Handling of tau decays in simulation

Fernando Abudinén

MWAPP meeting May 24, 2021

- Simulation: τ decay handling in B decays
- Analysis: search for $V \rightarrow \mu^+ \mu^-$

Motivation

- Simulation of τ decays in EvtGen currently using TAUOLA
- Spin-state information of τ not propagated between EvtGen and TAUOLA: TAUOLA expects τ from a W, Z, γ or H boson, not from B
- Simulation of τ decays with spin-state propagation possible with PYTHIA using HME (helicity-matrix element) amplitude model.
- Currently available interface to HMEPYTHIA needs testing and development
- Propagation of τ spin information needed for analyses sensitive to τ polarization
- Moving to Pythia would facilitate event-level multithreading

The HME-PYTHIA interface

- Propagates decaying τ and daughters with 4-momenta to PYTHIA (as **HelicityParticles**)
- ⇒Needs initWaves function in PYTHIA HME module to be made public
- Obtains amplitude for each spin state from the HME module (calculateME function)
- Propagates the amplitudes ⇒ EvtGen then sums over all spin states
- Maximal event probability for loops obtained using decayWeightMax

Supported models

ID	Model	Example decay	Tested TAUOLA analogs
1521	Tau2Meson	$\tau^+ \to \pi^+ \bar{\nu}_{\tau}$	TAUSCALARNU
1531	Tau2TwoLeptons	$\tau^+ \to \mu^+ \nu_\mu \bar{\nu}_\tau$	TAULNUNU
1532	Tau2TwoMesonsViaVector	$\tau^+ \to \rho^+ (\to \pi^+ \pi^0) \bar{\nu}_\tau$	TAUVECTORNU
1533	Tau2TwoMesonsViaVectorScalar	$\tau^+ \to \pi^+ \pi^- \bar{\nu}_{\tau}$	
1541	Tau2ThreePions	$\tau^+ \to \pi^+ \pi^- \pi^+ \bar{\nu}_{\tau}$	TAUOLA 5 Curr Opt 0 or 1
1542	Tau2ThreeMesonsWithKaons	$\tau^+ \to K^+ \pi^- \pi^+ \bar{\nu}_{\tau}$	
1543	Tau2ThreeMesonsGeneric	$\tau^+ \rightarrow \pi^0 \pi^0 \pi^+ \bar{\nu}_{\tau}$	TAUHADNU
1544	Tau2TwoPionsGamma	$ au^+ o \pi^0 \pi^+ \gamma \bar{\nu}_{ au}$	
1551	Tau2FourPions	$\tau^+ \to \pi^+ \pi^- \pi^+ \pi^0 \bar{\nu}_{\tau}$	
1561	Tau2FivePions	$\tau^+ \to \pi^+ \pi^- \pi^+ \pi^- \pi^+ \bar{\nu}_{\tau}$	

⇒ Technically all working (some refinement in use of decayWeightMax needed for some)

Supported decays

- HME interface classifies decays according to the number of particles with more than 1 spin state.
- Maximally 3 particles with more than one spin state are supported.
 (Neutrinos have technically only one spin state)
- Since the mother is always a tau (2 states) we have the following cases:
- a) One daughter has more than one state (tested for 2 or 3 states),
- b) Two daughters have more than one state (not tested yet, probably not needed?)

Testing HME-PYTHIA

- Simulate decays with τ in EvtGen and check relevant distributions of observables
- Compare results obtained with PYTHIA and TAUOLA (when possible)
- Note: parent at rest, PHOTOS turned off, no B^0 - \bar{B}^0 mixing

Tested τ -decay modes

$$\tau^{+} \rightarrow e^{+} \nu_{e} \bar{\nu}_{\tau}$$

$$\tau^{+} \rightarrow \pi^{+} \bar{\nu}_{\tau}$$

$$\tau^{+} \rightarrow \pi^{+} \pi^{-} \pi^{+} \bar{\nu}_{\tau}$$

$$\tau^{+} \rightarrow \rho^{+} \bar{\nu}_{\tau}$$

Tested *B*-decay modes

$$B^{+} \rightarrow \tau^{+} \nu_{\tau}$$

$$B^{0} \rightarrow \tau^{+} \tau^{-}$$

$$B^{0} \rightarrow D^{-*} \tau^{+} \nu_{\tau}$$

$$B^{+} \rightarrow \overline{D}^{0} \tau^{+} \nu_{\tau}$$

Tau polarization

$$P = \frac{\Gamma^+ - \Gamma^-}{\Gamma^+ + \Gamma^-}$$

 Γ^{\pm} : decay rate for τ helicity \pm $^{1}/_{2}$

Benchmark observables:

$$E_{\nu}/E_{\tau}$$
, $\cos \theta_{\rm H}$
 v_{τ}
 W
 $\theta_{\rm H}$
 τ

Single tau decays

Test HME and TAUOLA interfaces standalone with single au decays

⇒ No visible difference between generators for single decays.

Single tau decays

Test HME and TAUOLA interfaces standalone with single au decays

⇒ No visible difference between generators for single decays.

Single tau decays

- Currently two available tunings for Dalitz structure: BaBar and CLEO.
- Both available in TAUOLA
- In PYTHIA should be CLEO

⇒ Apparently no big difference.

However: LHCB $B \to \tau \tau$ analysis observes 20% difference in effcy. between CLEO and BaBar

 $\tau^+ \rightarrow \pi^+ \pi^- \pi^+ \bar{\nu}_{\tau}$

Taus from B

- Test τ decays inside a decay chain
- Start with simple case: $B^+ \to \tau^+ (\to \pi^+ \bar{\nu}_{\tau}) \nu_{\tau}$
- Expected $\cos \theta_{\rm H}$ distribution: $\sim (1 + \cos \theta_{\rm H})$
- \Rightarrow Result with TAUOLA shows expected τ polarization, while result with HME is unpolarized.
- Hint: Pythia uses helicity basis while EvtGen uses spin basis (quantized along z direction)
- Check result by applying a basis rotation

$$B^+ \rightarrow \tau^+ (\rightarrow \pi^+ \bar{\nu}_\tau) \nu_\tau$$

$$B^+ \rightarrow \tau^+ (\rightarrow \pi^+ \bar{\nu}_\tau) \nu_\tau$$

Apply a rotation using rotateToHelicityBasis (similar to the EvtGen EvtHelAmp module)

$B^+ \rightarrow \tau^+ (\rightarrow \pi^+ \bar{\nu}_\tau) \nu_\tau$

No basis rotation

With basis rotation

- ⇒ Results look good after rotation
- \Rightarrow Check now when τ daughter not spin-0

$$B^+ \rightarrow \tau^+ \left(\rightarrow \mu^+ \nu_\mu \bar{\nu}_\tau \right) \nu_\tau$$

 \Rightarrow (2 × 2 states) after rotation

- ⇒ Results look good
- ⇒ Similar results with an electron
- ⇒ Similarly good agreement for 3 pion model (as shown previously)

$$B^+ \rightarrow \tau^+ (\rightarrow \rho^+ \bar{\nu}_{\tau}) \nu_{\tau}$$

 2×3 states: it seems that PYTHIA HME indices are permuted if the daughter has more helicity states than the mother (using Tau2Meson model)

 \Rightarrow Results look in good agreement with TAUOLA after permutation + rotation.

Taus in other B decays

Check $B^0 \to \tau^+\tau^-$, both $\tau \to \pi\bar{\nu}_{\tau}$

Expected spin correlation between the 2 taus

 \Rightarrow Need to compare with expectations, but HME shows expected correlation.

Semileptonic decays

$$B^0 \rightarrow D^{-*} \tau^+ \nu_{\tau}$$

Using ISGW2 generator for *B* decays

⇒ Results look similar but further understanding of discrepancies needed.

Search for $V \rightarrow \mu^{+}\mu^{-}$

Goal

- Perform a dedicated search for $D^{*0} \to \mu^+\mu^-$ in $B^+ \to \mu^+\mu^-\pi^+$ decays
- \Rightarrow Extend the search then to $B_{(s)}^{*0} \rightarrow \mu^+\mu^-$ in $B_c^+ \rightarrow \mu^+\mu^-\pi^+$ decays

Motivation

- Decays of heavy-flavored vector mesons into lepton pairs predicted to have very small branching fractions in the SM, for instance $\mathcal{B}(D^{*0} \to \mu^+ \mu^-) \lesssim 10^{-11}$.
- D^{*0} and $B_{(s)}^{*0}$ mesons decay via strong or EM int. (unlike D^0 and B^0)
- ⇒ Probe for several effective operators
- ⇒ Not helicity suppressed
- Can be searched through analysis of $B_{(c)}^+ \to \mu^+ \mu^- \pi^+$ decays
- ⇒ Exploit displaced vertex signature to reject background

Expected precision

• Limit looking at previous measurements of $d\mathcal{B}(B^+ \to \mu^+ \mu^- \pi^+)/dq^2$ at LHCb:

Assume that $\mathcal{B}(B^- \to [\mu^+\mu^-]_{D^{*0}} \pi^-)$ less than half the signal in the two bins around $M_{D^{*0}}^2$

$$\Rightarrow \mathcal{B}(D^{*0} \to \mu^{+}\mu^{-}) = \frac{\mathcal{B}(B^{-} \to [\mu^{+}\mu^{-}]_{D^{*0}} \pi^{-})}{\mathcal{B}(B^{-} \to D^{*0}\pi^{-})} \lesssim 3 \cdot 10^{-7}$$

 \Rightarrow Expect at least ten times higher sensitivity with a dedicated search in $9 fb^{-1}$ (world record is $\lesssim 10^{-6}$) epiconf/201921202011

Status

- Started from analysis tools and selection for $B^+ \to \mu^+ \mu^- \pi^+$
- \Rightarrow Processed data and MC applying mass constraint to B^+ candidates
- \Rightarrow Developing fit model using $M(\mu\mu)$ (and possibly unconstrained $M(\mu\mu\pi)$)

Summary

Handling of tau simulation:

- HME-PYTHIA interface working in all tested cases
- Simulation with HME mirrors results with TAUOLA in simple benchmark cases
- Effect of basis rotation needs understanding in more complex cases
- Some technical issues to be ironed out (probmax handling, initialization)

Analysis:

- Processed full collision data and simulation samples
- Preparation of fit model ongoing