A NEW APPROACH TO SEARCH FOR BINARY BLACK HOLES WITH FERMI/LAT

 M. Kreter, D. Thompson, for the *Fermi*/LAT Collaboration
P. Arras, D. Dorner, P. Frank, V. Eberle, T. Enßlin, M. Boettcher

> HEASA 2021 September 16th, 2021

Search for binary black holes using IFT

PERIODICITY IN AGN

Credit: Ackermann, M., et al. 2015, The Astrophysical Journal Letters, 813, L41

- Periodic modulations with a period of 2.18 ± 0.08 years
- Hints of periodic signals from six blazars by Penil et. at 2020

How to improve?

Search for binary black holes using IFT

MOTIVATION NIFTY Analysis Reconstruction Summary

PERIODICITY IN AGN

Example PG 1553+113:

Credit: Ackermann, M., et al. 2015, The Astrophysical Journal Letters, 813, L41

- Variety of different methods like e.g. Lomb-Scargle or Wavelet
- Traditional methods are based on fitted GeV flux
- Only valid under certain assumptions like e.g. sinusoidal period

Aim:

Develop new independent method based on Bayesian methods

Search for binary black holes using IFT

NUMERICAL INFORMATION FIELD THEORY

- Software package based on Bayesian methods
- Can handle incomplete data samples with gaps
- Combines advantages of traditional methods

How does it work?

Search for binary black holes using IFT

NUMERICAL INFORMATION FIELD THEORY

Search for binary black holes using IFT

Credit: D. Pumpe et. al., Astronomy & Astrophysics, 610, id.A61,12 p

- Search for quasi-periodic signals in magnetar giant flares
- Using X-ray counts rate of RXTE
- Bayesian method well suited to reconstruct light curve Perfect toolkit to study periodicity in AGN

LAT ANALYSIS

- Fermi Science Tools (v11r5p3)
- Pass 8 data (P8R3)
- Event Class: 128
- Event Type: 3
- zenith angle cut: 90 deg
- ROI: 1 deg
- Energy Range: 100 MeV to 300 GeV

Take low-level counts rate after running GTMKTIME

No likelihood analysis performed

Search for binary black holes using IFT

PRIOR DEFINITION

$$\mathcal{R} = \mathcal{T} \otimes \mathcal{S} \otimes \mathcal{E}$$

Response operator ${\mathcal R}$ includes:

- GTIs of observations ightarrow Detector ontime $\mathcal T$
- Long-term averaged spectrum from 4FGL ${\cal S}$
- Direction and energy dependent effective area ${\cal E}$

Search for binary black holes using IFT

LIGHT CURVE OF PG 1553+113:

- Counts rate light curve selected after running GTMKTIME
- Reconstruction follows long-term trend

Search for binary black holes using IFT

Power spectrum of PG 1553+113:

Test different priors: ontime ($\mathcal{R} = \mathcal{T}$):

Search for binary black holes using IFT

MOTIVATION NIFTY Analysis Reconstruction

9/15

POWER SPECTRUM OF PG 1553+113:

Test different priors: spectrum ($\mathcal{R} = \mathcal{S}$):

No periodic signal found

Search for binary black holes using IFT

MOTIVATION NIFTY ANALYSIS RECONSTRUCTION

POWER SPECTRUM OF PG 1553+113: Test different priors: effective area ($\mathcal{R} = \mathcal{E}$):

Search for binary black holes using IFT

Motivation NIFTY Analysis Reconstruction Summary

- Hint of moon period at 27.3 days
- Hint of orbital precession at 53.4 days

Effective area has largest impact on prior

POWER SPECTRUM OF PG 1553+113: Test different priors: ontime \otimes effective area ($\mathcal{R} = \mathcal{T} \otimes \mathcal{E}$):

- Hint of moon period at 27.3 days
- Hint of orbital precession at 53.4 days

Identification of detector effects is getting stronger

Search for binary black holes using IFT

POWER SPECTRUM OF PG 1553+113:

Test different priors: spectrum \otimes effective area $(\mathcal{R} = \mathcal{S} \otimes \mathcal{E})$:

- Hint of moon period at 27.3 days
- Hint of orbital precession at 53.4 days
- Hint of periodic feature at \sim 754 days

Identification of detector effects is getting stronger

Search for binary black holes using IFT

MOTIVATION NIFTY Analysis Reconstruction Summary

Power spectrum of PG 1553+113:

Test different priors: ontime \otimes spectrum \otimes effective area $(\mathcal{R} = \mathcal{T} \otimes \mathcal{S} \otimes \mathcal{E})$:

Search for binary black holes using IFT

MOTIVATION NIFTY ANALYSIS RECONSTRUCTION SUMMARY

- Hint of moon period at 27.3 days
- Hint of orbital precession at 53.4 days
- Hint of periodic feature at \sim 754 days

Best reconstruction with full detector response

SUMMARY AND OUTLOOK

- Development of new analysis technique to analyze LAT data
- Computational fast, as no *Fermi*/LAT likelihood analysis preformed
- · Proof of principle to reconstruct known detector effects
- Significance test ongoing
- Can be applied on large number of sources
- NIFTy well suited to search for periodicity in AGN

Long-term plan: Catalog on periodic sources based on 4LAC

> Questions: michael@kreter.org

Search for binary black holes using IFT