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๏ Autoencoders are networks 
with a typical “bottleneck” 
structure, with a symmetric 
structure around it


๏ They go from ℝn ➝ ℝn 


๏ They are used to learn 
the identity function as 
𝑓-1(𝑓(x))


where 𝑓: ℝn ➝ ℝk and 𝑓-1: ℝk 
➝ ℝn


๏ Autoencoders are essential 
tools for unsupervised 
studies

Autoencoders

3

Latent 
space



๏ Autoencoders can be seen as compression algorithms


๏ The n inputs are reduced to k quantities by the encoder


๏ Through the decoder, the input can be reconstructed from the k quantities


๏ As a compression algorithm, an auto encoder allows to save (n-k)/n of the 
space normally occupied by the input dataset

Dimensional Reduction
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๏ The auto encoder can 
be used as a 
clustering algorithm


๏ Alike inputs tend 
to populate the 
same region of the 
latent space


๏ Different inputs 
tend to be far away

Clustering
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๏ AEs are training 
minimizing the distance 
between the inputs and the 
corresponding outputs


๏ The loss function 
represents some distance 
metric between the two


๏ e.g., MSE loss 


๏ A minimal distance 
guarantees that the latent 
representation + decoder 
is enough to reconstruct 
the input information

Training an Autoencoder
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10 epoch

42 epoch 
(reached early 

stopping)

1 epoch



๏ Once trained, an autoencoder 
can reproduce new inputs of 
the same kind of the training 
dataset


๏ The distance between the 
input and the output will 
be small


๏ If presented an event of some 
new kind (anomaly), the 
encoding-decoding will tend 
to fail


๏ In this circumstance, the 
loss (=distance between 
input and output) will be 
bigger

Anomaly detection
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๏ Conv Autoencoders 
take images as input


๏ Through Conv and 
MaxPooling, they 
reduce it to some 
latent-space 1D array


๏ This 1D array is 
expanded using the 
inverse of the 
encoder functions


๏ ConvTranspose (aka 
“Deconvolution”)


๏ Upsampling

Convolutional Autoencoders
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Figure 1: The schematic diagram of an autoencoder. The input is mapped into a low(er) dimensional
representation, in this case 6-dim, and then decoded.

threshold.

For concreteness, we will focus in this work on distinguishing “fat” QCD jets from

other types of heavier, boosted resonances decaying to jets. Building on previous work

on top tagging [12], we will concentrate on machine learning algorithms that take jet

images as inputs. For signal, we will consider all-hadronic top jets, as well as 400 GeV

gluinos decaying to 3 jets via RPV. Obviously, this is not meant to be an exhaustive

study of all possible backgrounds and signals and methods but is just meant to be a

proof of concept. The idea of autoencoders for anomaly detection is fully general and not

limited to these signals. We will comment on other forms of inputs in section 5. Moreover

there are many other anomaly detection techniques that are not based on autoencoder

and/or on reconstruction (loss) which are worth exploring in future work. At the same

time autoencoders have been recently used in other high energy physics applications:

in parton shower simulation [28], for feature selection of a supervised classification [30],

and for automated detection of detector aberrations in CMS [31].

We will explore various architectures for the autoencoder, from simple dense neural

networks to convolutional neural networks (CNNs), as well as a shallow linear represen-

tation in the form of Principal Component Analysis (PCA). We will see that while they

are all e↵ective at improving S/B by factors of ⇠ 10 or more, they have important dif-

ferences. The reconstruction errors of the dense and PCA autoencoders correlate more

highly with jet mass, leading to greater S/B improvement for the 400 GeV gluinos com-

pared to the CNN autoencoder. While this may seem better at first glance, we discuss

how one might want to use an autoencoder that is decorrelated with jet mass, in order

to obtain data-driven side-band estimates of the QCD background and perform a bump

hunt in jet mass. Indeed, we show how cutting on the reconstruction error of the CNN

autoencoder results in stable jet mass distributions, and we show how this can be used

to improve S/B by a factor of ⇠ 6 in a jet mass bump hunt for the 400 GeV gluino
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๏ Idea applied to tagging jets, 
in order to define a QCD-jet 
veto


๏ Applied in a BSM search 
(e.g., dijet resonance) could 
highlight new physics signal


๏ Based on image and physics-
inspired representations of 
jets 


 

Example: Jet autoencoders
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Farina et al., arXiv:1808.08992

Heimel et al., arXiv:1808.08979

Figure 2: Distribution of reconstruction error computed with a CNN autoencoder on test samples of
QCD background (gray) and two signals: tops (blue) and 400GeV gluinos (orange).

We see that the autoencoder works as advertised: it learns to reconstruct the QCD

background that it has been trained on (to be precise, we train on 100k QCD jets and

then we evaluate the autoencoder on a separate sample of QCD jets), and it fails to

reconstruct the signals that it has never seen before. This is further illustrated in Fig. 3,

which shows the average QCD, top and gluino jet image before and after autoencoder

reconstruction. We see by eye that the QCD images are reconstructed well on average,

while the others contain more errors.

By sliding the reconstruction loss threshold L > LS around, we can turn the his-

tograms in Fig. 2 into ROC curves. The ROC curves for the di↵erent autoencoder

architectures are shown in Fig. 4 for the top and gluino signals. For comparison we have

also included the ROC curve obtained by cutting on jet mass as an anomaly threshold.

