$A_{F B}$ in semileptonic decays at Belle II
 Anomalies and Precision in the Belle II Era Session on $b \rightarrow c \ell \nu$ transitions

Manca Mrvar for the Belle II collaboration

Institute of High Energy Physics (HEPHY, Vienna)
manca.mrvar@oeaw.ac.at

7th September 2021

$b \rightarrow c$ transitions: Beyond the $\left|V_{c b}\right|$

N: HEPHY

Probing the $b \rightarrow c$ transitions with different semileptonic decays: $B \rightarrow X_{c} \ell \nu_{\ell}$, $B \rightarrow D^{*} \ell \nu_{\ell}, B \rightarrow D^{0} \ell \nu_{\ell}$, etc.

$b \rightarrow c$ transitions: Beyond the $\left|V_{c b}\right|$

HEPHY
Institut für Hochenergiephysik

Probing the $b \rightarrow c$ transitions with different semileptonic decays: $B \rightarrow X_{c} \ell \nu_{\ell}$, $B \rightarrow D^{*} \ell \nu_{\ell}, B \rightarrow D^{0} \ell \nu_{\ell}$, etc.

- A well-known anomaly: $\left|V_{c b}\right|$ tension between exclusive and inclusive measurements
- Existence of new physics with no effect on $\left|V_{c b}\right|$, but on other observables?

$b \rightarrow c$ transitions: Beyond the $\left|V_{c b}\right|$

Probing the $b \rightarrow c$ transitions with different semileptonic decays: $B \rightarrow X_{c} \ell \nu_{\ell}$, $B \rightarrow D^{*} \ell \nu_{\ell}, B \rightarrow D^{0} \ell \nu_{\ell}$, etc.

- A well-known anomaly: $\left|V_{c b}\right|$ tension between exclusive and inclusive measurements
- Existence of new physics with no effect on $\left|V_{c b}\right|$, but on other observables?

$$
\bar{B}^{0} \rightarrow D^{*+} \ell^{-} \bar{\nu}_{\ell}
$$

- Large potential: Many observables
- Flavour tagging by slow pion
- Can probe the physics Beyond the Standard

$$
\begin{aligned}
\bar{B}^{0} \rightarrow & D^{*+} \ell^{-} \bar{\nu}_{\ell} \\
& \hookrightarrow D^{0} \pi_{s}^{+} \\
& \hookrightarrow K^{-} \pi^{+}
\end{aligned}
$$ Model (BSM)

Full angular distribution in $\bar{B}^{0} \rightarrow D^{*+} \ell^{-} \bar{\nu}_{\ell}$

Institut für Hochenergiephysik

Full angular distribution in $\bar{B}^{0} \rightarrow D^{*+} \ell^{-} \bar{\nu}_{\ell}$

Institut für Hochenergiephysik

Angular dependency of the semileptonic width:

$$
\begin{equation*}
\frac{\mathrm{d}^{4} \Gamma^{(\ell)}}{\mathrm{d} q^{2} \mathrm{~d} \cos \theta_{\ell} \mathrm{d} \cos \theta_{D} \mathrm{~d} \chi}=\frac{3}{8 \pi} \sum_{i} J_{i}^{(\ell)}\left(q^{2}\right) f_{i}\left(\cos \theta_{\ell}, \cos \theta_{D}, \chi\right) .\{12 \text { terms } 4 \tag{1}
\end{equation*}
$$

Two-lepton invariant mass, q :

$$
\begin{equation*}
q^{2}=\left(p_{\ell}+p_{\nu}\right)^{2}=m \eta_{\ell}^{2^{2}}+m_{\nu}^{2^{\prime \prime}}+2\left(E_{\ell} E_{\nu}-\overrightarrow{p_{\ell}} \cdot \overrightarrow{p_{\nu}}\right) \tag{2}
\end{equation*}
$$

Full angular distribution in $\bar{B}^{0} \rightarrow D^{*+} \ell^{-} \bar{\nu}_{\ell}$

Angular dependency of the semileptonic width:

$$
\begin{equation*}
\frac{\mathrm{d}^{4} \Gamma^{(\ell)}}{\mathrm{d} q^{2} \mathrm{~d} \cos \theta_{\ell} \mathrm{d} \cos \theta_{D} \mathrm{~d} \chi}=\frac{3}{8 \pi} \sum_{i} J_{i}^{(\ell)}\left(q^{2}\right) f_{i}\left(\cos \theta_{\ell}, \cos \theta_{D}, \chi\right) \tag{1}
\end{equation*}
$$

