Modelling the Spectral Energy Distributions and Multi-Wavelength Polarisation of Blazars

H.M. Schutte¹ schuttehester1@gmail.com, M. Böttcher¹, R. J. Britto² on behalf of the Fermi-LAT Collaboration, B. van Soelen², J.P. Marais², A. Kaur³, A. Falcone³, D.A.H. Buckley⁴, H. Zhang⁵, A. Rajoelimanana² and J. Cooper²

¹North-West University (NWU), Centre for Space Research (CSR), South Africa, ²University of the Free State (UFS), ³Penn State University (PSU), ⁴South African Astronomical Observatory (SAAO), ⁵Purdue University

Virtual HEASA 2021 13-17 September

Image Credit: NASA/JPL-Caltech

Collaborators

- Southern African Large Telescope (SALT) Robert Stobie Spectrograph (RSS):
 - Proposal "Observing the Transient Universe"; PI: David A. H. Buckley;
 - Data reduction: Brian van Soelen and Richard J. Britto, with help from Ken Nordsieck. Justin Cooper double-checked data reduction.
- Las Cumbres Observatory (LCO) network of telescopes:
 - PI of the proposal: Brian van Soelen;
 - Data reduction: Brian van Soelen and Johannes P. Marais
- Archival data: NED, WISE and GALEX webpages, collected by Markus Böttcher and Richard Britto.
- Swift-XRT: Abe Falcone and Amanpreet Kaur
- Fermi-LAT: Richard J. Britto, for the Fermi-LAT Collaboration
- Modelling multi-wavelength spectral energy distribution (SED) and multi-wavelength polarisation: Hester Schutte, Markus Böttcher and Haocheng Zhang
- SpUpNIC spectrum: Andry Rajoelimanana

Introduction: The Spectral Energy Distribution (SED)

Introduction: The Multi-Wavelength Polarisation

AIM

Constructing a model that simultaneously fits the spectral energy distributions (SEDs) and multi-wavelength polarisation of blazars. This presentation discusses a fit that was applied to the optical-UV regime and further X-ray through gamma-ray studies from the fit results.

MODEL SETUP

Low-Energy Components

ELECTRON DISTRIBUTION

Broken power-law with exponential cut-off

SHAKURA AND SUNYAEV (1973) ACCRETION DISK

Assuming a thin disk ($L_d < 0.3 L_{Edd}$) and non-rotating BH.

The peak of the accretion disk component corresponds to the maximum disk temperature at the inner disk radius:

$${old v}^{
m disk}(T^{
m max}){\displaystyle \propto}\, M_{
m BH}^{-1/4}$$

BLR EMISSION LINES

- Approximated by Gaussians.
- Flux heights (independent of the continuum flux) relative to each other (Francis et al., 1991).

SYNCHROTRON POLARISATION

According to Rybicki and Lightman (1979):

 $\Pi^{sy} = F_B \cdot \frac{\langle G(x) \rangle}{\langle F(x) \rangle}$

 $\langle G(x) \rangle = \int N_e(\gamma) x(\gamma) K_{2/3}(x(\gamma)) d\gamma$ $\langle F(x) \rangle = \int N_e(\gamma) x(\gamma) \int_{x(\gamma)}^{\infty} K_{5/3}(x(\xi)) d\xi d\gamma.$

Modelling the SEDs and Multi-Wavelength Polarisation of Blazars — Hester Schutte

TOTAL LOW-ENERGY POLARISATION

$$\Pi^{total} = \frac{\Pi^{sy} \cdot F^{sy}}{F^{sy} + F^{disk} + F^{em.lines}}$$

MODEL SETUP

High-Energy Components

INVERSE COMPTON RADIATION (Böttcher et al., 2012):

$$j_{\nu}^{head-on}(\epsilon_{s},\Omega_{s}) \alpha \int_{1}^{\infty} d\gamma n_{e}(\gamma) \int_{4\pi} d\Omega_{ph} \int_{0}^{\infty} d\epsilon n_{ph}(\epsilon,\Omega_{ph}) \frac{d\sigma_{C}}{d\epsilon_{s}}$$

BLR SEED PHOTONS

(Böttcher et al., 2013):

Modelled as an isotropic thermal photon field in the AGN rest frame.