While the three architectures have comparable performances it is clear there are some

important di↵erences. For tops, the CNN outperforms the others, while for gluinos the

situation is largely reversed. Surprisingly, for gluinos, the CNN is even outperformed

by the humble PCA autoencoder at all but the lowest signal e�ciencies! We will ex-

plore this in more detail in section 4.2, but a clue as to what’s going on is shown in

the comparison of the PCA ROC curve with the jet mass ROC curve. For gluinos,

they track each other extremely closely, suggesting that the PCA reconstruction error is

highly correlated with jet mass. We will confirm this in section 4.2. Evidently, the PCA

autoencoder (and to a lesser extent the dense autoencoder) has learned to reconstruct
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๏ When given as input a sequence, the AE needs a recurrent layer to process it


๏ The encoder is similar to the classifier we already saw


๏ What about the decoder? This is where the serial output of the RNN comes in

Recurrent Autoencoders
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Autoencoders for New 
Physics searches



๏ Searches for new physics are 
typically supervised


๏ One knows what to look for


๏ MC simulation provides 
labelled datasets to model 
the signal and the 
background


๏ The analysis is performed 
as hypothesis testing


๏ The bias (what to look for) 
enters very early in the game 
(often already at trigger 
level). What if we are 
looking in the wrong place?

Supervised search for new physics

12



๏ One can use 
Autoencoders to relax 
the assumption on the 
nature of new physics


๏ Train on standard 
events


๏ Run autoencoder on 
new events


๏ Consider as anomalous 
all events with loss 
> threshold

Unsupervised search for new physics
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๏ One needs the unsupervised algorithm to run before data 
are discarded


๏ This would allow to possibly notice recurrent patterns 
across events -> suggest explanations (new models) -> 
runs a classic supervised search (+ dedicated trigger) 
on the data to come

Running in the trigger
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High-Level 


Trigger
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trig
ger
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๏ Consider a stream of data coming from L1


๏ Passed L1 because of 1 lepton (e,m) 
with pT>23 GeV


๏ At HLT, very loose isolation applied


๏ Sample mainly consists of W, Z, tt & 
QCD (for simplicity, we ignore the 
rest)


๏ We consider 21 features, typically 
highlighting the difference between 
these SM processes (no specific BSM 
signal in mind)

Our use case: ℓ+X @HLT
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overlapping collisions per beam crossing (pileup) to ⇠ 20. These beam conditions loosely correspond
to the LHC operating conditions in 2016.

Events generated by PYTHIA8 are processed with the DELPHES library [21], to emulate detector
efficiency and resolution effects. We take as benchmark detector description the upgraded design of
the CMS detector, foreseen for the High-Luminosity LHC phase [22]. In particular, we use the CMS
HL-LHC detector card distributed with DELPHES. We run the DELPHES particle-flow (PF) algorithm,
which combines the information from different detector components to derive a list of reconstructed
particles, the so-called PF candidates. For each particle, the algorithm returns the measured energy
and flight direction. Each particle is associated to one of three classes: charged particles, photons,
and neutral hadrons.

Events are filtered at generation requiring an electron, muon, or tau lepton with pT > 22 GeV.
Once detector effects are taken into account with DELPHES, events are further selected requiring the
presence of one reconstructed electron or muon with transverse momentum pT > 23 GeV and a
loose isolation requirement ISO < 0.45, where the isolation is computed as:

ISO =

P
p 6=q

pp
T

pq
T

, (1)

and the sum extends over all the photons, charged and neutral hadrons within a cone of size �R =p
�⌘2 +��2 < 0.3 from the lepton.1

The 21 considered HLF quantities are:

• The isolated-lepton transverse momentum p`
T

.
• The three isolation quantities (CHPFISO, NEUPFISO, GAMMAPFISO) for the isolated

lepton, computed with respect to charged particles, neutral hadrons and photons, respectively.
• The lepton charge.
• A boolean flag (ISELE) set to 1 when the trigger lepton is an electron, 0 otherwise.
• ST , i.e. the scalar sum of the pT of all the jets, leptons, and photons in the event with

pT > 30 GeV and |⌘| < 2.6. Jets are clustered from the reconstructed PF candidates, using
the FASTJET [23] implementation of the anti-kT jet algorithm [24], with jet-size parameter
R=0.4.

• The number of jets entering the ST sum (NJ ).
• The invariant mass of the set of jets entering the ST sum (MJ ).
• The number of these jets being identified as originating from a b quark (Nb).
• The missing transverse momentum, decomposed into its parallel (pmiss

T,k ) and orthogonal
(pmiss

T,?) components with respect to the isolated lepton direction. The missing transverse
momentum is defined as the negative sum of the PF-candidate pT vectors:

~p miss
T

= �
X

q

~p q

T
. (2)

• The transverse mass, MT , of the isolated lepton ` and the Emiss
T

system, defined as:

MT =
q
2p`

T
Emiss

T
(1� cos��) , (3)

with �� the azimuth separation between the lepton and ~p miss
T

vector, and Emiss
T

the absolute
value of ~p miss

T
.

• The number of selected muons (Nµ).
• The invariant mass of this set of muons (Mµ).

1As common in collider physics, we use a Cartesian coordinate system with the z axis oriented along the
beam axis, the x axis on the horizontal plane, and the y axis oriented upward. The x and y axes define the
transverse plane, while the z axis identifies the longitudinal direction. The azimuth angle � is computed from
the x axis. The polar angle ✓ is used to compute the pseudorapidity ⌘ = � log(tan(✓/2)). We fix units such
that c = ~ = 1.
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• The total transverse momentum of these muons (pµ
T,TOT

).

• The number of selected electrons (Ne).
• The invariant mass of this set of electrons (Me).
• The total transverse momentum of these electrons (pe

T,TOT
).

• The number of reconstructed charged hadrons.
• The number of reconstructed neutral hadrons.

This list of HLF quantities is not defined having in mind a specific BSM scenario. Instead, it is
conceived to include relevant information to discriminate the various SM processes populating the
single-lepton data stream. On the other hand, it is generic enough to allow (at least in principle) the
identification of a large set of new physics scenarios.

Many SM processes would contribute to the considered single-lepton dataset. For simplicity, we
restrict the list of relevant SM processes to the four with highest production cross section, namely:

• Inclusive W production, with W ! `⌫ (` = e, µ, ⌧ ).
• Inclusive Z production, with Z ! `` (` = e, µ, ⌧ ).
• tt̄ production.
• QCD multijet production.2

These samples are mixed to provide a SM cocktail dataset, which is then used to train autoencoder
models and to tune the threshold requirement that defines what we consider an anomaly. The cocktail
is built scaling down the high-statistics samples (tt̄, W , and Z samples) to the lowest-statistics one
(QCD, whose generation is the most computing-expensive), according to their production cross-
section value (estimated at leading order with PYTHIA) and selection efficiency (shown in Tab. 1).
The equivalent integrated luminosity of the SM cocktail sample corresponds to XXX fb�1.

