Pulsar High-Energy Emission Models

Alice K. Harding Los Alamos National Laboratory

Detection of Crab pulsar up to 1 TeV

MAGIC - Aliu et al. 2008, 2011 Veritas - Aleksic et al. 2011

MAGIC 40 GeV – 1 TeV (Ansoldi et al. 2016)

Both peaks detected!

Vela pulsar – H.E.S.S. II

10 – 110 GeV (Abdalla et al. 2018)

Continuation of Fermi spectrum (curved subexponential) or power law?

Curvature favored by H.E.S.S. II at $> 3.0\sigma$

2004 – 2016: 60 hours in stereoscopic mode 3 - > 7 TeV!! 5.6 σ (Djannati-Atai 2018)

B1706-44 – H.E.S.S. II and Geminga - MAGIC Spir-Jacob et al. 2019

10 – 70 GeV

High-energy emission models

Outstanding questions:

- Location of the acceleration and emission
- Origin of the GeV emission – CR, SR or IC?
- What is the source of the radiating particles – pairs from polar cap, OG or current sheet?

Inverse Compton models of Crab pulsar

- VHE Emission is SSC from pairs
- SSC spectrum reflects pair spectrum
- Possibility of structure in HE spectrum

Annular gap (Du et al. 2012)

Crab pulsar – cold wind ICS

Aharonian et al. 2012

- Scattering of wind e⁺-e⁻ off of optical/X-ray pulsed emission
- Emission at 20 30 R_{LC}
- Cannot reach 1 TeV nor produce lower energy emission

Outer gap model for Vela TeV emision

Rudak & Dyks 2017

Outer gap model

- Emission inside light cylinder
- PC pairs produce SR optical/UV
- Accelerated primaries scatter optical/UV photons

Global force-free models

Spitkovsky 2006 $\alpha = 60^{\circ}$

Force-free pulsar magnetospheres

- Contain open and closed field regions
- Contain different signs of charge
- Current sheet forms along spin equator
- Current flows out of polar regions and returns along equatorial current sheet

Color: charge density, Streamlines: magnetic field

Global particle-in-cell (PIC) models

Chen & belodorodov 2014, Philippov & Spitkovsky 2014, Cerutti et al 2016, Kalapotharakos+ 2018)

Most particle acceleration occurs in and near the current sheet and separatrices

Global kinetic plasma (PIC) simulations

Brambilla et al. 2018

Pair injection from NS surface Electrons and positron both flow out from surface Positrons flow out past Y-point and accelerate in current sheet Electrons turn around and precipitate inward from Y-point

Philippov & Spitkovsky 2018

Pair creation mostly at Y-point and current sheet Counterstreaming electrons and positrons both accelerate and radiate in current sheet

PIC simulations – Current and EO

F=0.50 FgJ

F=3.50 FgJ

-0.32

-0.10 -0.032

-0.10 0.032

- 0.10 - 0.032

As pair injection rate from NS surface increases - region of accelerating electric field shrinks to current sheet

Brambilla et al. 2018

Accelerating positrons

NASA visualization from Brambilla et al. 2018

PIC simulations show positrons accelerating at low rate in separatrix (red) and at higher rate at Y-point and in current sheet (white)

No outer gaps?

Hu & Belodorodov 2021

Change of charge sign across null surface

But most current flows along separatrix and current sheet

GeV emission

Curvature? (Kalapotharakos+ 2014,2017,2018) $\gamma \sim 10^{7}-10^{8}$

or synchrotron? (Cerutti+ 2016, Philippov & Spitkovsky 2018) $\gamma \sim 10^{5}$ - 10^{6}

SR from current sheet

Mochol & Petri 2015

- GeV emission is SR from particles accelerated by magnetic reconnection in current sheet
- SSC component in Crab up to 3 TeV
- Particle γ ~ 3 x 10^5 so Doppler boost by wind Γ = 100 required
- SSC component for Vela is orders of magnitude lower

But see Petri 2020: Curvature radiation from particles in radiation-reaction limit more naturally explains GeV cutoffs

High energy light curves from CR Fermi pulsars have high pair Kalapotharakos et al. 2018 injection and near force-free $\zeta = 70^{\circ}$ $\alpha = 75^{\circ}$ ${\mathcal E}$ max $\alpha = 75^{\circ}$ YP magnetosphere $\dot{\mathcal{E}} \approx 10^{36} \mathrm{erg} \mathrm{s}^{-1}$ $\dot{\mathcal{E}} \approx 10^{38} \mathrm{erg} \mathrm{s}^{-1}$ $\dot{\mathcal{E}} \approx 10^{34} \mathrm{erg} \ \mathrm{s}^{-1} \qquad \dot{\mathcal{E}} \approx 10^{36} \mathrm{erg} \ \mathrm{s}^{-1}$ $\dot{\mathcal{E}} \approx 10$ $\dot{\mathcal{E}} \approx 10^{34} \mathrm{erg} \mathrm{s}^{-1}$ dL/dw1 0 $6.5 \mathcal{F}_{GJ}^0$ $\zeta(^{\circ})$ 0.25 $15\mathcal{F}_{\mathrm{GJ}}^{0}$ F $\zeta(^{\circ})$ 0.5 0.25 $28 F_G^0$ $\zeta(^{\circ})$ 0.5 0.25 phase(P)phase(P)phase(P)phase(P)phase(P)phase(P)

Simulation of radiation

Harding & Kalapotharakos 2015

Pairs get pitch angles through resonant absorption of radio photons when

$$\varepsilon_B = \gamma \varepsilon_R (1 - \beta \cos \theta)$$

Petrova & Lybarski 1998

Force-free magnetic field 0.2 to 2 R_{LC}

Connect to vacuum retarded dipole below 0.2 $\rm R_{\rm LC}$

$$\boldsymbol{v} = \left(\frac{\boldsymbol{E} \times \boldsymbol{B}}{B^2 + E_0^2} + f\frac{\boldsymbol{B}}{B}\right)c$$

Polar cap pair cascades

Pair cascades above the PC are necessary for coherent radio emission Cascades are time-varying

Timokhin 2010, Timokhin & Arons 2013

Pair cascades produce an abundance of charged particles to supply charges to magnetosphere

$$M_{\pm}$$
~10³ - 3×10⁵

Timokhin & Harding 2015

Inverse Compton emission

$$\frac{N(\varepsilon_{s},\vec{r})}{d\varepsilon_{s}dtd\Omega_{s}} = c\int dE \ n_{\pm}(E) \int d\Omega \ \int d\varepsilon \ n_{\gamma}(\varepsilon,\vec{r},\Omega) \frac{dn_{KN}(\varepsilon,\varepsilon_{s})}{dtd\varepsilon d\varepsilon_{s}} (1 - \beta cos\theta)$$
Jones (1968)
Pair cascade spectrum (polar cap)
$$\int_{0^{36}}^{10^{36}} \frac{V_{ela}}{G^{eminga}}_{B1706-44}_{J0218+4232}$$
Number of the second second

Spectral energy distribution of the Vela pulsar

Modeling TeV+ emission from Vela

Harding, Kalapotharakos, Venter & Barnard 2018

Near force-free magnetosphere

- PC pairs produce synchrotron radiation (SR) optical/UV at lower altitude
- Primary particles (mostly positrons) produce synchrocurvature (SC) and scatter optical/UV to produce 10 TeV ICS emission
- Pairs scatter optical/UV to produce SSC hard X-ray emission

Modeling TeV+ emission from Vela

P = 0.089 s, $B_0 = 4 \times 10^{12}$ G, d = 0.25 kpc $\alpha = 75^{\circ}$, pair M₊ = 6 x 10³

- Detectable component from primary ICS around 10 TeV!
- Pair SR matches optical spectrum

Pulsed emission ~ 10 TeV requires higher particle energy → GeV emission is CR

Harding, Venter & Kalapotharakos 2021 Updated from Harding, Kalapotharakos, Venter & Barnard 2018

Vela model light curves

Vela P1/P2 evolution with energy

Harding, Venter & Kalapotharakos 2021

Lorentz factor of particles in curvature radiation-reaction limit:

$$\gamma_{CRR} = \left(\frac{3E_{||}\rho_c^2}{2e}\right)^{1/4}$$

High energy cutoff

$$E_{CR} \propto E_{||}^{3/4} \rho_c^{1/2}$$

Maximum curvature radius of particle trajectory is higher for P2 allowing particles and photons at higher energy

Curvature radius and γ for each Vela peak

Barnard, Venter, Harding & Kalapotharakos et al., in prep

TeV+ emission from Crab pulsar

α = 45°, ζ = 60°, pair M₊ = 3 x 10⁵

Harding, Venter & Kalapotharakos 2021

TeV+ emission from Geminga

 $P = 0.237 \text{ s}, B_0 = 3 \times 10^{12} \text{ G}, d = 0.25 \text{ kpc}$

Harding, Venter & Kalapotharakos 2021

 $\alpha = 75^{\circ}, \zeta = 50^{\circ}, \text{ pair } M_{+} = 2 \times 10^{4}$

Low pair SR UV flux > Very low primary ICS MAGIC detection explained by primary SC

Geminga model light curves

TeV+ emission from B1706-44

 $P = 0.102 \text{ s}, B_0 = 6.2 \times 10^{12} \text{ G}, d = 2.3 \text{ kpc}$

Pair $M_{+} = 6 \times 10^{4}$

Harding, Venter & Kalapotharakos 2021

Pair emission at low altitude (like Vela) – but lower radio luminosity

Lower pair SR flux in UV
Iower primary ICS

H.E.S.S. II detection explained by primary SC

TeV+ emission from MSP J0218+4232

 $P = 0.0023 \text{ s}, B_0 = 8 \times 10^8 \text{ G}, d = 3.1 \text{ kpc}$

 $\alpha = 60^{\circ}, \zeta = 65^{\circ}, \text{ pair } M_{+} = 3 \times 10^{5}$

Harding, Venter & Kalapotharakos 2021 Acciari et al. 2021 (MAGIC/Fermi paper)

Outstanding questions and GeV/VHE emission

GeV emission

- Recent PIC simulations point to particle acceleration and emission in current sheet
- Fermi light curves can constrain location of particle creation
- Curvature radiation explains P1/P2 decrease and most spectrum above 50 GeV

TeV+ emission from primary IC:

- Particle energies at least 10 TeV -> GeV emission in curvature radiation regime
- High flux of optical/UV emission

SSC emission from pairs:

- High pair multiplicity
- High B_{LC} mostly Crab-like pulsars
- Lower pair energies SR SED peak below 1 MeV to avoid KN reduction