Modelling Globular Clusters as Multi-wavelength **Emitters**

Hambeleleni Davids*^{,a,b}, Christo Venter^b, Michael Backes^a

^a Department of Physics, Chemistry & Material Science, University of Namibia **bCentre for Space Research, North-West University**

Eighth HEASA Conference

Virtual, Potchefstroom

September 2021

Globular clusters

- $\bullet \sim 160$ Galactic globular clusters (GCs) in our Galaxy (Harris 1996)
- $\bullet < r > \sim 10 \,\mathrm{kpc}$
- GCs contain $\sim 10^6$ old and low-mass stars
- High-density core: large stellar interaction rate
- Millisecond pulsars (MSPs), cataclysmic variables (CVs), low-mass X-ray binaries (LMXBs)

Davids, H (HEASA Conference 2021) [Modelling GCs as Multi-wavelength Emitters](#page-0-0) September 2021 2/34

- Study GC visibility for H.E.S.S.
- Constrain the model with H.E.S.S. upper limits
- Gather more data on Terzan 5: Fit the broadband spectral energy distribution using a leptonic model
- Derive constraints on the MSP luminosity function using the diffuse X-ray data and the Chandra sensitivity
- Demonstrate that uncertainty in model parameters leads to a large spread in the predicted flux: H.E.S.S. GC population, M15 and Omega Cen

- Terzan 5 was discovered in the 1960s, located at a distance $d = 5.9 \pm 0.5$ kpc (Valenti et al. 2007)
- High central stellar density and metallicity.
- Highest stellar interaction rate (Verbunt & Hut 1987)
- Hosts the largest number of MSPs (39)
- **Only GC plausibly detected at very-high energies (Abramowski et al.** 2011)

Previous Radio Observations of Terzan 5

- **Terzan 5 was detected in the** NRAO VLA Sky Survey (NVSS) at 21 cm as a single source with a flux of 5 mJy (Condon et al. 1998)
- **Several radio structures were** detected in the direction of Terzan 5 (Clapson et al. 2011)
- We fit the radio data using a diffuse Low-energy synchrotron radiation component

Diffuse X-ray Emission

- Discovery of hard and diffuse X-ray emission (Eger et al. 2010)
- The diffuse X-ray signal was found to be extended well beyond the R_h of the GC
- The surface brightness peaks near the centre and decreases smoothly outwards

High Energy: New Fermi Data Analysis:

- Second GC to be associated with Fermi LAT source (Abdo et al. 2010; Kong et al. 2010; Nolan et al. 2012)
- Total number of MSPs in Terzan 5 estimated to be 180^{+100}_{-90} (Abdo et al. 2010)
- We selected 7 years of Pass 8 (P8) LAT data (Atwood et al. 2013) and the new Fermi data proved constraining for the low-energy tail of the unpulsed inverse compton component

Very-High-Energy Emission (VHE): H.E.S.S. Data

• VHE γ -ray source in the direction of Terzan 5. No new observations have been carried out on this source since its discovery (Abramowski et al. 2011)

M15

- Total stellar luminosity $7 \times 10^5 L_{\text{sun}}$
- \bullet Core radius 0.43 pc, half-mass radius 3.04 pc
- Distance 10.4 kpc (Harris 1996)
- Eight MSPs (Freire et al. 2015)
- **MAGIC** observations: 165 h
- Deep limit $F(>300\,{\rm GeV}) < 3.2 \times 10^{-13}\,{\rm cm}^{-2}{\rm s}^{-1}$, $< 0.26\%$ of the Crab Nebula flux

 \leftarrow \equiv

∢母→

 \leftarrow \Box

Omega Cen

- Distance: 5 kpc, mass: $4 \times 10^6 M_{\text{sun}}$, age: 11.5 Gyr
- Brightest GC, visible to naked eye
- Most massive GC in Milky Way, may contain black hole
- May be the core remnant of disrupted dwarf galaxy
- 5 new radio pulsars detected (Dai et al., 2020)

o Pulsars

- Magnetospheric leptonic (pulsed emission): Bednarek & Sitarek (2007); Venter et al. (2008), (2009); Cheng et al. (2010); Zajczyk et al. (2013); Bednarek et al. (2016)
- Cluster leptonic (unpulsed emission): Bednarek & Sitarek (2007); Kopp et al. (2013); Bednarek et al. (2016); Ndiyavala et al. (2018), (2019), (2021)
- White dwarfs (Bednarek 2012)
- Hadronic (Domainko 2011)
- Dark Matter (Brown et al 2018)

Spectral components expected from GC MSPs

Davids, H (HEASA Conference 2021) [Modelling GCs as Multi-wavelength Emitters](#page-0-0) September 2021 11/34