Table 1: Acceptance and trigger efficiency of SM processes and corresponding values for BSM
benchmark models. The monthly event yield is computed assuming an average integrated luminosity
of 5 fb�1 per month, corresponding to 8 months of data taking and a total integrated luminosity of
⇠ 40 fb�1, as in 2016. For BSM models, we compute the production cross section corresponding to
100 selected events.

Standard Model processes
Process Acceptance Trigger Cross Events Event

efficiency section [nb] fraction /month
W 55.6% 68% 58 59.2% 110M

QCD 0.08% 9.6% 1.6 · 105 33.8% 63M
Z 16% 77% 20 6.7% 12M
tt̄ 37% 49% 0.7 0.3% 0.6M

BSM benchmark processes
Process Acceptance Trigger Total Cross-section

efficiency efficiency 100 events/month
Z 0 31% 29% 9.1% 219 fb
W 0 48% 62% 29.7% 67 fb

LQ ! b⌧ 19% 62% 12.0% 166 fb
a ! 4` 5% 98% 4.6% 436 fb

In addition, we consider the following BSM models to benchmark the anomaly-detection capabilities:

• A leptoquark with mass 80 GeV, decaying to a b quark and a ⌧ lepton.
• A Higgs scalar boson with mass 50 GeV, decaying to two off-shell Z bosons, each forced to

decay to two leptons (for a total of four leptons in the final state).
• A Z 0 with mass 60 GeV, decaying to a pair of opposite-sign same-flavor leptons.

2To speed up the generation process for QCD events, we require
p
ŝ > 100 GeV, the fraction of QCD events

with
p
ŝ < 100 GeV and producing a lepton within acceptance being negligible but computationally expensive.
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Figure 1: Distribution of the HLF quantities for the four considered SM processes. Black, red, blue
and gree represent respectively W, QCD, Z and tt̄. CAN WE PLOT THESE 3x7, so that we take
one page but we make them bigger? We can add the legend with keynote on top, or some such.

• A W 0 with mass 70 GeV, decaying to a lepton and a neutrino.

For each model, we consider any direct production mechanism implemented in PYTHIA8, including
associate jet production. We list in Tab. 1 the leading-order production cross section and selection
efficiency of each model.

Figures 1 and 2 show the distribution of HLF quantities for the SM processes and the BSM benchmark
models, respectively.

4 Model description

Autoencoders are trained on the SM cocktail sample described in Sec. 3, taking as input the 21 HLF
quantities listed there. The use of HLF quantities to represent events limits the model independence
of the anomaly detection procedure. While the list of features is chosen to represent the main physics
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๏ We train a VAE on a cocktail 
of SM events (weighted by 
xsec)


๏ ENCODER: 21 inputs, 2 hidden 
layers → 4Dim latent space


๏ DECODER: from a random 
sample in the 4D space → 2 
hidden layers → 21 outputs

Standard Model AE
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Figure 3: Schematics of the VAE used to perform anomaly detection, where X represent the input
variables and z the latent space variables. The shape of each layer is reported in brackets.

4.1 Auto-encoder

Auto-encoders (AE) are algorithm that compress a given set of inputs variables in a latent space
(encoding) and then, starting from the latent space, reconstruct the HLF input values (decoding).
AE are used in the context of anomaly detection, associating a p-value to a given event through a
quantification of the encoding-decoding distance.

In this work we focus on variational autoencoder (VAEs) [25]. Unlike traditional AEs, VAEs return
the parameter’s value of the predicted latent and input (reconstructed) probability density function
(pdf) for each event, instead of decoded values of the input quantities. The functional form of the pdfs
is specified through the loss function and the pdfs’ shape parameters are determined during training.

We consider the VAE architecture shown in Fig. 3, characterized by a four-dimensional latent space.
Each latent dimension is associated to a Gaussian pdf and its two degrees of freedom (mean µ and
variance �2). The input layer consists of 21 nodes, corresponding to the 21 HLF quantities described
in Section 3. This layer is connected to the hidden space through two hidden dense layers, each
consisting of 50 neurons with ReLU activation function. Two four-neuron layers are connected to
the second hidden layer. Linear activation functions are used for the first of these four-neuron layers.
Its nodes are interpreted as the mean values µz of the latent-space Gaussian pdfs. The nodes of the
second layer are activated by p-ISRLu functions REF HERE:

f(x) = 1 + 5 · 10�3 +⇥(x)x+⇥(�x)
xp

1 + x2
. (4)

They are interpreted as the �z parameters of the latent-space Gaussian pdfs. The decoding step
originates from a point in the latent space, sampled according to the predicted pdf (green oval in
Fig. 3). The coordinates of this point in the latent space are fed into a sequence of two hidden
dense layers, each consisting of 50 neurons with ReLU activation functions. The last of these layers
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๏  We consider four BSM benchmark 
models, to give some sense of VAEs 
potential


๏ leptoquark with mass 80 GeV, LQ→bτ 


๏ A scalar boson with mass 50 GeV, 
a→Z*Z*→4ℓ


๏ A scalar scalar boson with mass 60 
GeV, h→ττ


๏ A charged scalar boson with mass 60 
GeV, h±→τv

Some BSM benchmark
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).
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T,TOT
).
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This list of HLF quantities is not defined having in mind a specific BSM scenario. Instead, it is
conceived to include relevant information to discriminate the various SM processes populating the
single-lepton data stream. On the other hand, it is generic enough to allow (at least in principle) the
identification of a large set of new physics scenarios.

