Search For Diphoton Resonances Using the CMS Detector

August 12, 2010

Elliot Schneider

Mentors: Yousi Ma, Marat Gataullin

Advisor: Harvey Newman

Introduction

- After protons collide at the LHC, their constituent quarks can interact and produce new particles
- These new particles are often unstable
 - They can decay and produce even more particles, like photons (the particles of light)

Diphotons

- We are searching for events where these interactions produce pairs of very energetic **photons**
- The **Standard Model** predicts many processes that can produce photon pairs
 - By 'rediscovering' these processes, we can confirm the physics we think we already understand

The Higgs

- The **Higgs boson** is the only particle predicted by the SM that has not been discovered yet
 - We believe it is responsible for giving mass to the other elementary particles
- And the Higgs should decay to two photons, $H \rightarrow \gamma \gamma$
 - So if we observe a diphoton resonance near the probable Higgs mass, it would give strong evidence for the Higgs!

- Despite its great success, the Standard Model is an incomplete theory
 - It leaves many questions unanswered
- Theorists have suggested wild ideas to explain what the SM cannot
 - String theory, gravitons, extra dimensions, vanishing dimensions...

The Hierarchy Problem

- For example, the SM does not explain the hierarchy problem
- Of the four fundamental forces, gravity is weaker by over 25 orders of magnitude
- And we do not know why

Randall-Sundrum Model

- L. Randall and R. Sundrum suggest a solution
- They imagine a warped extra dimension of space
 - Only **gravitons** can move in the new dimension
 - But it becomes exponentially harder for gravitons to propagate as they approach our **brane**
- Gravity is 'diluted' in the bulk and appears weaker

Gravitons

- The hypothesized **Randall-Sundrum graviton** would decay to two photons, $G \rightarrow \gamma \gamma$
- The graviton mass would be near 1 TeV
 - So if we observed a resonance in the diphoton **invariant mass** spectrum near 1 TeV, it would offer evidence for the graviton and an extra dimension!
- Aside from gravitons, we are looking for anything unexpected
- The SM does not predict a diphoton resonance above the Higgs mass
 - So if we observed a resonance above ~175 GeV, it would likely point to **new physics**

The Detector

- How do we actually detect these photons?
- Our detector is called the Compact Muon Solenoid (CMS)
- The Electromagnetic CALorimeter (ECAL) detects photons and electrons

Backgrounds

- Many other SM processes produce photons
- Irreducible backgrounds like $q\overline{q} \rightarrow \gamma\gamma$, gg $\rightarrow \gamma\gamma$ produce true photon pairs
- **Reducible** backgrounds produce **jets**: high energy hadrons that 'look like' photons in the ECAL
 - e.g. 'Brem' γ+jet events, QCD di-jet events
- We apply isolations to eliminate jet fakes and select real photons

Monte Carlo

- To estimate how effective our selection is at removing jets and preserving photons, we produce simulated data based on the SM
- By comparing the real data with the simulated data, we also verify our detector is working as expected
- And we can compare the diphoton continuum expected from the SM with the real data

Invariant Mass

- After applying our selection, we get the invariant mass distribution for photon pairs
- Here, our isolation also selects electrons

$M_{_{YY}} > 150 \text{ GeV}$

 $M_{yy} = 194.7 \text{ GeV}$

(Run: 140382, Event: 159943472)

Pixel Seeds

Summary & Outlook

- We have developed and implemented isolations to select energetic photon pairs
- So far, not very much data is available
 - More coming fast!
- This is an ongoing project, and we will continue to update our results as more data becomes available
- As additional high-invariant-mass events appear, they must be investigated individually
- We may find the Higgs, the graviton, or some other particle no one has imagined yet!

Acknowledgements

- This work was done in partnership with Yousi Ma and in collaboration with Serguei Ganjour
 - Thank you!
- Thanks to Harvey Newman, Marat Gataullin, and the entire Caltech group
- Thanks to Homer, Jean, Jeremy, Steven, and the entire Michigan program

EXTRA

Data Sets

Data Set	$\int L \text{ (nb}^{-1})$
/MinimumBias/Commissioning10-SD_EG-Jun14thSkim_v1/RECO	7.99
/EG/Run2010A-Jun14thReReco_v1/RECO	4.92
/EG/Run2010A-PromptReco-v4/RECO	123.36
/EG/Run2010A-Jul16thReReco-v2/RECO	118.88
Total	255.15

Monte Carlo	σ (pb)	N Events
/PhotonJet_Pt15-30	192200	6.1×10^{5}
/PhotonJet_Pt30-80	20070	1.0×10^{6}
/PhotonJet_Pt80-170	556	1.3×10^{6}
/PhotonJet_Pt170-250	24	1.2×10^{6}
/Box_Pt10-25	358.2	550×10^{3}
/Box_Pt25-250	12.37	540×10^{3}
/Born_Pt10-25	236.4	536×10^{3}
/Born_Pt25-250	22.37	747×10^{3}
/Zee/Summer10-START36	970	1.0×10^{5}

