
https://root.cern

ROOT
Data Analysis Framework

Fine-grained data caching
approaches to speedup a
distributed RDataFrame

analysis

https://root.cern

2

Target

▶ Interactive data exploration, repeat same
operations with slightly different parameters.

▶ Data filtering, creating histograms…

▶ Still quite a lot of data to process (GB → TB)

● Enable interactive large scale data
analysis

● From start to end in a single interface

Spark Cluster

Distributed
RDataFrame
application

px py pz e

Make entry ranges
(start, end)

Read ranges Mapper

Reducer

(1, 100)

(101, 200)

(201, 300)

Ranges list
[(1,100), (101,200), (201,300)]

Distributing RDataFrame workloads

How/why data caching

▶ Data is often remote, lots of time spent in IO → caching
▶ Sparse data access → granularity required
▶ Two approaches compared: separate cache server vs

local caches on the nodes

4

Remote
storage

.roo
t .roo

t .root

Proxy
.roo
t .roo

t .root

Executor

Executor

Executor

XRootD proxy cache server

5

 Main Thread
 RDataFrame
 computations

define
r2 = x² + y²

input
x, y

histo
r2

TFilePrefetch
Thread

.root

Local filesystem

Remote storage

.root.root
.root

TFilePrefetch local cache

6

7

Test application

Github repository

Reference dataset
● 1 file, 100M entries, 5 columns

● File size: 1.8 GB

● Cached column size: ~700MB

● Stored in EOS Test runs

● Simple operation on a column

● Single node / distributed

● Remote data / cached data

https://github.com/vepadulano/rdf-dist-cache

8

Setup: Single Node

VM

XROOTD
CACHE

Test setup is composed of:

● 1 VM (1 core, 1024MB RAM, 10 GB

spinning disk)

● 1 physical node (8 cores, 16 GB RAM,

256GB SSD)

9

Setup: Distributed

DRIVER

MASTER

WORKER1 WORKER2 WORKER3

XROOTD
CACHE

Test setup is composed of:

● 5 VMs (1 core, 1024MB RAM, 10 GB

spinning disk)

○ driver: launches user applications

○ master: schedules work

○ worker[1-3]: execute jobs

● 1 physical node (8 cores, 16 GB RAM,

256GB SSD)

10

Single Node application

Very high runtime
variability due to
remote IO

XRootD
cache shows
the best
consistency

11

Distributed application: without data locality
First run, caches are populated

Stable, lower
runtimes with
caching

Extra caching

12

Distributed application: data locality

Here only showing cached data runs

Both mechanisms
lead to similar
runtimes

▶ HEP analysis can benefit from caching

▶ Need to be careful: granularity, cache system layout, data locality

▶ Performance of XRootD proxy and TFilePrefetch is comparable on
the data and workflow analysed (with smart reutilisation of data
ranges

13

Conclusions and next steps

For the future:
● Bigger datasets and more computations

● different compression algorithm, filesystem cache, TTree vs RNTuple

● Investigate issues with more latency (geographical distance)

● Ad-hoc caching mechanisms for RDataFrame analysis

