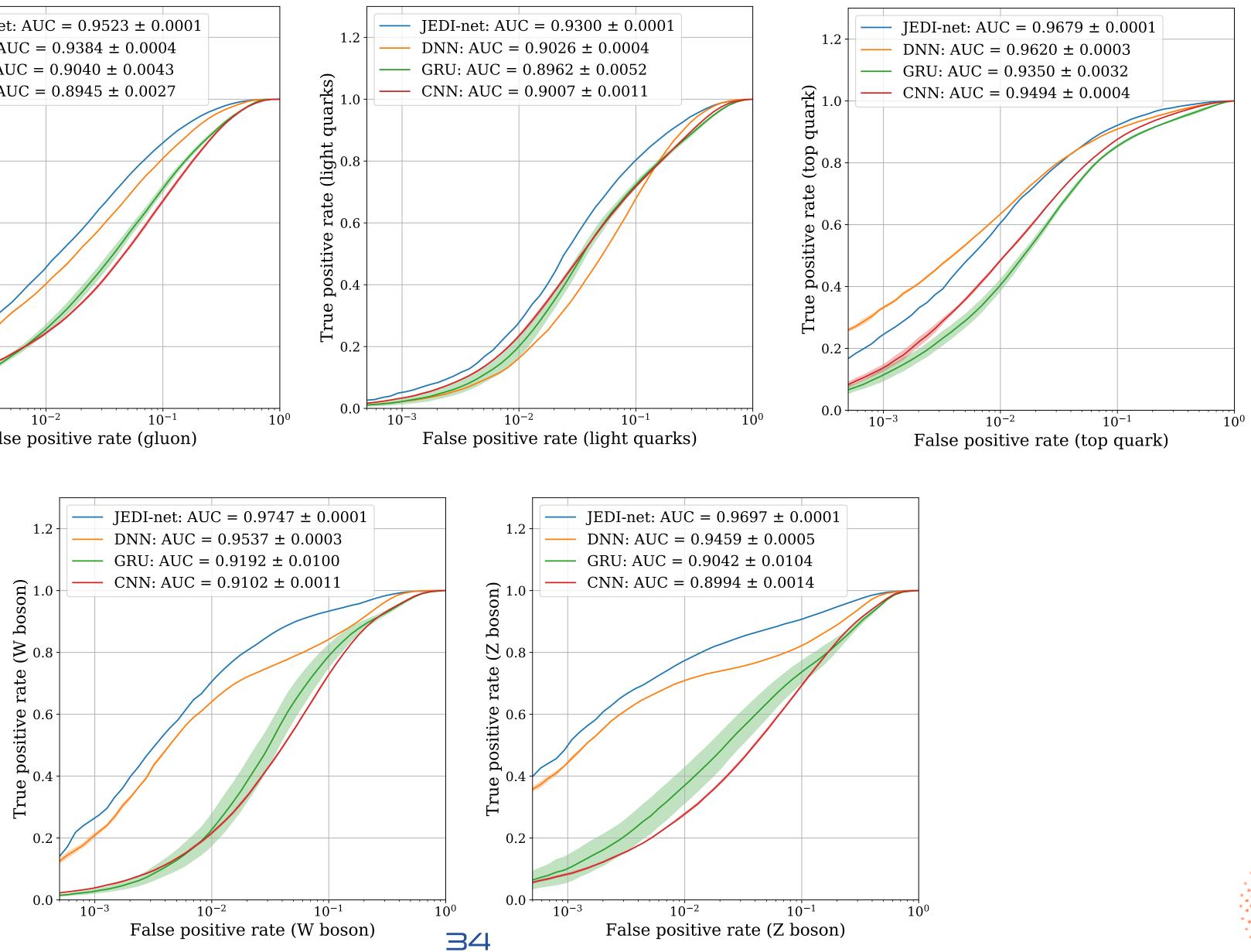






## COMPACISON











• Graph Networks are a powerful tool to learn from sparse data sets

• extend CNN concept beyond the case of geometrical proximity -> learned representation

• allow to inject domain knowledge in the game (e.g., enforcing physics rules for message-passing functions [Newton's law in N-body simulation]

• But can also be used to learn (how to simulate) physics

35

 allow to abstract from irregular geometry (molecules, particle-physics detectors, stars in a galaxy, ...)