σ (pb)	N Events	Filter Eff.
235.5×10^{6}	30×10^{6}	0.0073
59.3×10^{6}	40×10^{6}	0.059
906000	5×10^{6}	0.148
	235.5×10^{6} 59.3×10^{6}	235.5×10^{6} 30×10^{6} 59.3×10^{6} 40×10^{6}

Pre-Selection

- JSON good runs and LS certified
- HLT_Photon15_L1R || HLT_Photon15_Cleaned_L1R
- $P_T > 22$ GeV, $|\eta| < 2.5$ (excluding EB/EE gap)
- H/E < 0.05
- Spike rejection:
 - eMax / e3x3 < .95
 - seedRecoFlag = seedSeverity = 0
- Beam halo: reject TTBits 36, 37, 38, 39 (data only)
- nHfTowersP > 0, nHfTowersN > 0
- !vtxIsFake, vtxNTrkWeight05 > 3, |vtxZ| < 18 cm

Isolation

- ECAL Iso $< 4.2 + 0.003 P_{T}$
 - ECAL Iso = $\sum E_T$ of ECAL rechits in hollow cone of outer radius $\Delta R = 0.4$
- HCAL Iso $< 2.2 + 0.001 P_{T}$
 - HCAL Iso = $\sum E_T$ of HCAL towers in hollow cone of outer radius ΔR = 0.4
- Tracker Iso $< 2.0 + 0.001 P_{T}$
 - Trk Iso = $\sum P_T$ of tracks in hollow cone of outer radius $\Delta R = 0.4$
- $\sigma_{inin} < 0.0105$ (EB), $\sigma_{inin} < 0.03$ (EE)

(QCD-10-019)

ECAL Isolation (N-1 Cuts)

- Cut on all quantities except ECAL isolation
- \bullet Normalized to $N_{\mbox{\tiny Data}}$

N_{Data}: 74.00

 $N_{\gamma\gamma}$: 7.36 \pm 0.04

 $N_{y + iet}$: 14.04 \pm 0.81

 N_{Dilet} : 7.75 \pm 0.52

 N_7 : 44.85 \pm 0.46

Tracker Isolation (N-1 Cuts)

- Cut on all quantities except tracker isolation
- \bullet Normalized to $N_{\mbox{\tiny Data}}$

N_{Data}: 116.00

 N_{yy} : 7.02 \pm 0.04

 $N_{y + iet}$: 34.76 \pm 1.22

 N_{Dijet} : 31.91 ± 1.00

 N_{z} : 42.30 \pm 0.40

HCAL Isolation (N-1 Cuts)

- Cut on all quantities except HCAL isolation
- \bullet Normalized to $N_{\mbox{\tiny Data}}$

N_{Data}: 69.00

 N_{yy} : 7.04 ± 0.04

 $N_{y + jet}$: 12.57 ± 0.76

 N_{Diiet} : 6.97 \pm 0.48

 N_z : 42.42 \pm 0.43

$\sigma_{i\eta i\eta}$ (N-1 Cuts)

- Cut on all quantities except $\sigma_{_{i\eta i\eta}}$
- \bullet Normalized to $N_{\mbox{\tiny Data}}$

N_{Data}: 76.00

 N_{yy} : 6.73 ± 0.04

 $\text{N}_{\gamma \text{ + jet}}\text{: }16.72 \pm 0.86$

 N_{Diiet} : 11.87 \pm 0.63

 N_z : 40.68 \pm 0.41

P_{T}

- Cut on all quantities except pixel seed
- \bullet Normalize to $N_{\mbox{\tiny Data}}$

P_T Higgs

- Veto pixel seed match for each candidate
 - ⇒ eliminates electrons

Barrel Only

Barrel + Endcaps

$M_{vv} > 150 \text{ GeV}$

 $M_{yy} = 186.0 \text{ GeV}$

(Run: 140124, Event: 333470596)

$M_{vv} > 150 \text{ GeV}$

 $M_{yy} = 172.0 \text{ GeV}$

(Run: 138746, Event: 41064896)

$M_{vv} > 150 \text{ GeV}$

 $M_{yy} = 161.3 \text{ GeV}$

(Run: 139100, Event: 163166643)

Z Peak

- Fit with Gaussian convolved with Breit-Wigner, plus exponential
 - Fix the BW width to the PDG value, 2.45 GeV
 - Free BW mean and Gaussian width

- The data peak is shifted below the MC
 - $-\Delta m = -1.57 \pm 0.98 \text{ GeV}$

Z Peak (2)

- Fix BW width AND BW mean to PDG values
 - Free Gaussian parameters

 $-\Delta m = -1.56 \pm 1.12 \text{ GeV (Gauss mean)}$

QCD Monte Carlo

- Previous slides show EM Enriched QCD MC
 - Generator Filter: $E_T > 20$ GeV, H/E < 0.5, Trk Iso < 5 GeV, Calo Iso < 10 GeV
 - Filter cuts need to be tuned
- Also considered unfiltered QCD
 - Poor statistics ⇒ scaling issues

EM Enriched vs Normal QCD

After pixel seed veto (barrel and endcaps):

Raw Counts

QCD 20-30: 91

QCD 30-80: 198

QCD 80-170: 95

Raw Counts

QCD 15-30: 0

QCD 30-80: 1

QCD 80-170: 9

QCD 170-250: 22

