Search for Radiation Induced Transparency Change in the CMS ECAL

Lenny T. Evans

University of North Carolina

CERN CMS Caltech Group

August 12, 2010

1/32

CMS Detector

- General Purpose Detector to Look for New Physics
- Desired sensitivity to see $H \rightarrow \gamma \gamma$ reaction
- Study to Understand Systematics of CMS ECAL
 - Radiation Effects in Lead Tungstate Crystals
 - VPT Instabilities

A. Bornheim, CalTech Tuesday Seminar (2005).

Motivation

Laser Monitoring

Expected Crystal Response

Change in transparency of a typical crystal for different dose rates $\left[1\right]$

VPT response for multiple VPTs with LED pulsing $\left[2\right]$

- 4 同 5 - 4 三 5 - 4 三 5

[1] R. Zhu 5/6/2006

[2] D.A. Petyt 3/9/2009 from S. Ledovskoy

Motivation

Motivation

- $\bullet\,$ Try to be sensitive to any changes in VPT/PN signal due to radiation
 - Assume crystals far from CMS beam axis (with least radiation) will show least change
 - $\bullet\,$ Assume non-beam related systematics are independent of ϕ and η
 - Assume crystals in areas of constant η behave similarly

Map of Crystals

Red = SIC (Chinese), Green = BTCP (Russian), Blue = APATITY

□ ▶ 《큔 ▶ 《 토 ▶ 《 토 ▶ 《 토 •) Q (~ 6/32

VPT/PN Fluctuations in Russian Crystals

 $\langle VPT/PN \rangle_{nRange} \equiv$ Normalized, corrected VPT/PN averaged over η range in legend

$$\begin{array}{l} \mbox{Fill 1222: } \int \mathcal{L}dt = 22.1 \ \mbox{nb}^{-1}/s \\ \mbox{$\bar{\mathcal{L}}$ = 0.60 \ \mbox{μb}^{-1}/s$} \\ \mbox{Fill 1224: } \int \mathcal{L}dt = 30.3 \ \mbox{nb}^{-1}/s \\ \mbox{$\bar{\mathcal{L}}$ = 0.78 \ \mbox{μb}^{-1}/s$} \\ \mbox{Fill 1225: } \int \mathcal{L}dt = 58.5 \ \mbox{nb}^{-1} \\ \mbox{$\bar{\mathcal{L}}$ = 1.00 \ \mbox{μb}^{-1}/s$} \\ \mbox{Fill 1226: } \int \mathcal{L}dt = 23.4 \ \mbox{nb}^{-1}/s \\ \mbox{Fill 1229: } \int \mathcal{L}dt = 17.2 \ \mbox{nb}^{-1}/s \\ \mbox{Fill 1229: } \int \mathcal{L}dt = 17.1 \ \mbox{nb}^{-1}/s \\ \mbox{Fill 1232: } \int \mathcal{L}dt = 17.1 \ \mbox{nb}^{-1}/s \\ \mbox{Fill 1232: } \int \mathcal{L}dt = 17.1 \ \mbox{nb}^{-1}/s \\ \mbox{$\bar{\mathcal{L}}$ = 0.55 \ \mbox{μb}^{-1}/s$} \end{array}$$

VPT/PN Fluctuations in Russian Crystals

<VPT/PN $>_{\eta Range} \equiv$ Normalized, corrected VPT/PN averaged over η range in legend

8 / 32

VPT/PN Fluctuations in Russian Crystals

- ~1‰ change for radiation dose of ~1 mGy* as estimated in slide 7 (2.1< $|\eta|$ <2.3 ring in fill 1262 with $\int \mathcal{L}dt = 112.0 \text{ nb}^{-1}$ in 22 hr)
- Amount of change is highest in rings with highest $\eta,$ lowest in rings with lowest η as expected
- $\bullet~{\sim}40\%$ recovery in 31 hr between fill 1226 and fill 1229
- In fill 1262, dynamic equilibrium reached after ${\sim}12$ hours (signal fluctuates ${<}0.3\%$ after this time)
- Overall change of >1‰ in 2.1< $|\eta|$ <2.3 ring in the 150 hr shown in slide 9 (Total $\int \mathcal{L}dt = 168.6 \text{ nb}^{-1} \approx \sim 2 \text{ mGy}^*$ as estimated in slide 7)

^{*}Radiation doses have a large error and may be off to about a factor of 10 < \square > < \square > < \blacksquare > < \blacksquare > = < > < $<math>\bigcirc$ < \bigcirc < \bigcirc

VPT/PN Fluctuations in Chinese Crystals

<VPT/PN $>_{\eta Range} \equiv$ Normalized, corrected VPT/PN averaged over η range in legend

10/32

VPT/PN Fluctuations in Chinese Crystals

<VPT/PN $>_{\eta Range} \equiv$ Normalized, corrected VPT/PN averaged over η range in legend

Fill 1257:
$$\int \mathcal{L} dt = 102 \text{ mb}^{-1}$$

 $\bar{\mathcal{L}} = 1.66 \ \mu \text{b}^{-1}/s$
Fill 1258: $\int \mathcal{L} dt = 56.4 \text{ mb}^{-1}$
 $\bar{\mathcal{L}} = 1.68 \ \mu \text{b}^{-1}/s$
Fill 1260: $\int \mathcal{L} dt = 15.3 \text{ mb}^{-1}$
 $\bar{\mathcal{L}} = 2.41 \ \mu \text{b}^{-1}/s$
Fill 1262: $\int \mathcal{L} dt = 112 \text{ mb}^{-1}$
 $\bar{\mathcal{L}} = 1.68 \ \mu \text{b}^{-1}/s$