Many SM processes would contribute to the considered single-lepton dataset. For simplicity, we
restrict the list of relevant SM processes to the four with highest production cross section, namely:

• Inclusive W production, with W ! `⌫ (` = e, µ, ⌧ ).
• Inclusive Z production, with Z ! `` (` = e, µ, ⌧ ).
• tt̄ production.
• QCD multijet production.2

These samples are mixed to provide a SM cocktail dataset, which is then used to train autoencoder
models and to tune the threshold requirement that defines what we consider an anomaly. The cocktail
is built scaling down the high-statistics samples (tt̄, W , and Z samples) to the lowest-statistics one
(QCD, whose generation is the most computing-expensive), according to their production cross-
section value (estimated at leading order with PYTHIA) and selection efficiency (shown in Tab. 1).
The equivalent integrated luminosity of the SM cocktail sample corresponds to XXX fb�1.

Table 1: Acceptance and trigger efficiency of SM processes and corresponding values for BSM
benchmark models. The monthly event yield is computed assuming an average integrated luminosity
of 5 fb�1 per month, corresponding to 8 months of data taking and a total integrated luminosity of
⇠ 40 fb�1, as in 2016. For BSM models, we compute the production cross section corresponding to
100 selected events.

Standard Model processes
Process Acceptance Trigger Cross Events Event

efficiency section [nb] fraction /month
W 55.6% 68% 58 59.2% 110M

QCD 0.08% 9.6% 1.6 · 105 33.8% 63M
Z 16% 77% 20 6.7% 12M
tt̄ 37% 49% 0.7 0.3% 0.6M

BSM benchmark processes
Process Acceptance Trigger Total Cross-section

efficiency efficiency 100 events/month
h0 ! ⌧⌧ 9% 70% 6% 335 fb
h0 ! ⌧⌫ 18% 69% 12% 163 fb
LQ ! b⌧ 19% 62% 12% 166 fb
a ! 4` 5% 98% 5% 436 fb

In addition, we consider the following BSM models to benchmark the anomaly-detection capabilities:

• A leptoquark with mass 80 GeV, decaying to a b quark and a ⌧ lepton.
• A Higgs scalar boson with mass 50 GeV, decaying to two off-shell Z bosons, each forced to

decay to two leptons (for a total of four leptons in the final state).
• A Z 0 with mass 60 GeV, decaying to a pair of opposite-sign same-flavor leptons.

2To speed up the generation process for QCD events, we require
p
ŝ > 100 GeV, the fraction of QCD events

with
p
ŝ < 100 GeV and producing a lepton within acceptance being negligible but computationally expensive.
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๏ Anomaly defined as a p-
value threshold on a 
given test statistics


๏ Loss function an 
obvious choice


๏ Some part of a loss 
could be more 
sensitive than others


๏ We tested different 
options and found the 
total loss to behave 
better

Defining anomaly
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A Comparison with Auto-Encoder

For sake of completeness, we repeated the strategy presented in this work on a simple AE.
The architecture was fixed to be as close as possible to that of the VAE introduced in
Sec. 4. The change from VAE to AE imply these two changes: the output layer has the
same dimensionality of the input layer; the latent layer includes four neurons (as opposed
to 8), corresponding to the four latent variables z (and not to the µ and � parameters of
the z distribution). An MSE loss function is used. The optimizer and callbacks used to
trained the VAE are are used in this case. Figure 12 shows the loss function distribution
and a comparison between the ROC curves of the VAE and AE. These distributions directly
compare to the left plots of Figs. 7 and 10, since in that case only the reconstruction part of
the loss was used. For convenience, the VAE ROC curves are also shown here, represented
by the dashed lines. When considering the four BSM benchmark models presented in this

Figure 12. Left: Distribution of the AE loss (MSE) for the validation dataset. The distribution
for the SM processes and the four benchmark BSM models are shown. Right: ROC curves for the
AE (dashed lines) trained only on SM mix, compared to the corresponding VAE curves from Fig. 10
(solid). The vertical dotted line represents the ✏SM = 5.4 · 10�6 threshold considered in this study.

work, the AE provides competitive performances, for some choice of the SM accepted-event
rate. On the other hand, the VAE usually outperforms a plain AE for the rate considered
in this study (✏SM = 5.4 · 10�6). With the exception of the h± ! ⌧⌫ model (for which the
AE provides a 30% larger efficiency than the VAE), the VAE provides larger efficiency on
the BSM models, with improvements as large as two orders of magnitude (for the A ! 4`

model).
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๏ VAE’s performances benchmarked 
against supervised classifiers


๏ For each BSM model


๏ take same inputs as VAE


๏ train a fully-supervised 
classifier to separate signal 
from background


๏ use supervised performances 
as a reference to aim to with 
the unsupervised approach


๏ Done for our 4 BSM models 
using dense neural networks

Benchmark comparison
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Supervised Classifier (BDT)

๏ Evaluate general 
discrimination power by ROC 
curve and area under curve 
(AUC)


๏ clearly worse than 
supervised


๏ but not so far


๏ Fixing SM acceptance rate at 
50 events/day


๏ competitive results 
considering unsupervised 
nature of the algorithm

Performances
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A Comparison with Auto-Encoder

For sake of completeness, we repeated the strategy presented in this work on a simple AE.
The architecture was fixed to be as close as possible to that of the VAE introduced in
Sec. 4. The change from VAE to AE imply these two changes: the output layer has the
same dimensionality of the input layer; the latent layer includes four neurons (as opposed
to 8), corresponding to the four latent variables z (and not to the µ and � parameters of
the z distribution). An MSE loss function is used. The optimizer and callbacks used to
trained the VAE are are used in this case. Figure 12 shows the loss function distribution
and a comparison between the ROC curves of the VAE and AE. These distributions directly
compare to the left plots of Figs. 7 and 10, since in that case only the reconstruction part of
the loss was used. For convenience, the VAE ROC curves are also shown here, represented
by the dashed lines. When considering the four BSM benchmark models presented in this

