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Object Stores: Motivation

= Traditional storage stack designed for high-latency rotating disks that
could handle few IOPS.

= |/0 coalescing, buffering, etc. is less relevant for modern devices, such
as NVMe SSDs.

= POSIX I/0 consistency model is a major problem in parallel filesystem
scalability.
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= Traditional storage stack designed for high-latency rotating disks that
could handle few IOPS.

= |/0 coalescing, buffering, etc. is less relevant for modern devices, such
as NVMe SSDs.

= POSIX I/0 consistency model is a major problem in parallel filesystem
scalability.

Object stores, e.g. Intel DAQOS, provide a
fault-tolerant object store optimized for
high bandwidth, low latency, and high
IOPS.

At least the GET and PUT primitives;
objects accessed via a unique object
identifier (OID).
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ROOT TTree and RNTuple

= Most analyses in HEP require access to many
events, but only a subset of their properties:
columnar storage.

X y z mass
= TTreehas been in use for 25 years. 1+ EB of
HEP data stored in ROOT files.
= However, it was not designed to fully exploit 048] M| By | B3

modern hardware.

= RNTuple is the R&D project to replace TTree
for the next 30 years.

= Object stores are first-class.
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RNTuple: Architecture Overview

Event iteration
Looping over events for reading/writing

RNTupleView, RNTupleReader/Writer

Logical layer / C++ objects
Mapping of C++ types onto columns, e.g.
std::vector<float> ~ index column and a value column

RField, RNTupleModel, REntry
Primitives layer / simple types

“Columns” containing elements of fundamental types (float,
int, ..) grouped into (compressed) pages and clusters

RColumn, RPage, ..

Storage layer / byte ranges
POSIX files, object stores, ...

RPageStorage, RCluster, ..
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RNTuple: On-disk File Format

[CTTTTCITTTT [T TTTTOTTTTT [TTTTTTTTT] [OITTTT
S 4 T S

— [RS——
Anchor Header Page Footer

Cluster

struct Event {
int fId;
vector<Particle> fPtcls;
i
struct Particle {

H
vector<int> fIds;

g

Anchor: specifies the offset and size of the header and footer sections.
Header: schema information.?

Footer: location of pages and clusters.?

Pages: little-endian fundamental types (possibly packed, e.g. bit-fields)
~ tens of KiB.2

This element may be compressed or not.

5/12



Intel DAOS: Pools, Containers and Objects
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= Object: a Key-Value store with locality.

- The key is split into dkey (distribution key) and akey (attribute key).
dkey; — targety.

= Object class: determines redundancy (replication/erasure code).
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The RNTuple DAOS backend




Overview

— =+ —_—
Anchor Header Page Footer
Cluster

struct Event {
int fId;
vector<Particle> fPtcls;

H
struct Particle {
i
vector<int> fIds;

i
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Mapping RNTuple Clusters and Pages to Objects

Two possible mappings for pages and clusters:

One OID per page. A sequential OID is assigned for each committed page;
constant dkey and akey.

One OID per cluster. OID = cluster index; dkey is used for addressing
individual pages in the cluster; constant akey
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User Interface: RNTuple/file vs. RNTuple/DAOS

Changes required to the user code..."...

auto ntuple = RNTupleReader: :Open("DecayTree",
"./B2HHH~zstd.ntuple");

auto viewH1IsMuon = ntuple->GetView<int>("H1_isMuon");
auto viewH2IsMuon = ntuple->GetView<int>("H2_isMuon");
auto viewH3IsMuon = ntuple->GetView<int>("H3_isMuon");

TIssue: UUIDs are not meaninful to users (common problem in object stores).
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Evaluation




Hardware and Software Environment

Experiments ran on the CERN Openlab DAOS testbed:

= 3 DAOS servers, 1 head node
= interconnected by an Omni-Path Edge 100 Series 24-port switch.

System specifications
cPU Intel(R) Xeon(R) Platinum 8260 CPU @ 2.40GHz

System specifications
CPU per node 24 cores/socket, 2 sockets, 2 threads/core (HT enabled)

Py Intel(R) Xeon(R) Platinum 8160 CPU @ 2.10GHz
Core frequency Base: 1.0 GHz Range: 1.0GHz - 3.9GHz

CPU per node 24 cores/socket, 2 sockets, 2 threads/core (HT enabled)
Numa nodes node0: 0-23.48-71 node1: 24-47,72-95

Core frequency Base: 1.0 GHz Range: 1.0GHz - 3.9GHz
System Memory 12x 32GB DDR4 rank DIMMs

Numa nodes node0: 0-23.48-71 node1: 24-47,72-95
Optane DCPMM 12x 12868 DDR4 rank DIMMs

System Memory 12x16GB DDR4 rank DIMMs
Optane FW version 01.02.00.5395

8I0S version: SESC620.868.02.01.0011.032620200659 date: 03/26/2020
BIOS version: SESC620.868.02.01.0011.032620200659 date: 03/26/2020

HFI 1x Itel Corporation Omni-Path HFI Silicon 100 Series.
Storage 4x1TB NVMe INTEL SSDPE2KX010T8

HFI Firmware Termal Management Module: 16.9.9.0.268; Driver: 1.9.2.0.0
HFI 1x Intel Corporation Omni-Path HFI Silicon 100 Series.
HFI Firmware Termal Management Module: 16.9.6.0.208; Driver: 1.9.2.0.

Figure 2: Client node HW

Figure 1: Server nodes HW
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Performance Analysis: fixed cluster size, increasing page size
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Conclusion




Conclusion

= RNTuple architecture decouples storage from
serialization/representation. Object stores are first-class.

= First prototype implementation of an Intel DAOS backend merged into
ROOT's ‘master’ branch.

Next Questions:

1. Investigate why reads are not saturating the data link.

2. Data movement: how to quickly move large amounts of data from HEP
storage to a DAOS data center?
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BACKUP - DAQOS: Overview

DAOS System

Pool 1 (SCM + NVMe)

Server: Linux daemon that exports locally-attached NVM storage. Listens on
a management interface and 1+ fabric endpoints (for data transport).

Storage resources are partitioned into targets that can be accessed
independently (avoids contention).

System: a set of DAOS servers connected to the same fabric.

Pool: storage partition that may expand over many servers (and is
distributed among the available targets). Identified by and UUID.



BACKUP - DAOS: compatibility layer

Existing software can use DAOS?? through:

= POSIX filesystem (libdfs). Can be used either through 1ibioil (1/0 call
iterception) or dfuse (FUSE filesystem).

= MPI-I0. Provides DAOS support through a ROMIO driver (MPICH and
Intel MPI).

= HDF5, Apache Spark, ...

’https://daos-stack.github.io/
*https://github.com/daos-stack/daos/


https://daos-stack.github.io/
https://github.com/daos-stack/daos/

BACKUP - Comparing OID-per-page to OID-per-clu

Run time (s)

(a) gen_lhcb, no compression.
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