ACCRETION DISK PHOTON DISTRIBUTION (Böttcher et al., 1997):

$$n_{ph}(\epsilon, \Omega_{ph}) = \frac{\epsilon^2}{\epsilon^{*2}} n_{ph}^*(\epsilon^*, \Omega_{ph}^*),$$

dependent on disk intensity and angle at which photon travels from disk.

EC emission is expected to be unpolarised due to the approximate azimuthal symmetry and unpolarised target photons.

Modelling the SEDs and Multi-Wavelength Polarisation of Blazars — Hester Schutte

SSC:

Radiation: Isotropic photon distribution from synchrotron emission.

Polarisation (Bonometto and Saggion, 1973):

$$\Pi_{\omega}^{SSC} = \frac{P_{\omega}^{SSC,\perp} - P_{\omega}^{SSC,\parallel}}{P_{\omega}^{SSC,\perp} + P_{\omega}^{SSC,\parallel}}$$

TOTAL HIGH-ENERGY POLARIZATION (Zhang and Böttcher, 2013):

$$\Pi_{\omega}^{total} = \frac{\Pi_{\omega}^{SSC} \cdot F_{\omega}^{SSC}}{F_{\omega}^{SSC} + F_{\omega}^{EC}}$$

OBSERVATIONS

Spectropolarimetry and spectroscopy observations of blazars conducted by the Southern African Large Telescope (SALT) ToO **Program "Observing the Transient Universe"** (PI: D.A.H. Buckley)

- 20 blazars observed (16 FSRQ, 3 BL Lacs, 1 BCU) - redshifts of 0.1 to 2.1

- Multi-epoch observations for 10 blazars

- Polarisation degrees of 0 to \sim 30 %

OBSERVATIONS

Spectropolarimetry and spectroscopy observations of blazars conducted by SALT ToO Program "Observing the Transient Universe" (PI: D.A.H. Buckley)

4C+01.02

OBSERVATIONS | Fermi-LAT Light-curves

4C+01.02

Analysed Fermi-LAT data from 2016 May to 2017 October.

OBSERVATIONS | Las Cumbres Observatory (LCO) (PI: B. van Soelen)

Photometric observations by LCO were conducted in the B, V and R bands on 2016 August 2, and in the B, V, R, and I bands on 2017 July 28.

Here state Ouiescent 10¹² $\log\left(\nu F_{\nu}\right)\left[\mathrm{Jy}\,\mathrm{Hz}\right]$ 10¹¹ 10¹⁰ 10⁹ B = 0.82 G Flaring state Quiescent Γ = 15 (2016)state (2017) 10¹² Quiescent state (2017) $M_{_{BH}}(M_{_{sun}})$ 3 x 10⁹ 3 x 10⁹ $\log\left(\nu F_{\nu}\right)\left[\mathrm{Jy}\,\mathrm{Hz}\right]$ 10¹¹ • 4.5×10^{46} L_d (erg/s) 3.7 x 10⁴⁶ $F_{\scriptscriptstyle B}$ 0.19 0.04 10¹⁰ $(X^2/n)_{pol}$ 2.88 1.46 10⁹ 10^{12} 10^{10} 10^{14} 10^{8}

Estimating M_{BH} based on the C IV line width and continuum luminosity (Park et al., 2017):

$$M_{BH} = (7.7 \times 10^8)^{+2.2 \times 10^9}_{-5.4 \times 10^8} M_{sun}$$

Flaring (red) and quiescent state (green) low-energy SED bump and spectropolarimetry fit.

 $\log \nu [\text{Hz}]$

🛉 🛉 Archival

Accretion Disk

Synchrotron

Schutte et al. in prep. under review

Comparison to Previous Work

Flaring state (2) Support
Support
 M_{BH} (M_{sun})Flaring state (2) Support
Support
 3×10^9 M_{BH} (M_{sun}) 3×10^9 5×10^9 L_d (erg/s) 4.5×10^{46} 3.2×10^{46} F_B 0.190.16 $(X^2/n)_{pol}$ 2.886.91

	Quiescent state (2017) Comparison M_{BH}	
M _{BH} (M _{sun})	3 x 10 ⁹	5 x 10 ⁹
L _d (erg/s)	3.7 x 10 ⁴⁶	4.4 x 10 ⁴⁶
F _B	0.04	0.05
(X²/n) _{pol}	1.46	1.54

Estimating M_{BH} based on the C IV line width and continuum luminosity (Park et al., 2017):

$$M_{BH} = (7.7 \times 10^8)^{+2.2 \times 10^9}_{-5.4 \times 10^8} M_{sun}$$

Modelling the SEDs and Multi-Wavelength Polarisation of Blazars — Hester Schutte

Ghisellini et al. (2011) and Paliya et al. (2017): $M_{BH} = 5 \times 10^9 M_{sun}$

4C+01.02

Contemporaneous observations, SED and polarisation of flaring state during 2016 (green) and quiescent state during 2016 (red). Archival data are shown in blue.