Figure 12. Left: Distribution of the AE loss (MSE) for the validation dataset. The distribution
for the SM processes and the four benchmark BSM models are shown. Right: ROC curves for the
AE (dashed lines) trained only on SM mix, compared to the corresponding VAE curves from Fig. 10
(solid). The vertical dotted line represents the ✏SM = 5.4 · 10�6 threshold considered in this study.

work, the AE provides competitive performances, for some choice of the SM accepted-event
rate. On the other hand, the VAE usually outperforms a plain AE for the rate considered
in this study (✏SM = 5.4 · 10�6). With the exception of the h± ! ⌧⌫ model (for which the
AE provides a 30% larger efficiency than the VAE), the VAE provides larger efficiency on
the BSM models, with improvements as large as two orders of magnitude (for the A ! 4`

model).
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Variational 
Autoencoders



๏ We investigated variational 
autoencoders 


๏ Unlike traditional AEs, 
VAEs try to associate a 
multi-Dim pdf to a given 
image


๏ can be used to generate 
new examples


๏ comes with a 
probabilistic description 
of the input


๏ tends to work better than 
traditional AEs

Variational Autoencoders
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๏ Loss function described as 
the sum of two terms (scaled 
by a tuned λ parameter that 
makes the two contribution 
numerically similar)


๏ Reconstruction loss (e.g. 
MSE(output-input))


๏ KL loss: distance between 
Gaussian pdfs (assumption 
on prior here)


๏ Why Gaussian? KL loss can 
be written analytically

The Loss Function
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is connected to three dense layers of 21, 17, and 10 neurons, activated by linear, p-ISRLu and
clipped-tanh functions, respectively. The clipped-tanh function if written as

f(x) =
1

2
(1 + 0.999 · tanhx) . (5)

These 49 nodes represent the parameters of the pdfs describing the input HLF quantities, which enter
the loss function to be minimzed. should we write which function is used for which parameter?
The VAE loss function LossTot is a weighted sum of two pieces: the probability of the inputs given
the predicted output pdf parameters (Lossreco) and the Kullback-Leibler divergence (DKL) between
the latent space pdf and a prior:

LossTot = Lossreco + �DKL , (6)
where � is a free parameter, set to 0.3 in this work. The prior chosen for the latent space is a 4-dim
Gaussian with a diagonal covariance matrix. The means (µP ) and the diagonal terms of the covariance
matrix (�P ) are free parameters of the algorithm and are optimized during the back-propagation. The
Kullback-Leibler divergence between two Gaussian distribution has an analytic form. Hence, for
each batch, DKL can be expressed as:

DKL =
1

k

X

i

DKL
�
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z
,�i

z
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(7)

where k is the batch size, i runs over the samples and j over the latent space dimensions. Similarly,
Lossreco is the average likelihood of the inputs given the predicted ↵ values:

Lossreco = �1

k

X

i

ln (P (x | ↵1,↵2,↵3))

= �1

k

X

i,j

ln
⇣
fj(xi,j | ↵i,j
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2 ,↵i,j

3 )
⌘

,
(8)

where j runs over the input space dimensions, fj is the functional form chose to describe the pdf of
the j-th input space variable and ↵i,j

m
are the parameter of the function. Different functional forms

have been chose for fj , to properly describe different classes of HLF distributions:

• Clipped Log-normal + � function: used to describe ST , MJ , pµ
T

, Mµ, pe
T

, Me, isolated-
lepton pT , ChPFIso, NeuPFIso and GammaPFIso:

P (x | ↵1,↵2,↵3) =

(
↵3�(x) +

1�↵3

x↵2

p
2⇡

exp
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(ln x�↵1)
2

2↵2
2

⌘
for x � 10�4

0 for x < 10�4
. (9)

• Gaussian: used for pmiss
T,k and pmiss
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2↵2
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◆
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• Truncated Gaussian: a Gaussian truncated for negative values and normalized to unit area
for X > 0. Used to model MT :

P (x | ↵1,↵2) = ⇥(x) ·
1 + 0.5 · (1 + erf �↵1

↵2

p
2
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2↵2
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• Discrete truncated Gaussian: like the truncated Gaussian, but normalized to be evaluated

on integers (i.e.
1X

n=0

P (n) = 1). This function is used to describe Nµ, Ne, Nb and NJ . It is

written as:

P (n | ↵1,↵2) = ⇥(x)


erf
✓
n+ 0.5� ↵1

↵2

p
2

◆
� erf
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where the normalization factor N is set to:

N = 1 +
1
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1 + erf
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are activated by the functions:

p-ISRLu(x) = 1 + 5 · 10�3 +⇥(x)x+⇥(�x)
x

p
1 + x2

. (4.1)

This activation allows to improve the training stability, being strictly positive defined, non
linear, and with no exponentially growing term (which might have created instabilities in
the early epochs of the training). The four nodes of this layer are interpreted as the �z
parameters of p(z). After several trials, the dimension of the latent space has been set
to 4 in order to keep a good training stability without impacting the VAE performances.
The decoding step originates from a point in the latent space, sampled according to the
predicted pdf (green oval in Fig. 3). The coordinates of this point in the latent space are
fed into a sequence of two hidden dense layers, each consisting of 50 neurons with ReLU
activation functions. The last of these layers is connected to three dense layers of 21, 17,
and 10 neurons, activated by linear, p-ISRLu and clipped-tanh functions, respectively. The
clipped-tanh function if written as:

Ctanh(x) =
1

2
(1 + 0.999 · tanhx) . (4.2)

Given the latent-space representation, the 48 output nodes represent the parameters of the
pdfs describing the input HLF probability, i.e., the ↵ parameters of Eq.(4.5).