VPT/PN Fluctuations in Chinese Crystals

- ~0.2‰ change for radiation dose of ~2 mGy* as estimated in slide 7 (2.3< $|\eta| <$ 3.0 ring in fill 1262 with $\int \mathcal{L}dt = 112.0 \text{ nb}^{-1}$ in 22 hr)
- Chinese crystals change 20% as much as Russian ones, with significantly higher radiation dose
- <0.1‰ overall change in 2.3< $|\eta|$ <3.0 ring in the 150 hr shown in slide 12 (Total $\int \mathcal{L}dt = 168.6 \text{ nb}^{-1} \approx \sim 3 \text{ mGy}^*$ as estimated in slide 7)
- Testbeam results comparing Chinese and Russian crystals [click]

^{*}Radiation doses have a large error and may be off to about a factor of 10 \leftarrow $\square \rightarrow \leftarrow \square \rightarrow \leftarrow \square \rightarrow \leftarrow \square \rightarrow \leftarrow \square \rightarrow \rightarrow \square \rightarrow \square$

VPT/PN Fluctuations in APATITY Crystals

<VPT/PN $>_{\eta Range} \equiv$ Normalized, corrected VPT/PN averaged over η range in legend

VPT/PN Fluctuations in APATITY Crystals

 $<\!\!{\rm VPT/PN}\!\!>_{\eta\rm Range}\equiv$ Normalized, corrected VPT/PN averaged over η range in legend

$$\begin{array}{l} \mbox{Fill 1257: } \int \mathcal{L} dt = 102 \ \mbox{mb}^{-1} \\ \mbox{$\bar{\mathcal{L}}$} = 1.66 \ \mbox{μb}^{-1}/s \\ \mbox{Fill 1258: } \int \mathcal{L} dt = 56.4 \ \mbox{mb}^{-1}/s \\ \mbox{$\bar{\mathcal{L}}$} = 1.68 \ \mbox{μb}^{-1}/s \\ \mbox{Fill 1260: } \int \mathcal{L} dt = 15.3 \ \mbox{mb}^{-1} \\ \mbox{$\bar{\mathcal{L}}$} = 2.41 \ \mbox{μb}^{-1}/s \\ \mbox{Fill 1262: } \int \mathcal{L} dt = 112 \ \mbox{mb}^{-1}/s \\ \mbox{$\bar{\mathcal{L}}$} = 1.68 \ \mbox{μb}^{-1}/s \\ \end{array}$$

э

14/32

EE-

VPT/PN Fluctuations in APATITY Crystals

- ~1‰ change for radiation dose of ~1 mGy* as estimated in slide 7 (2.1< $|\eta|$ <3.0 ring in fill 1225 with $\int \mathcal{L}dt = 58.5 \text{ nb}^{-1}$ in 18 hr)
- Act more like Russian crystals
- $\bullet~{\sim}40\%$ recovery in 31 hr between fill 1226 and fill 1229
- No obvious signs of reaching dynamic equilibrium
- Are near the center in EE- but change more easily than Chinese crystals
- ~1.2‰ overall change in 2.3< $|\eta|$ <3.0 ring in the 150 hr shown in slide 15 (Total $\int \mathcal{L}dt = 168.6 \text{ nb}^{-1} \approx 3 \text{ mGy}^*$ as estimated in slide 7)

APD/PN Fluctuations in the Barrel for all Crystals

<APD/PN $>_{nRange} \equiv$ Normalized, corrected APD/PN averaged over η range in legend

16/32

VPT/PN Fluctuations with no beam for all Crystals

 $<\!\!{\rm VPT/PN}\!\!>_{\eta \rm Range} \equiv$ Normalized, corrected VPT/PN averaged over η range in legend

Summary

- See changes in VPT/PN which are compatible with radiation induced transparency change
- Chinese crystals more resistant to change than Russian ones
- Some signs of recovery, but transparency does not recover fully
- Reach dynamic equilibrium in longer high intensity runs
- Observed changes do not fit typical thermal or VPT effects [click]

Art

Music

Food

Nature

Acknowledgements

- Saclay team for setting up and operating the automated data processing
- Francesca Cavallari for the construction DB info on the crystals
- Adi Bornheim, Jan Veverka, Harvey Newman and the rest of the Caltech group for guidance
- University of Michigan CERN REU program and NSF for funding

Backup Slides

Bonus Slides

< □ ト < □ ト < ■ ト < ■ ト < ■ ト ■ の Q (~ 24/32

VPT/PN Distributions for Rings

Point with Large Error

Later Point

Spontaneous large errors can be caused by misalignment of laser.

Backup Slides

VPT/PN Fluctuations for run with $\int \mathcal{L} dt = 5.6$ nb⁻¹

Backup Slides

VPT/PN Fluctuations Normalized to barrel

First Fill (Runs 139881-140106): $\int \mathcal{L} dt = 30.3 \text{nb}^{-1}$ Second Fill (Runs 140110-140149): $\int \mathcal{L} dt = 58.5 \text{nb}^{-1}$

Systematic Fluctuations in Photodector Signal

First Fill (Runs 139881-140106): $\int \mathcal{L} dt = 30.3 \text{nb}^{-1}$ Second Fill (Runs 140110-140149): $\int \mathcal{L} dt = 58.5 \text{nb}^{-1}$

VPT/PN Fluctutations from VPT Effects

S. Ledovskoy 2/9/2009

D.A. Petyt 3/9/2009 from S. Ledovskoy

VPT/PN Fluctutations from Radiation Effects in Russian Crystals

VPT/PN Fluctutations from Radiation Effects in Chinese Crystals

VPT/PN Fluctutations from Radiation Effects in APATITY Crystals