Broad-band SED

Modelled with the code of Böttcher et al. (2013).

	Flaring state (2016)	Quiescent state (2017)
Parameters Obtained with Fit:		
Minimum gamma y _{min}	54.8	24.5
Gamma break $\gamma_{_{b}}$	7.27 × 10 ²	4.90×10^{2}
Critical gamma γ_c	3.00 × 10 ³	1.51×10^{3}
Electron spectral indices p_1, p_2	2.62, 2.99	2.60, 3.01
High Energy Components Input:		
Kinetic luminosity in jet e⁻'s [erg/s]	3.2×10^{45}	6.0×10^{45}
Emission region height z_o [pc]	0.15	0.3
Emission region radius R _{em} [cm]	3 × 10 ¹⁷	3 × 10 ¹⁷
Observation angle $\theta_{obs} = 1/\Gamma$ [°]	3.5	3.5
External radiation field energy density [erg/cm ³]	9.0 × 10 ⁻³	5.5 × 10 ⁻⁴
External radiation field T^{BB} [K]	5×10^{4}	5×10^{4}

Multi-Wavelength Polarisation

SSC polarisation with the code of Zhang and Böttcher (2013).

A model was constructed that simultaneously fits the low-energy SED and polarisation (synchrotron + accretion disk) components in the optical-UV regime by use of SALT spectropolarimetry and co-ordinated observations.

For 4C+01.02, the black hole mass was constrained to $3 \times 10^9 M_{sun}$ by including SED and polarisation observations compared to previous work by Ghisellini et al. (2011) and Paliya et al. (2017) who only included SED observations and obtained it as 5 x $10^9 M_{sup}$.

Constraining the scaling factor F_{R} parametrising the degree of order of the magnetic field (includes dependency on line of sight), enables us to predict SSC polarisation and, thereby, the total high-energy polarisation.

SUMMARY AND CONCLUSIONS

OUTLOOK

From IXPE (launch data: 17 November **2021)** and AMEGO. Understanding the high energy polarisation mechanisms could help us to distinguish between leptonic and hadronic models.

With SALT spectropolarimetry and coordinated multi-wavelength (archival, Swift, Fermi-LAT) observations.

mage Credit: NA

MEDIUM ENERGY GAMMA-RAY OBSERVATORY

Hadronic model components

Proton synchrotron and pair synchrotron components.

Modelling future polarisation observations

Studying further blazar sources

Thank

VOU!

Û NWU

National Research **Foundation**

Bonometto, S., & Saggion, A. 1973, A&A, 23, 9 Böttcher, M., Harris, D. E. & Krawczynski, H. 2012, Relativistic Jets from Active Galactic Nuclei, Berlin: Wiley. Bottcher, M., Mause, H. & Schlickeiser, R. 1997, A&A, 324, 395. Böttcher, M., Reimer, A., Sweeney, K., & Prakash, A. 2013, ApJ, 768, 54 Böttcher, M., van Soelen, B., Britto, R., et al. 2017, Galaxies, 5, 52 Francis, P. J., Hewett, P. C., Foltz, C. B., Chaffee, F. H., Weymann, R. J. and Morris, S. L. 1991, ApJ 373, 465. Ghisellini, G., Tagliaferri, G., Foschini, L., et al. 2011, MNRAS, 411, 901 Paliya, V. S., Marcotulli, L., Ajello, M., et al. 2017, ApJ, 851, 33 Park, D., Barth, A. J., Woo, J.-H., et al. 2017, ApJ, 839, 93 Rybicki, G. B., & Lightman, A. P. 1986, Radiative Processes in Astrophysics Shakura, N. I., & Sunyaev, R. A. 1973, A&A, 24, 337 Zhang, H., & Böttcher, M. 2013, ApJ, 774, 18

Contact: schuttehester1@gmail.com

References: