# Modelling cosmic-ray transport in jets as a correlated random walk

**P. Reichherzer** (Ruhr University Bochum, University Paris-Saclay) 2021, September 08

#### **Overview**

- This work describes charged particle transport in magnetic fields via a correlated random walk (CRW) in cylindrical coordinates
- $\bullet$  Initial, ballistic, and later diffusive phases are modeled correctly  $\rightarrow$  relevant for compact objects such as blobs in AGN jets
- Statistically satisfying the particle distribution described by the transport equation

## **Motivation**

thin accretion disc







 $10^{10}$  $10^{11}$ 1012  $10^{14}$  $10^{13}$ distance [m]

RUB



Initial ballistic propagation turns into diffusion in CRW, and EOM, while a diffusive approach cannot describe the

Number of secondaries depends on time spent in blob of primaries  $\rightarrow$  escape time

Strong turbulence and high density in blob

Production of secondaries in blob

- Primaries escape when reaching blob sphere  $\rightarrow$  plot shows escape time from blob
- $\rightarrow$  Escape time is influenced by choice of transport model (particles are even faster than the speed of light in diffusive approach)



initial phase

#### Diffusive & CRW much faster than EOM

A diffusive approach overestimates particles that leave blob

 $\rightarrow$  diffusive models underestimate the production of secondaries in blob CRW gives similar results to EOM

### Outlook

Implementation of energy and turbulence-level dependent diffusion coefficients for CRW

 $10^{4}$ 

EOM

CRW

More realistic tests that include interactions and particle spectrum