Some applications of optimal transport in LHC physics analysis 2021/05/05

M. LeBlanc (CERN)

Overview

- Several recent phenomenological notes which propose applications of optimal transport techniques ("Earth/Energy Mover's Distance" / "Wasserstein-2 Metric") in collider physics analysis:
 - Proposal, QCD fractal correlation dimension, jet tagging: <u>https://arxiv.org/abs/1902.02346</u> P. Komiske, E. Metodiev, J. Thaler
 - Pileup mitigation, jet tagging, other applications: https://arxiv.org/abs/2004.04159 P. Komiske, E. Metodiev, J. Thaler
 - QCD event shapes in pp and e+e- collisions: https://arxiv.org/abs/2004.06125 C. Cesarotti, J. Thaler
- I have been trying out these techniques within ATLAS ...

Energy-Mover's Distance

The "work" required to rearrange one collision event into another.

Plus a cost to create or destroy energy.

Infrared and collinear safe notion of distance!

Deeply related to the event "energy flow"

$$\mathcal{E}(\hat{n}) = \lim_{r \to \infty} r^2 \int_0^\infty dt \, \hat{n}_i T^{0i}(t, r\hat{n})$$
[Sveshnikov, Tkachov, PLB, 9512370]
[Tkachov, IJMP, 9601308]

Based on the Earth Mover's or Wasserstein Distance [Peleg, Werman, Rom, PAMI,1989] [Rubner, Tomasi, Guibas, IJCV, 2000]

Optimal Transport Problem <u>python optimal transport</u> library

MLB — Applications of optimal transport in LHC physics analysis — 2021/05/05 — Slide 3

Slide adapted from E. Metodiev (MIT)

Event isotropy

• Defined as the dimensionless distance between a collider event E and a uniform radiation pattern U of the same energy:

I(E) = EMD(U,E)

- I(E) exhibits a larger dynamic range for high-multiplicity events than traditional event shapes like thrust, sphericity, etc.
- Just one calculation per-event!

MLB — *Applications of optimal transport in LHC physics analysis* — 2021/05/05 — *Slide* 4

Event isotropy

• Defined as the dimensionless distance between a collider event E and a uniform radiation pattern U of the same energy:

I(E) = EMD(U,E)

- I(E) exhibits a larger dynamic range for high-multiplicity events than traditional event shapes like thrust, sphericity, etc.
- Just one calculation per-event!

* *n.b.* very preliminary plots — some problems in Sherpa / Herwig normalization

MLB — Applications of optimal transport in LHC physics analysis — 2021/05/05 — Slide 5

Fractal Correlation Dimension

$$\dim(\ell) = \ell \frac{\partial}{\partial \ell} \ln \sum_{i=1}^{N} \sum_{j=1}^{N} \Theta[d(x_i, x_j) < \ell]$$

[Grassberger, Procaccia, PRL, 1983] [Kegl, NeurIPS, 2002]

MLB — *Applications of optimal transport in LHC physics analysis* — 2021/05/05 — *Slide* 6

Fractal Correlation Dimension

$$\dim(Q) = Q \frac{\partial}{\partial Q} \ln \sum_{i=1}^{N} \sum_{j=1}^{N} \Theta[\text{EMD}(\frac{\varepsilon_i}{\varepsilon_i}, \frac{\varepsilon_j}{\varepsilon_j}) < Q]$$

Fractal Correlation Dimension

$$\dim(Q) = Q \frac{\partial}{\partial Q} \ln \sum_{i=1}^{N} \sum_{j=1}^{N} \Theta[\text{EMD}(\frac{\varepsilon_i}{\varepsilon_i}, \frac{\varepsilon_j}{\varepsilon_j}) < Q]$$

Summary

- Activities within ATLAS mainly within the <u>SM Jet & Photon Physics subgroup</u>:
- Isotropy event shape measurement using jets was kicked off and exists on glance.
 - Natural extension to future track-based event shape measurement, but higher particle multiplicity means longer time to process each event!
 - Already struggling ... time scales with particle multiplicity as N³log²(N).
- Fractal correlation dimension study part of <u>Omnifold</u> analysis, looking at hadronic recoil in Z+jets events.
 - You can probably imagine how long it takes to calculate something defined in all pairs of events in our Z+jets samples (a lot of accounting).

Technical remarks

- Both studies rely on existing analysis inputs:
 - Event shape inputs ~ 5 TB (multijets), on /eos at /eos/atlas/atlascerngroupdisk/phys-sm/JetPhoton/R32v18/
 - Omnifold inputs ~ 16 GB (Z+jets, but pair-wise calculation), on /eos at /eos/home-l/lmiller/ZjetDataFiles/GridRunFeb20/slimmedSamples/
- I require a stable system with quick I/O and many CPUs in order to speed up these workflows, as they are already set up to be multi-threaded.
 - Large amounts of RAM are not so critical (I think).
 - I have become a bit worried that these studies will be rather expensive to run on the cloud, due to the type of VM I would be interested in : it's possible that there are more cost-effective options to try out first.

Backup slides (from E. Metodiev) Taken from <u>3851596/attachments/2031795/3424378/</u> ATLAS2020 Metodiev.pdf

See also J. Thaler's CERN-TH colloquium on this topic: https://indico.cern.ch/event/888504/

https://indico.cern.ch/event/906711/contributions/

When are two collisions similar?

Infrared and Collinear Safety says distance must be invariant under: Addition of zero-energy particles Collinear splitting of one particle into two

Dijet events from 2011 CMS Open Data – Particle Flow Candidates.

•	-					
•	÷			÷	÷	.
	•					
		•				
			•	-		
•	•					
		•		•		
		•				
	•	•		•		
		•	•	1		
•				1	1	
	1				1	
					1	
		•				
		•				
		1		1		
	•	•				
	•				1	
		•	•		•	
	•	1		•	•	
	•	•		•	1	•
	•	•	1			
	•		•			•
	1			•		
		•	•	1		•
				1		
	•				1	
	1		1	•	1	
	-	•	•	•		

When are two collisions similar?

The Energy Mover's Distance (EMD)

Eric M. Metodiev, MIT

The "work" required to rearrange one collision event into another. Plus a cost to create or destroy energy.

Infrared and collinear safe notion of distance!

Deeply related to the event "energy flow"

$$\mathcal{E}(\hat{n}) = \lim_{r \to \infty} r^2 \int_0^\infty dt \, \hat{n}_i T^{0i}(t) dt \, \hat{n}$$

[Sveshnikov, Tkachov, PLB, 9512370] [Tkachov, IJMP, 9601308]

Based on the Earth Mover's or Wasserstein Distance [Peleg, Werman, Rom, PAMI, 1989] [Rubner, Tomasi, Guibas, IJCV, 2000]

Optimal Transport Problem python optimal transport library

The Space of Collider Events

- β : angular weighting factor
- R : tradeoff between moving energy and creating it

A new probe of the fractal nature of QCD.

Goes beyond an observable, $\mathcal{O}(\mathcal{E})$

"How much information is in a jet?"

"How many particles do I resolve at this energy scale?"

P.S. Related to the event-event correlators of Theory Space.

Enabling New Directions: The Fractal Dimension of QCD A toy dataset

Eric M. Metodiev, MIT

Questions

What are the scales in the system?

What is its dimensionality or complexity?

How do I characterize it?

Small scales: Two-dimensional plane

Small scales: Two-dimensional plane

Medium scales: One-dimensional line

Small scales: Two-dimensional plane

Medium scales: One-dimensional line

Large scales: Zero-dimensional point

Enabling New Directions

Eric M. Metodiev, MIT

$$\dim(\ell) = \ell \frac{\partial}{\partial \ell} \ln \sum_{i=1}^{N} \sum_{j=1}^{N} \Theta[d(x_i, x_j) < \ell]$$

[Grassberger, Procaccia, PRL, 1983] [Kegl, NeurIPS, 2002]

Correlation Dimension

Originally introduced to characterize strange attractors.

The Hidden Geometry of Particle Collisions

40

Enabling New Directions

Eric M. Metodiev, MIT

$$\dim(\ell) = \ell \frac{\partial}{\partial \ell} \ln \sum_{i=1}^{N} \sum_{j=1}^{N} \Theta[d(x_i, x_j) < \ell]$$

[Grassberger, Procaccia, PRL, 1983] [Kegl, NeurIPS, 2002]

Eric M. Metodiev, MIT

Eric M. Metodiev, MIT