The total VAE loss function LossTot is a weighted sum of two pieces [35]: a term re-
lated to the reconstruction likelihood (Lossreco) and the Kullback-Leibler divergence (DKL)
between the latent space pdf and the prior:

LossTot = Lossreco + �DKL , (4.3)

where � is a free parameter. We fix � = 0.3, for which we obtained good reconstruction
performances.4 The prior p(z) chosen for the latent space is a four-dimension Gaussian
with a diagonal covariance matrix. The means (µP ) and the diagonal terms of the co-
variance matrix (�P ) are free parameters of the algorithm and are optimized during the
back-propagation. The Kullback-Leibler divergence between two Gaussian distributions has
an analytic form. Hence, for each batch, DKL can be expressed as:

DKL =
1

k

X

i

DKL
�
N(µi

z,�
i

z) || N(µP ,�P )
�

=
1

2k

X

i,j

⇣
�j

P
�i,j

z

⌘2
+

 
µj

P
� µi,j

z

�j

P

!2

+ ln
�j

P

�i,j
z

� 1 ,

(4.4)

where k is the batch size, i runs over the samples and j over the latent space dimensions.
Similarly, Lossreco is the average negative-log-likelihood of the inputs given the predicted ↵

values:

Lossreco = �
1

k

X

i

ln [P (x | ↵1,↵2,↵3)]

= �
1

k

X

i,j

ln
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(4.5)

4
Following Ref. [35], we tried to increase the value of � up to 4 without observing a substantial difference

in performance.
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Clustering with VAE

25

๏ In the clustering example, 
the different populations 
are forced on sums of 
Gaussian distributions


๏ This gives more regular 
shape for the clusters




๏ Now that we have a probabilistic description of the latent space, we can 
sample points from it


๏ These points, propagated through the decoder, will provide new examples


๏ We have defined a generative model

A Generative model
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More effective with sequential data

27

Recent successes: Text generation

Yang, Z., Hu, Z., Salakhutdinov, R., & Berg-Kirkpatrick, T. (2017). Improved variational autoencoders for text modeling using dilated convolutions. ICML 2017



More effective with sequential data

28

Recent successes: Audio generation

van den Oord, A., & Vinyals, O. (2017). Neural discrete representation learning. NIPS 2017.

reconstruction generation



More effective with sequential dataRecent successes: Drug discovery

Gómez-Bombarelli, R., et al. (2018). Automatic Chemical Design Using a Data-Driven Continuous Representation of Molecules ACS Cent.

Kusner, M. J., Paige, B., & Hernández-Lobato, J. M. (2017). Grammar variational autoencoder. arXiv preprint arXiv:1703.01925.



Variational Autoencoders 
for particle physics



๏ We train a VAE on a cocktail 
of SM events (weighted by 
xsec)


๏ ENCODER: 21 inputs, 2 hidden 
layers → 4Dim latent space


๏ hidden nodes = μ and σ of 
the Gaussian pdfs describing 
the hidden variables


๏ DECODER: from a random sample 
in the 4D space → 2 hidden 
layers → parameters 
describing the shape of the 
21Dim input space

Back to our example

31
Figure 3: Schematics of the VAE used to perform anomaly detection, where X represent the input
variables and z the latent space variables. The shape of each layer is reported in brackets.

4.1 Auto-encoder

Auto-encoders (AE) are algorithm that compress a given set of inputs variables in a latent space
(encoding) and then, starting from the latent space, reconstruct the HLF input values (decoding).
AE are used in the context of anomaly detection, associating a p-value to a given event through a
quantification of the encoding-decoding distance.

In this work we focus on variational autoencoder (VAEs) [25]. Unlike traditional AEs, VAEs return
the parameter’s value of the predicted latent and input (reconstructed) probability density function
(pdf) for each event, instead of decoded values of the input quantities. The functional form of the pdfs
is specified through the loss function and the pdfs’ shape parameters are determined during training.

We consider the VAE architecture shown in Fig. 3, characterized by a four-dimensional latent space.
Each latent dimension is associated to a Gaussian pdf and its two degrees of freedom (mean µ and
variance �2). The input layer consists of 21 nodes, corresponding to the 21 HLF quantities described
in Section 3. This layer is connected to the hidden space through two hidden dense layers, each
consisting of 50 neurons with ReLU activation function. Two four-neuron layers are connected to
the second hidden layer. Linear activation functions are used for the first of these four-neuron layers.
Its nodes are interpreted as the mean values µz of the latent-space Gaussian pdfs. The nodes of the
second layer are activated by p-ISRLu functions REF HERE:

f(x) = 1 + 5 · 10�3 +⇥(x)x+⇥(�x)
xp

1 + x2
. (4)

They are interpreted as the �z parameters of the latent-space Gaussian pdfs. The decoding step
originates from a point in the latent space, sampled according to the predicted pdf (green oval in
Fig. 3). The coordinates of this point in the latent space are fed into a sequence of two hidden
dense layers, each consisting of 50 neurons with ReLU activation functions. The last of these layers

7



๏ Loss function described 
as the sum of two terms 
(scaled by a tuned λ 
parameter that makes the 
two contribution 
numerically similar)


๏ Reconstruction loss: 
likelihood of the input 
21Dim point, given the 
shape parameters 
reconstructed from it


๏ KL loss: distance 
between the pdf in the 
latent space and an 
nDim Gaussian

The Loss Function
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is connected to three dense layers of 21, 17, and 10 neurons, activated by linear, p-ISRLu and
clipped-tanh functions, respectively. The clipped-tanh function if written as

f(x) =
1

2
(1 + 0.999 · tanhx) . (5)

These 49 nodes represent the parameters of the pdfs describing the input HLF quantities, which enter
the loss function to be minimzed. should we write which function is used for which parameter?
The VAE loss function LossTot is a weighted sum of two pieces: the probability of the inputs given
the predicted output pdf parameters (Lossreco) and the Kullback-Leibler divergence (DKL) between
the latent space pdf and a prior:

LossTot = Lossreco + �DKL , (6)
where � is a free parameter, set to 0.3 in this work. The prior chosen for the latent space is a 4-dim
Gaussian with a diagonal covariance matrix. The means (µP ) and the diagonal terms of the covariance
matrix (�P ) are free parameters of the algorithm and are optimized during the back-propagation. The
Kullback-Leibler divergence between two Gaussian distribution has an analytic form. Hence, for
each batch, DKL can be expressed as:
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where k is the batch size, i runs over the samples and j over the latent space dimensions. Similarly,
Lossreco is the average likelihood of the inputs given the predicted ↵ values:

Lossreco = �1
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where j runs over the input space dimensions, fj is the functional form chose to describe the pdf of
the j-th input space variable and ↵i,j

m
are the parameter of the function. Different functional forms

have been chose for fj , to properly describe different classes of HLF distributions:

• Clipped Log-normal + � function: used to describe ST , MJ , pµ
T

, Mµ, pe
T

, Me, isolated-
lepton pT , ChPFIso, NeuPFIso and GammaPFIso:
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• Truncated Gaussian: a Gaussian truncated for negative values and normalized to unit area
for X > 0. Used to model MT :
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• Discrete truncated Gaussian: like the truncated Gaussian, but normalized to be evaluated

on integers (i.e.
1X
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P (n) = 1). This function is used to describe Nµ, Ne, Nb and NJ . It is
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is connected to three dense layers of 21, 17, and 10 neurons, activated by linear, p-ISRLu and
clipped-tanh functions, respectively. The clipped-tanh function if written as

f(x) =
1

2
(1 + 0.999 · tanhx) . (5)

These 49 nodes represent the parameters of the pdfs describing the input HLF quantities, which enter
the loss function to be minimzed. should we write which function is used for which parameter?
The VAE loss function LossTot is a weighted sum of two pieces: the probability of the inputs given
the predicted output pdf parameters (Lossreco) and the Kullback-Leibler divergence (DKL) between
the latent space pdf and a prior:

LossTot = Lossreco + �DKL , (6)
where � is a free parameter, set to 0.3 in this work. The prior chosen for the latent space is a 4-dim
Gaussian with a diagonal covariance matrix. The means (µP ) and the diagonal terms of the covariance
matrix (�P ) are free parameters of the algorithm and are optimized during the back-propagation. The
Kullback-Leibler divergence between two Gaussian distribution has an analytic form. Hence, for
each batch, DKL can be expressed as:
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where k is the batch size, i runs over the samples and j over the latent space dimensions. Similarly,
Lossreco is the average likelihood of the inputs given the predicted ↵ values:

Lossreco = �1
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where j runs over the input space dimensions, fj is the functional form chose to describe the pdf of
the j-th input space variable and ↵i,j

m
are the parameter of the function. Different functional forms

have been chose for fj , to properly describe different classes of HLF distributions:

• Clipped Log-normal + � function: used to describe ST , MJ , pµ
T

, Mµ, pe
T

, Me, isolated-
lepton pT , ChPFIso, NeuPFIso and GammaPFIso:
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• Truncated Gaussian: a Gaussian truncated for negative values and normalized to unit area
for X > 0. Used to model MT :
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• Discrete truncated Gaussian: like the truncated Gaussian, but normalized to be evaluated

on integers (i.e.
1X

n=0

P (n) = 1). This function is used to describe Nµ, Ne, Nb and NJ . It is

written as:
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are activated by the functions:

p-ISRLu(x) = 1 + 5 · 10�3 +⇥(x)x+⇥(�x)
x

p
1 + x2

. (4.1)

This activation allows to improve the training stability, being strictly positive defined, non
linear, and with no exponentially growing term (which might have created instabilities in
the early epochs of the training). The four nodes of this layer are interpreted as the �z
parameters of p(z). After several trials, the dimension of the latent space has been set
to 4 in order to keep a good training stability without impacting the VAE performances.
The decoding step originates from a point in the latent space, sampled according to the
predicted pdf (green oval in Fig. 3). The coordinates of this point in the latent space are
fed into a sequence of two hidden dense layers, each consisting of 50 neurons with ReLU
activation functions. The last of these layers is connected to three dense layers of 21, 17,
and 10 neurons, activated by linear, p-ISRLu and clipped-tanh functions, respectively. The
clipped-tanh function if written as:

Ctanh(x) =
1

2
(1 + 0.999 · tanhx) . (4.2)

Given the latent-space representation, the 48 output nodes represent the parameters of the
pdfs describing the input HLF probability, i.e., the ↵ parameters of Eq.(4.5).

The total VAE loss function LossTot is a weighted sum of two pieces [35]: a term re-
lated to the reconstruction likelihood (Lossreco) and the Kullback-Leibler divergence (DKL)
between the latent space pdf and the prior:

LossTot = Lossreco + �DKL , (4.3)

where � is a free parameter. We fix � = 0.3, for which we obtained good reconstruction
performances.4 The prior p(z) chosen for the latent space is a four-dimension Gaussian
with a diagonal covariance matrix. The means (µP ) and the diagonal terms of the co-
variance matrix (�P ) are free parameters of the algorithm and are optimized during the
back-propagation. The Kullback-Leibler divergence between two Gaussian distributions has
an analytic form. Hence, for each batch, DKL can be expressed as:

DKL =
1

k

X

i

DKL
�
N(µi

z,�
i

z) || N(µP ,�P )
�

=
1

2k

X

i,j

⇣
�j

P
�i,j

z

⌘2
+

 
µj

P
� µi,j

z

�j

P

!2

+ ln
�j

P

�i,j
z

� 1 ,

(4.4)

where k is the batch size, i runs over the samples and j over the latent space dimensions.
Similarly, Lossreco is the average negative-log-likelihood of the inputs given the predicted ↵

values:

Lossreco = �
1

k

X

i

ln [P (x | ↵1,↵2,↵3)]

= �
1

k

X

i,j

ln
h
fj(xi,j | ↵

i,j

1 ,↵i,j

2 ,↵i,j

3 )
i
.

(4.5)

4
Following Ref. [35], we tried to increase the value of � up to 4 without observing a substantial difference

in performance.
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๏ First post-training check consists in 
verifying encoding-decoding 
capability, comparing input data to 
those generated sampling from decoder


๏ Reasonable agreement observed, with 
small discrepancy here and there


๏ NOTICE THAT: this would be a 
suboptimal event generator, but we 
want to use it for anomaly detection


๏ no guarantee that the best 
autoencoder is the best anomaly 
detector (no anomaly detection 
rate in the loss function)


๏ pros & cons of an unsupervised/
semisupervised approach

Standard Model encoding

33



๏ Anomaly defined as a p-value threshold on a given test statistics


๏ Loss function an obvious choice


๏ Some part of a loss could be more sensitive than others


๏ We tested different options and found the total loss to behave better

Defining anomaly

34
Figure 7. Distribution of the VAE’s loss components, Lossreco (left) and DKL (right), for the
validation dataset. For comparison, the corresponding distribution for the four benchmark BSM
models are shown. The vertical line represents a lower threshold such that 5.4 · 10�6 of the SM
events would be retained, equivalent to ⇠ 1000 expected SM events per month.

SM process. In view of this, we decided to use a tight threshold value, in order to reduce
as much as possible any SM contribution.

Figure 7 shows the distribution of the Lossreco and DKL loss components for the val-
idation dataset. In both plots, the vertical line represents a lower threshold such that a
fraction ✏SM = 5.4 · 10�6 of the SM events would be retained. This threshold value would
result in ⇠ 1000 SM events to be selected every month, i.e., a daily rate of ⇠ 33 SM events,
as illustrated in Table 3. The acceptance rate is calculated assuming the LHC running
conditions listed in Section 1. Table 3 also reports the by-process VAE selection efficiency
and the relative background composition of the selected sample.

Figure 7 also shows the Lossreco and DKL distributions for the four benchmark BSM
models. We observe that the discrimination power, loosely quantified by the integral of
these distributions above threshold, is better for Lossreco than DKL and that the impact
of the DKL term on LossTot is negligible. Anomalies are then defined as events laying on
the right tail of the expected Lossreco distribution. Due to limited statistics in the training
sample, the p-value corresponding to the chosen threshold value could be uncalibrated. This
could result in a deviation of the observed rate from the expected value, an issue that one
can address tuning the threshold. On the other hand, an uncalibrated p-value would also
impact the number of collected BSM events, and the time needed to collect an appreciable
amount of these events.

Once the Lossreco selection is applied, the anomalous events don’t cluster on the tails
of the distributions of the input features. Instead, they tend to cover the full feature-
definition range. This is an indication of the fact that the VAE does more than a simple
selection of feature outliers, which is what is done by traditional single-lepton trigger or by
dedicated cross triggers (e.g., triggers that select events with soft leptons and large missing
transverse energy, ST , etc.). This is shown in Fig. 8 for SM events. A similar conclusion
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๏ Evaluate general 
discrimination power by ROC 
curve and area under curve 
(AUC)


๏ clearly worse than 
supervised


๏ but not so far


๏ Fixing SM acceptance rate at 
50 events/day


๏ competitive results 
considering unsupervised 
nature of the algorithm

Performances

35

A Comparison with Auto-Encoder

For sake of completeness, we repeated the strategy presented in this work on a simple AE.
The architecture was fixed to be as close as possible to that of the VAE introduced in
Sec. 4. The change from VAE to AE imply these two changes: the output layer has the
same dimensionality of the input layer; the latent layer includes four neurons (as opposed
to 8), corresponding to the four latent variables z (and not to the µ and � parameters of
the z distribution). An MSE loss function is used. The optimizer and callbacks used to
trained the VAE are are used in this case. Figure 12 shows the loss function distribution
and a comparison between the ROC curves of the VAE and AE. These distributions directly
compare to the left plots of Figs. 7 and 10, since in that case only the reconstruction part of
the loss was used. For convenience, the VAE ROC curves are also shown here, represented
by the dashed lines. When considering the four BSM benchmark models presented in this

Figure 12. Left: Distribution of the AE loss (MSE) for the validation dataset. The distribution
for the SM processes and the four benchmark BSM models are shown. Right: ROC curves for the
AE (dashed lines) trained only on SM mix, compared to the corresponding VAE curves from Fig. 10
(solid). The vertical dotted line represents the ✏SM = 5.4 · 10�6 threshold considered in this study.

work, the AE provides competitive performances, for some choice of the SM accepted-event
rate. On the other hand, the VAE usually outperforms a plain AE for the rate considered
in this study (✏SM = 5.4 · 10�6). With the exception of the h± ! ⌧⌫ model (for which the
AE provides a 30% larger efficiency than the VAE), the VAE provides larger efficiency on
the BSM models, with improvements as large as two orders of magnitude (for the A ! 4`

model).
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๏ Small efficiency but still much larger than for SM 
processes


๏ Allows to probe 10-100 pb cross sections for reasonable 
amount of collected signal events

Performances

36

Process
Efficiency for 
~30 evt/day

xsec for 100 evt/
month [pb]

xsec for S/B~1/3 
[pb]

a→4ℓ 2.8∙10-3 7.1 27

LQ→τb 6.5∙10-4 31 120

h→ττ 3.6∙10-4 56 220

h±→τν 1.2∙10-3 17 67



๏ Procedure designed to be model independent


๏ Training done only on SM


๏ Algorithm that defines anomaly tuned only on number of selected SM 
events (false positive rate)


๏ Still, residual model dependence present


๏ Based on physics-motivated observables


๏ List not tailored on specific models and general enough to offer good 
performances in principle


๏ But one cannot prove that performances on specific BSM models will 
generalise


๏ Can we go beyond this limitation and define something really BSM agnostic?

1/2 way to model independence

37



๏ Autoencoders are NNs for unsupervised problems


๏ Clustering


๏ Dimensional reduction


๏ Anomaly detection


๏ When adding variational functionality


๏ Can be used as generators


๏ Can improve robustness (e.g., anomaly detection performance)


๏ Could be relevant to reduce model dependence in searches for 
new physics at the LHC

Summary
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