I. GC Model (Kopp et al. 2013 Model)

- multi-zone, steady-state, spherically symmetric model
- **•** assumes pulsars to be the sources of relativistic leptons in the GCs

$$
\frac{\partial n_{\rm e}}{\partial t} = \vec{\nabla} \cdot (\mathcal{K} \cdot \vec{\nabla} n_{\rm e}) - \frac{\partial}{\partial E_{\rm e}} (\dot{E}_{\rm e} n_{\rm e}) + Q
$$

$$
\kappa \text{ spatial diffusion tensor}
$$

$$
n_{\rm e} \text{ electron density per energy and volume}
$$

$$
E_{\rm e} \text{ electron energy}
$$

- $\dot{E}_{\rm e}$ radiation losses
	- source term for the electron density in (erg s cm^3)⁻¹
- **•** predict the spectral energy distribution from GCs for a very broad energy range by considering synchrotron radiation (SR), as well as IC losses and diffusion

II. Leptonic Pulsar Model (Harding and Kalapotharakos 2015)

- Model of pulsed high-energy radiation over the entire spectrum from optical to VHE γ -ray wavelengths
- Pairs radiate SR in the outer magnetosphere; they originate from PC cascades
- Primary particles radiate CR; they are accelerated by an electric field
- $P = 7.7$ ms
- $\dot{P}=(6.4\times 10^{19}I_{45})^{-2}(\frac{B^2}{\rho})$ $\frac{\beta^2}{\rho}$), where $l_{45}=\frac{l}{10^{45}\,\mathrm{g\,cm^2}}$ is the moment of inertia
- **Constant electric field**

 QQQ

Parameter Study

Davids, H (HEASA Conference 2021) [Modelling GCs as Multi-wavelength Emitters](#page-0-0) September 2021 14/34

Parameter Study Cont.....

Davids, H (HEASA Conference 2021) [Modelling GCs as Multi-wavelength Emitters](#page-0-0) September 2021 15/34

Parameter Study Cont......

Davids, H (HEASA Conference 2021) [Modelling GCs as Multi-wavelength Emitters](#page-0-0) September 2021 16/34

H.E.S.S. Upper Limit: 15 GCs

- H.E.S.S. searched for TeV emission from 15 GCs (Abramowski et al. 2013)
- Total exposure: 195 h of good quality data
- Results: No significant excess emission was seen above the estimated background for any of the 15 selected GCs

• Detection of Terzan 5 with 5.3σ (Abramow[sk](#page-15-0)i [2](#page-17-0)[0](#page-15-0)[11](#page-16-0)[\)](#page-17-0)

Ranking the GCs according to predicted VHE flux

Top 5 promising candidates: (for best-guess model parameters)

NGC 6388, 47 Tucanae (NGC 104), Terzan 5, Djorg 2, and Terzan 10

Davids, H (HEASA Conference 2021) [Modelling GCs as Multi-wavelength Emitters](#page-0-0) September 2021 18/34

 \sim

Constraining Parameters

Terzan 5:

Optical Upper Limit

- Our leptonic model predicts diffuse SR at low level (Kopp et al. 2013; Ndiyavala et al. 2019).
- \bullet Very difficult to directly observe this component because of $\sim10^5$ stars that contribute a high level of blackbody radiation.
- Obtain the BB flux from stars in different annuli (Trager et al. 1995).
- We estimate the thermal flux level:

$$
\frac{B_{\nu} < \nu > A_{\star}}{d^2} = \frac{8\pi R_{\star}^2 h < \nu >^4 N_{\text{ann}}}{d^2 c^2} \frac{1}{e^{\frac{h\nu}{k_B T}} - 1}
$$

 $\sim 1.7 \times 10^{-14} R_{\star,10}^2 N_{\text{ann}} \text{ erg cm}^{-2} \text{s}^{-1}$

assuming $R_{\star,10} = R_{\star}/10^{10}$ cm and $d = 5.9$ kpc.

Expected BB flux is $\sim 10^5$ times higher than expected SR flux for full GC.

Broadband SED of Terzan 5

←□

Constraining the Pair Multiplicity Spatial Distribution of the Pulsar Population

Updated Broadband SED of Terzan 5

MSP Population Energetics

- **First approach:** degenerate, but reasonable parameters.
- Second approach: We modeled the underlying (visible and invisible) pulsar population via a parametric spin-down luminosity function $dN/d\dot{E} = N_0 (\dot{E}/\dot{E_0})^{-(1+\gamma)}$ (Johnston & Verbunt 1996).
- Balance of energetics: using the observed and estimated unobserved non-thermal X-ray luminosity (Eger et al. 2010) & the Chandra point-source detection sensitivity.

