

Outline

1. CMS

- 2. Gamma+Jet Events
 - -Jet Production
 - -Backgrounds
 - -Photon Isolation
- 3. Discriminating Variables
- 4. TMVA
- 5. Conclusions

6. Fun

Compact Muon Solenoid (CMS):

-isolates different types of particles α their interactions with components of CMS

- -superconducting solenoid (6m internal diameter)
- -silicon pixel and strip tracker
- -crystal electromagnetic calorimeter (ECAL) electrons, photons
- -brass-scintillator hadronic calorimeter (HCAL) neutral and charged hadrons
- -gas chambers embedded in iron return yoke (to measure muons)

2. Gamma+Jet Events: Jet Production

- 1. Proton-Proton collisions
- 2. QCD -> Color Charge (quarks & gluons)
 ->Color Confinement
 ->Hadronization->Jets
- 3. Photon production

2. Gamma+Jet Events: Backgrounds

Primary background comes from QCD jet events...

- 1. Real photons:
 - From neutral hadron decays inside jets
 - Photons from bremsstrahlung
- 2. Fake photons from jets

2. Gamma+Jet Events: Photon Isolation

ECAL

- Clean shower shape compared to jets
- Isolated energy deposition

HCAL

- Isolation: Little if any energy deposit in HCAL
- H/E: ratio of hadronic to electromagnetic depositions small

Tracker

- Straight path
- Sum pT of tracks around cluster low

2. Gamma+Jet Events: Photon Isolation

Variables to discriminate against backgrounds

- ECAL isolation, HCAL isolation, H/E, Tracker isolation
- Covariance η , η and ϕ , ϕ

Kinematic requirements on photons:

• $p_T > 50 \text{ GeV}, |\eta| < 3$

2. Gamma+Jet Events: Results

- Ratio of γ +njets/ γ +(n+1)jets

Expect exponential decrease, if there is a new mechanism to produce photon+jets events there should be an excess at large jet multiplicities

- SUSY, Detector Issues

3. Discriminating Variables: ECAL Isolation

9

3. Discriminating Variables: HCAL Isolation

 Σ Energy in HCAL in cone $\Delta R < 0.3$

3. Discriminating Variables: H/E

 Σ Energy in HCAL in cone ΔR < 0.3 / Σ Energy in ECAL in cone ΔR < 0.3

4. TMVA

- Correlations between variables (heart rate)
- Train, test, evaluate

4. TMVA

Optimized discriminating power with TMVA...

- -Num signal = 203,851
- -Num background = 416,970

-Divided equally between training and testing samples

4. TMVA: Likelihood MVA

-Likelihood: probability of specific outcome given set of parameter values

-Probability Distribution Functions

 Maximum Likelihood MVA
 -model based on PDFs of input variables for signal and background
 -Maximize likelihoods

4. TMVA

16

4. TMVA

•"optimal" cut of 0.1506

•signal efficiency of 73.21%

background efficiency of 9.7%

5. Conclusions

- Apply TMVA selection to get njets ratio plot from real data
- Better TMVA classification

6. FUN

Fete de la Musique
Wine and Cheese
Montreaux Jazz
Istanbul
Paris
Paragliding

Acknowledgements

- Toyoko Orimoto, Maurizio Pierini, Jan Therhaag
- University of Michigan, CERN, and fellow interns

Works Cited

- chemistry.about.com
- physics.arizona.edu
- cms.web.cern.ch
- http://www.30daysofhealthandwellbeing.com.au/meditation-morning.htm
- http://picsdigger.com/keyword/hyper%20kid/
- http://cdsweb.cern.ch/record/1202800/files/EWK-08-006-pas.pdf
- <u>cdsweb.cern.ch/record/1202801/files/EWK-09-006-pas.pdf</u>
- Pdf: http://www.information-management.com/specialreports/20030624/6935-1.html

Back-up Slides

3. Discriminating Variables

- ECAL $\Delta R < 0.3$
- HCAL $\Delta R < 0.3$
- H/E
- Cov Eta Eta
- Cov Phi Phi
- Track Sum Pt $\Delta R < 0.3$

Tracker Isolation

 Σ Momentum Tracks in cone $\Delta R < 0.3$

Covariance η, η

Covariance ϕ, ϕ

TMVA: BDT

•"optimal" cut of 0.0449

•S/sqrt(S+B) of 25.6168

•signal efficiency of 72.28/0

background efficiency of 7.336%

TMVA

