Exploring Object Stores for High-Energy Physics Data Storage

Javier Lopez-Gomez — CERN
<javier.lopez.gomez@cern.ch>

vCHEP2021, 2021-05-19

EP-SFT, CERN, Geneva, Switzerland

http://root.cern/

4

ROOT @)

Data Analvsis Framework

http://root.cern/

Introduction
The RNTuple DAOS backend
Evaluation

Conclusion

1/12

Introduction

Object Stores: Motivation

= Traditional storage stack designed for high-latency rotating disks that
could handle few IOPS.

= |/0 coalescing, buffering, etc. is less relevant for modern devices, such
as NVMe SSDs.

= POSIX I/0 consistency model is a major problem in parallel filesystem
scalability.

2/12

Object Stores: Motivation

= Traditional storage stack designed for high-latency rotating disks that
could handle few IOPS.

= |/0 coalescing, buffering, etc. is less relevant for modern devices, such
as NVMe SSDs.

= POSIX I/0 consistency model is a major problem in parallel filesystem
scalability.

Object stores, e.g. Intel DAQOS, provide a
fault-tolerant object store optimized for
high bandwidth, low latency, and high
IOPS.

At least the GET and PUT primitives;
objects accessed via a unique object
identifier (OID).

2/12

ROOT TTree and RNTuple

= Most analyses in HEP require access to many
events, but only a subset of their properties:
columnar storage.

X y z mass
= TTreehas been in use for 25 years. 1+ EB of
HEP data stored in ROOT files.
= However, it was not designed to fully exploit 048] M| By | B3

modern hardware.

= RNTuple is the R&D project to replace TTree
for the next 30 years.

= Object stores are first-class.

3/12

RNTuple: Architecture Overview

Event iteration
Looping over events for reading/writing

RNTupleView, RNTupleReader/Writer

Logical layer / C++ objects
Mapping of C++ types onto columns, e.g.
std::vector<float> ~ index column and a value column

RField, RNTupleModel, REntry
Primitives layer / simple types

“Columns” containing elements of fundamental types (float,
int, ..) grouped into (compressed) pages and clusters

RColumn, RPage, ..

Storage layer / byte ranges
POSIX files, object stores, ...

RPageStorage, RCluster, ..

4/12

RNTuple: On-disk File Format

[CTTTTCITTTT [T TTTTOTTTTT [TTTTTTTTT] [OITTTT
S 4 T S

— [RS——
Anchor Header Page Footer

Cluster

struct Event {
int fId;
vector<Particle> fPtcls;
i
struct Particle {

H
vector<int> fIds;

g

Anchor: specifies the offset and size of the header and footer sections.
Header: schema information.?

Footer: location of pages and clusters.?

Pages: little-endian fundamental types (possibly packed, e.g. bit-fields)
~ tens of KiB.2

This element may be compressed or not.

5/12

Intel DAOS: Pools, Containers and Objects

DAOS pool DS Eiefiny . DAOQS object

M -~ D-----""777 key
-7 \ | |

N A | e e TP
s ~ ~~«. B K 0000 TTTm=--
‘ ‘ RN --o_ ke alue
J e O
‘o LTS

= Object: a Key-Value store with locality.

- The key is split into dkey (distribution key) and akey (attribute key).
dkey; — targety.

= Object class: determines redundancy (replication/erasure code).

6/12

The RNTuple DAOS backend

Overview

— =+ —_—
Anchor Header Page Footer
Cluster

struct Event {
int fId;
vector<Particle> fPtcls;

H
struct Particle {
i
vector<int> fIds;

i

7112

Mapping RNTuple Clusters and Pages to Objects

Two possible mappings for pages and clusters:

One OID per page. A sequential OID is assigned for each committed page;
constant dkey and akey.

One OID per cluster. OID = cluster index; dkey is used for addressing
individual pages in the cluster; constant akey

8/12

User Interface: RNTuple/file vs. RNTuple/DAOS

Changes required to the user code..."...

auto ntuple = RNTupleReader: :Open("DecayTree",
"./B2HHH~zstd.ntuple");

auto viewH1IsMuon = ntuple->GetView<int>("H1_isMuon");
auto viewH2IsMuon = ntuple->GetView<int>("H2_isMuon");
auto viewH3IsMuon = ntuple->GetView<int>("H3_isMuon");

TIssue: UUIDs are not meaninful to users (common problem in object stores).

9/12

User Interface: RNTuple/file vs. RNTuple/DAOS

Changes required to the user code..."...

auto ntuple = RNTupleReader: :Open("DecayTree",
"daos://e6f8e503-e409-4b08-8eeb-7e4d77ccebbb:1/b4f6d9fc—
e081-41d4-91ae-41adf800b537");

auto viewH1IsMuon = ntuple->GetView<int>("H1_isMuon");
auto viewH2IsMuon = ntuple->GetView<int>("H2_isMuon");
auto viewH3IsMuon = ntuple->GetView<int>("H3_isMuon");

TIssue: UUIDs are not meaninful to users (common problem in object stores).