 $L_{\rm X, vis} = \eta_{\rm vis}^{\rm X} N_{\rm vis}^{\rm X} \langle \dot{E} \rangle_{\rm vis}$ $L_{\rm X, invis} = \eta_{\rm invis}^{\rm X} N_{\rm invis}^{\rm X} \langle \dot{E} \rangle_{\rm invis}$ $N_{\text{tot}}^{\text{X}} = \int_{\dot{E}}^{\dot{E}_{\text{max}}} \left(\frac{dN}{d\dot{E}} \right) d\dot{E},$ $N_{\text{vis}}^{\text{X}} = \int_{\dot{E}}^{\dot{E}_{\text{max}}} \left(\frac{dN}{d\dot{E}} \right) d\dot{E},$ $N_{\text{invis}}^{\text{X}} = \int_{\dot{E}}^{\dot{E}_{\text{b}}} \left(\frac{dN}{d\dot{E}} \right) d\dot{E},$ $\langle \dot{E} \rangle_{\text{vis}} = \frac{1}{N_{\rm X}} \int_{\dot{E}}^{\dot{E}_{\rm max}} \dot{E} \left(\frac{dN}{d\dot{E}} \right) d\dot{E}$ $\langle E \rangle_{\text{invis}} = \frac{1}{N_{\text{A}}^{\text{X}}} \int_{E}^{E_{\text{b}}} \dot{E} \left(\frac{dN}{d\dot{E}} \right) d\dot{E}$

Table 2. Sample parameter combinations that lead to a balance of the X-ray-implied energetics.

η x	E_{invis}	$E_{\rm vis}$	$E_{\rm min}$	$E_{\rm max}$	γ L	$N_{\rm vis}^{\rm X}$	$N_{\text{invis}}^{\text{X}}$	$N_{\rm tot}^{\rm X}$
0.05%	3×10^{33}	9.2×10^{34}	10^{31}	2.4×10^{35}	-0.19	43	45	88
0.05%	3.5×10^{32}	1.8×10^{35}	10^{29}	10^{36}	0.21	22	399	421
0.5%	1.2×10^{32}	3.8×10^{34}	10^{31}	10^{36}	0.5	10	116	126
0.5%	1.5×10^{32}	2.8×10^{34}	10^{31}	3.6×10^{35}	0.4	14	96	110
1%	7.4×10^{31}	2.5×10^{34}	10^{31}	2.0×10^{36}	0.6	8	95	103
1%	1.3×10^{32}	2.4×10^{34}	3.0×10^{31}	2.9×10^{36}	0.64	8	53	61
1%	2.5×10^{32}	2×10^{34}	10^{32}	3×10^{36}	0.685	10	27	37

NOTE—The units of the spin-down luminosities are $erg s^{-1}$.

- Very coupled system. A different choice of η_x (or $\langle E \rangle_{\text{vis}}$) will lead to a different solution.
- Future constraints on, e.g., N_{vis} and $\langle E \rangle_{\text{vis}}$ may lead to better constraints on these parameters plus the pair multiplicity M_{+} .

Estimating Uncertainties in the Predicted Gamma-ray Flux of Globular Clusters in the Cherenkov Telescope Array Era **Convergence**

Finer sampling of parameter space (Ndiyavala-Davids et al. 2021)

Convergence

More trials: parameter combinations (Ndiyavala-Davids et al. 2021)

€⊡

 QQ

GC Population

First and second parameter combinations (Ndiyavala-Davids et al. 2021)

Davids, H (HEASA Conference 2021) [Modelling GCs as Multi-wavelength Emitters](#page-0-0) September 2021 28/34

GC Population

Two parameter range combinations (second: lower source term; Ndiyavala-Davids et al. 2021)

Þ

B

4 0 8

 \leftarrow \leftarrow \leftarrow

Þ

 $\left\langle 1\right\rangle$ \sim ×.

M15

- \bullet Median $+$ uncertainty band: due to uncertain model parameters
- Example model predictions (Ndiyavala-Davids et al. 2021)

Davids, H (HEASA Conference 2021) [Modelling GCs as Multi-wavelength Emitters](#page-0-0) September 2021 31 / 34

Omega Cen

- \bullet Median $+$ uncertainty band: due to uncertain model parameters
- Example model predictions (Ndiyavala-Davids et al. 2021)

Davids, H (HEASA Conference 2021) [Modelling GCs as Multi-wavelength Emitters](#page-0-0) September 2021 32 / 34

- Flux predictions and performed a parameter study, varying six model parameters
- **•** Parameters of the individual GCs were uncertain and quite unconstrained by the available data: $B, \Gamma, N_{\star}, d, \kappa, Q_0$
- H.E.S.S. may detect two more GCs if they observe these sources for \sim 100 hours
- Fit the radio spectral points by invoking an LESR component that might extend into the optical range and X-rays using HESR component
- Energetics and numbers of the MSP source population needed to reproduce the detected diffuse X-ray emission are plausible
- Assessed uncertainties in the predicted VHE γ -ray flux of GCs and gave theoretical guidance to CTA's observational strategy

Thank You!

Davids, H (HEASA Conference 2021) [Modelling GCs as Multi-wavelength Emitters](#page-0-0) September 2021 34 / 34

造

 \triangleright \rightarrow \equiv

K ロ ▶ K 何 ▶ K 日