9/12

Evaluation

Hardware and Software Environment

Experiments ran on the CERN Openlab DAOS testbed:

= 3 DAOS servers, 1 head node
= interconnected by an Omni-Path Edge 100 Series 24-port switch.

System specifications
cPU Intel(R) Xeon(R) Platinum 8260 CPU @ 2.40GHz

System specifications
CPU per node 24 cores/socket, 2 sockets, 2 threads/core (HT enabled)

Py Intel(R) Xeon(R) Platinum 8160 CPU @ 2.10GHz
Core frequency Base: 1.0 GHz Range: 1.0GHz - 3.9GHz

CPU per node 24 cores/socket, 2 sockets, 2 threads/core (HT enabled)
Numa nodes node0: 0-23.48-71 node1: 24-47,72-95

Core frequency Base: 1.0 GHz Range: 1.0GHz - 3.9GHz
System Memory 12x 32GB DDR4 rank DIMMs

Numa nodes node0: 0-23.48-71 node1: 24-47,72-95
Optane DCPMM 12x 12868 DDR4 rank DIMMs

System Memory 12x16GB DDR4 rank DIMMs
Optane FW version 01.02.00.5395

8I0S version: SESC620.868.02.01.0011.032620200659 date: 03/26/2020
BIOS version: SESC620.868.02.01.0011.032620200659 date: 03/26/2020

HFI 1x Itel Corporation Omni-Path HFI Silicon 100 Series.
Storage 4x1TB NVMe INTEL SSDPE2KX010T8

HFI Firmware Termal Management Module: 16.9.9.0.268; Driver: 1.9.2.0.0
HFI 1x Intel Corporation Omni-Path HFI Silicon 100 Series.
HFI Firmware Termal Management Module: 16.9.6.0.208; Driver: 1.9.2.0.

Figure 2: Client node HW

Figure 1: Server nodes HW

10/12

Performance Analysis: fixed cluster size, increasing page size

Throughput (GB/s)

[T
2.5 |-
a|L
I
1.5 |-
al
0.5 |—
dh———H& 7 &
0 = |
QL Q Q Q Q
969Q 90 \Q 9Q 9Q
ST ® $ & 2

Number of elements per page

local —&— dfuse (SX)
—B— libdaos (SX) —l— libdaos (RP_XSF)

—A— dfuse (RP_XSF)

1/12

Conclusion

Conclusion

= RNTuple architecture decouples storage from
serialization/representation. Object stores are first-class.

= First prototype implementation of an Intel DAOS backend merged into
ROOT's ‘master’ branch.

Next Questions:

1. Investigate why reads are not saturating the data link.

2. Data movement: how to quickly move large amounts of data from HEP
storage to a DAOS data center?

12/12

Exploring Object Stores for High-Energy Physics Data Storage

Javier Lopez-Gomez — CERN
<javier.lopez.gomez@cern.ch>

vCHEP2021, 2021-05-19

EP-SFT, CERN, Geneva, Switzerland

http://root.cern/

4

ROOT @)

Data Analvsis Framework

http://root.cern/

BACKUP - DAQOS: Overview

DAOS System

Pool 1 (SCM + NVMe)

Server: Linux daemon that exports locally-attached NVM storage. Listens on
a management interface and 1+ fabric endpoints (for data transport).

Storage resources are partitioned into targets that can be accessed
independently (avoids contention).

System: a set of DAOS servers connected to the same fabric.

Pool: storage partition that may expand over many servers (and is
distributed among the available targets). Identified by and UUID.

BACKUP - DAOS: compatibility layer

Existing software can use DAOS?? through:

= POSIX filesystem (libdfs). Can be used either through 1ibioil (1/0 call
iterception) or dfuse (FUSE filesystem).

= MPI-I0. Provides DAOS support through a ROMIO driver (MPICH and
Intel MPI).

= HDF5, Apache Spark, ...

’https://daos-stack.github.io/
*https://github.com/daos-stack/daos/

https://daos-stack.github.io/
https://github.com/daos-stack/daos/

BACKUP - Comparing OID-per-page to OID-per-clu

Run time (s)

(a) gen_lhcb, no compression.

T T
260 —]

Run time (s)

(b) Lhcb, no compression.

——aA
N
90

&

—A— 0ID/page (SX) —A— 0ID/page (RP_XSF)
—B— 0ID/cluster (SX)

—A— 0ID/page (SX) —A— 0ID/page (RP_XSF)
—B— 0ID/cluster (SX)

	Introduction
	The RNTuple DAOS backend
	Evaluation
	Conclusion
	Appendix