Two-lepton invariant mass, q :

$$
\begin{equation*}
q^{2}=\left(p_{\ell}+p_{\nu}\right)^{2}=m m_{\ell}^{2^{\prime}}+m_{\nu}^{2^{10}}+2\left(E_{\ell} E_{\nu}-\overrightarrow{p_{\ell}} \cdot \overrightarrow{p_{\nu}}\right) \tag{2}
\end{equation*}
$$

Full angular distribution in $\bar{B}^{0} \rightarrow D^{*+} \ell^{-} \bar{\nu}_{\ell}$

HEPHY
Institut für Hochenergiephysik

[doi:10.1103/PhysRevD.90.074013]

Angular dependency of the semileptonic width:

$$
\begin{equation*}
\frac{\mathrm{d}^{4} \Gamma^{(\ell)}}{\mathrm{d} q^{2} \mathrm{~d} \cos \theta_{\ell} \mathrm{d} \cos \theta_{D} \mathrm{~d} \chi}=\frac{3}{8 \pi} \sum_{i} J_{i}^{(\ell)}\left(q^{2}\right) f_{i}\left(\cos \theta_{\ell}, \cos \theta_{D}, \chi\right) \tag{1}
\end{equation*}
$$

Two-lepton invariant mass, q :

$$
\begin{equation*}
q^{2}=\left(p_{\ell}+p_{\nu}\right)^{2}=m_{\ell}^{22^{\prime}}+m_{\nu}^{2^{\prime}}+2\left(E_{\ell} E_{\nu}-\overrightarrow{p_{\ell}} \cdot \overrightarrow{p_{\nu}}\right) \tag{2}
\end{equation*}
$$

Full angular distribution in $\bar{B}^{0} \rightarrow D^{*+} \ell^{-} \bar{\nu}_{\ell}$
*HEPHY
Institut für Hochenergiephysik

[doi:10.1103/PhysRevD.90.074013]

Angular dependency of the semileptonic width:

$$
\begin{equation*}
\frac{\mathrm{d}^{4} \Gamma^{(\ell)}}{\mathrm{d} q^{2} \mathrm{~d} \cos \theta_{\ell} \mathrm{d} \cos \theta_{D} \mathrm{~d} \chi}=\frac{3}{8 \pi} \sum_{i} J_{i}^{(\ell)}\left(q^{2}\right) f_{i}\left(\cos \theta_{\ell}, \cos \theta_{D}, \chi\right) \tag{1}
\end{equation*}
$$

Two-lepton invariant mass, q :

$$
\begin{equation*}
q^{2}=\left(p_{\ell}+p_{\nu}\right)^{2}=m_{\ell}^{22^{\prime}}+m_{\nu}^{2^{\prime}}+2\left(E_{\ell} E_{\nu}-\overrightarrow{p_{\ell}} \cdot \overrightarrow{p_{\nu}}\right) \tag{2}
\end{equation*}
$$

Full angular distribution in $\bar{B}^{0} \rightarrow D^{*+} \ell^{-} \bar{\nu}_{\ell}$
*HEPHY
Institut für Hochenergiephysik

[doi:10.1103/PhysRevD.90.074013]

Angular dependency of the semileptonic width:

$$
\begin{equation*}
\frac{\mathrm{d}^{4} \Gamma^{(\ell)}}{\mathrm{d} q^{2} \mathrm{~d} \cos \theta_{\ell} \mathrm{d} \cos \theta_{D} \mathrm{~d} \chi}=\frac{3}{8 \pi} \sum_{i} J_{i}^{(\ell)}\left(q^{2}\right) f_{i}\left(\cos \theta_{\ell}, \cos \theta_{D}, \chi\right) \tag{1}
\end{equation*}
$$

Two-lepton invariant mass, q :

$$
\begin{equation*}
q^{2}=\left(p_{\ell}+p_{\nu}\right)^{2}=m_{\ell}^{22^{\prime}}+m_{\nu}^{2^{\prime}}+2\left(E_{\ell} E_{\nu}-\overrightarrow{p_{\ell}} \cdot \overrightarrow{p_{\nu}}\right) \tag{2}
\end{equation*}
$$

Full angular distribution in $\bar{B}^{0} \rightarrow D^{*+} \ell^{-} \bar{\nu}_{\ell}$
[doi:10.1103/PhysRevD.90.074013]
Angular dependency of the semileptonic width:

$$
\begin{equation*}
\frac{\mathrm{d}^{4} \Gamma^{(\ell)}}{\mathrm{d} q^{2} \mathrm{~d} \cos \theta_{\ell} \mathrm{d} \cos \theta_{D} \mathrm{~d} \chi}=\frac{3}{8 \pi} \sum_{i} J_{i}^{(\ell)}\left(q^{2}\right) f_{i}\left(\cos \theta_{\ell}, \cos \theta_{D}, \chi\right) \tag{1}
\end{equation*}
$$

Two-lepton invariant mass, q :

$$
\begin{equation*}
q^{2}=\left(p_{\ell}+p_{\nu}\right)^{2}=m_{\ell}^{22^{0}}+m_{\nu}^{2^{\prime}}+2\left(E_{\ell} E_{\nu}-\overrightarrow{p_{\ell}} \cdot \overrightarrow{p_{\nu}}\right) \tag{2}
\end{equation*}
$$

After integration over one variable, q^{2} :

$$
\begin{equation*}
\frac{\mathrm{d}^{3} \Gamma^{(\ell)}}{\mathrm{d} \cos \theta_{\ell} \mathrm{d} \cos \theta_{D} \mathrm{~d} \chi}=\frac{3}{8 \pi} \sum_{i}\left\langle J_{i}^{(\ell)}\right\rangle f_{i}\left(\cos \theta_{\ell}, \cos \theta_{D}, \chi\right) \tag{3}
\end{equation*}
$$

$\rightarrow 12$ angular observables $J_{i}^{(\ell)}$
\rightarrow Their respective (linearly independent) angular coefficient functions f_{i}

Angular distributions - cont'd

The number of observables can be reduced by:

- Binned CP-averaging $\left(\Gamma \rightarrow \widehat{\Gamma}^{(\ell)}\right)$
- Integration over angles

Angular distributions - cont'd

The number of observables can be reduced by:

- Binned CP-averaging $\left(\Gamma \rightarrow \hat{\Gamma}^{(\ell)}\right)$
- Integration over angles

$$
\begin{aligned}
\frac{1}{\widehat{\Gamma}^{(\ell)}} \frac{\mathrm{d} \widehat{\Gamma}^{(\ell)}}{\mathrm{d} \cos \theta_{\ell}}=\frac{1}{2}+ & \left\langle A_{\mathrm{FB}}^{(\ell)}\right\rangle \cos \theta_{\ell}+\frac{1}{4}\left(1-3\left\langle\widetilde{F}_{L}^{(\ell)}\right\rangle\right) \frac{3 \cos ^{2} \theta_{\ell}-1}{2} \\
\frac{1}{\widehat{\Gamma}^{(\ell)}} \frac{\mathrm{d} \widehat{\Gamma}^{(\ell)}}{\mathrm{d} \cos \theta_{D}}= & \frac{3}{4}\left(1-\left\langle F_{L}^{(\ell)}\right\rangle\right) \sin ^{2} \theta_{D}+\frac{3}{2}\left\langle F_{L}^{(\ell)}\right\rangle \cos ^{2} \theta_{D} \\
\frac{1}{\hat{\Gamma}^{(\ell)}} \frac{\mathrm{d} \hat{\Gamma}^{(\ell)}}{\mathrm{d} \chi}= & \frac{1}{2 \pi}+\frac{2}{3 \pi}\left\langle S_{3}^{(\ell)}\right\rangle \cos 2 \chi+\frac{2}{3 \pi}\left\langle S_{9}^{(\ell)}\right\rangle \sin ^{2} \chi \\
& \text { CP-averaged value vanishes }
\end{aligned}
$$

Angular distributions - cont'd

The number of observables can be reduced by:

- Binned CP-averaging $\left(\Gamma \rightarrow \widehat{\Gamma}^{(\ell)}\right)$
- Integration over angles

$$
\begin{align*}
& \frac{1}{\widehat{\Gamma}^{(\ell)}} \frac{\mathrm{d} \widehat{\Gamma}^{(\ell)}}{\mathrm{d} \cos \theta_{\ell}}=\frac{1}{2}+\left\langle A_{\mathrm{FB}}^{(\ell)}\right\rangle \cos \theta_{\ell}+\frac{1}{4}\left(1-3\left\langle\widetilde{F}_{L}^{(\ell)}\right\rangle\right) \frac{3 \cos ^{2} \theta_{\ell}-1}{2} \tag{4}\\
& \frac{1}{\widehat{\Gamma}^{(\ell)}} \frac{\mathrm{d} \widehat{\Gamma}^{(\ell)}}{\mathrm{d} \cos \theta_{D}}= \frac{3}{4}\left(1-\left\langle F_{L}^{(\ell)}\right\rangle\right) \sin ^{2} \theta_{D}+\frac{3}{2}\left\langle F_{L}^{(\ell)}\right\rangle \cos ^{2} \theta_{D} \tag{5}\\
& \frac{1}{\hat{\Gamma}^{(\ell)}} \frac{\mathrm{d} \widehat{\Gamma}^{(\ell)}}{\mathrm{d} \chi}= \frac{1}{2 \pi}+\frac{2}{3 \pi}\left\langle S_{3}^{(\ell)}\right\rangle \cos 2 \chi+\frac{2}{3 \pi}\left\langle S_{9}^{(\ell)}\right\rangle \sin ^{2} \chi \tag{6}\\
& \text { CP-averaged value vanishes }
\end{align*}
$$

4 independent angular observables that have sensitivity to BSM physics:
$\left\langle A_{F B}^{(\ell)}\right\rangle$: lepton forward-backward asymmetry
$\left\langle F_{L}^{(\ell)}\right\rangle$: D^{*} longitudinal polarization factor
$\left\langle\tilde{F}_{L}^{(\ell)}\right\rangle$ and $\left\langle s_{3}^{(\ell)}\right\rangle$: two further angular observables

Generic $b \rightarrow c$ model

Wilson coefficient (unknown)
$\begin{gathered}\text { Effective Field Theory: } \\ \text { (dim. 6) }\end{gathered}$
$\mathcal{L}\left(b \rightarrow c \overline{\nu_{\ell}}\right)=\frac{4 G_{F}}{\sqrt{2}} V_{c b} \sum_{i} \sum_{\ell^{\prime}} \mathcal{C}_{i}^{\ell \ell^{\prime}} \mathcal{O}_{i}^{\ell \ell^{\prime}}+$ h.c.
5 terms operator (known)

Generic $b \rightarrow c$ model

$$
\begin{gather*}
\text { Wilson coefficient (unknown) } \\
\text { Effective Field Theory: } \tag{7}\\
\text { (dim. 6) } \tag{0}
\end{gather*} \quad \mathcal{L}\left(b \rightarrow c \ell \bar{\nu}_{\ell}\right)=\frac{4 G_{F}}{\sqrt{2}} V_{c b} \sum_{i} \sum_{\ell^{\prime}} \mathcal{C}_{i}^{\ell \ell^{\prime}} \mathcal{O}_{i}^{\ell \ell^{\prime}}+\text { h.c. }
$$

Observable	$\left\|C_{A}\right\|^{2}\left\|C_{V}\right\|^{2}\left\|C_{P}\right\|^{2}\left\|C_{T}\right\|^{2}$	$\operatorname{Re}\left(C_{A} C_{V}^{*}\right)$	$\operatorname{Re}\left(C_{A} C_{P}^{*}\right)$	$\operatorname{Re}\left(C_{A} C_{T}^{*}\right)$	$\operatorname{Re}\left(C_{V} C_{P}^{*}\right)$	$\operatorname{Re}\left(C_{V} C_{T}^{*}\right)$	$\operatorname{Re}\left(C_{P} C_{T}^{*}\right)$			
$J_{1 c}=V_{1}^{0}$	\checkmark	-	\checkmark	\checkmark	-	(m)	(m)	-	-	-
$J_{1 s}=V_{1}^{T}$	\checkmark	\checkmark	-	\checkmark	-	-	(m)	-	(m)	-
$J_{2 c}=V_{2}^{0}$	\checkmark	-	-	\checkmark	-	-	-	-	-	-
$J_{2 s}=V_{2}^{T}$	\checkmark	\checkmark	-	\checkmark	-	-	-	-	-	-
$J_{3}=V_{4}^{T}$	\checkmark	\checkmark	-	\checkmark	-	-	-	-	-	-
$J_{4}=V_{1}^{0 T}$	\checkmark	-	-	\checkmark	-	-	-	-	-	-
$J_{5}=V_{2}^{0 T}$	$\left(m^{2}\right)$	-	-	$\left(m^{2}\right)$	\checkmark	(m)	(m)	-	(m)	\checkmark
$J_{6 c}=V_{3}^{0}$	$\left(m^{2}\right)$	-	-	-	-	(m)	(m)	-	-	\checkmark
$J_{6 s}=V_{3}^{T}$	-	-	-	$\left(m^{2}\right)$	\checkmark	-	(m)	-	(m)	-
$d \Gamma / d q^{2}$	\checkmark	\checkmark	\checkmark	\checkmark	-	(m)	(m)	-	(m)	-
$\operatorname{num}\left(A_{F B}\right)$	$\left(m^{2}\right)$	-	-	$\left(m^{2}\right)$	\checkmark	(m)	(m)	-	(m)	\checkmark
$\operatorname{num}\left(F_{L}\right)$	\checkmark	-	\checkmark	\checkmark	-	(m)	(m)	-	-	-
$\operatorname{num}\left(F_{L}-1 / 3\right)$	\checkmark	\checkmark	\checkmark	\checkmark	-	(m)	(m)	-	(m)	-
$\operatorname{num}\left(\widetilde{F}_{L}\right)$	\checkmark	$\left(m^{2}\right)$	\checkmark	\checkmark	-	(m)	(m)	-	(m)	-
$\operatorname{num}\left(\widetilde{F}_{L}-1 / 3\right)$	\checkmark	\checkmark	-	\checkmark	-	-	-	-	-	-
$\operatorname{num}\left(S_{3}\right)$	\checkmark	\checkmark	-	\checkmark	-	-	-	-	-	-
Observable	-	-	-	-	$\operatorname{Im}\left(C_{A} C_{V}^{*}\right) \operatorname{Im}\left(C_{A} C_{P}^{*}\right) \operatorname{Im}\left(C_{A} C_{T}^{*}\right)$	$\operatorname{Im}\left(C_{V} C_{P}^{*}\right) \operatorname{Im}\left(C_{V} C_{T}^{*}\right)$	$\operatorname{Im}\left(C_{P} C_{T}^{*}\right)$			
$J_{7}=V_{3}^{0 T}$				$\left(m^{2}\right)$	-	(m)	(m)	-	\checkmark	
$J_{8}=V_{4}^{0 T}$				\checkmark	-	-	-	-	-	
$J_{9}=V_{5}^{T}$				\checkmark	-	-	-	-	-	

TABLE I. The dependence of angular observables on combinations of Wilson coefficients. An entry of \checkmark denotes the presence of

Generic $b \rightarrow c$ model

$\underset{(\operatorname{dim} .6)}{\text { Effective Field Theory: }} \quad \mathcal{L}\left(b \rightarrow c \ell \overline{\nu_{\ell}}\right)=\frac{4 G_{F}}{\sqrt{2}} V_{c b} \sum_{i} \sum_{\ell^{\prime}} \mathcal{C}_{i}^{\ell \ell^{\prime}} \mathcal{O}_{i}^{\ell \ell^{\prime}}+$ h.c.

$$
\begin{align*}
& \text { Wilson coefficient (unknown) } \\
& \mathcal{L}\left(b \rightarrow c \ell \overline{\nu_{\ell}}\right)=\frac{4 G_{F}}{\sqrt{2}} V_{c b} \sum_{i} \sum_{\ell^{\prime}} \mathcal{C}_{i}^{\ell \ell^{\prime}} \mathcal{O}_{i}^{\ell \ell^{\prime}}+\text { h.c. } \tag{7}
\end{align*}
$$

sum over neutrino flavour
Wilson coefficients

Observable	$\left\|C_{A}\right\|^{2}\left\|C_{V}\right\|^{2}\left\|C_{P}\right\|^{2}\left\|C_{T}\right\|^{2}$	$\operatorname{Re}\left(C_{A} C_{V}^{*}\right)$	$\operatorname{Re}\left(C_{A} C_{P}^{*}\right)$	$\operatorname{Re}\left(C_{A} C_{T}^{*}\right)$	$\operatorname{Re}\left(C_{V} C_{P}^{*}\right)$	$\operatorname{Re}\left(C_{V} C_{T}^{*}\right)$	$\operatorname{Re}\left(C_{P} C_{T}^{*}\right)$			
$J_{1 c}=V_{1}^{0}$	\checkmark	-	\checkmark	\checkmark	-	(m)	(m)	-	-	-
$J_{1 s}=V_{1}^{T}$	\checkmark	\checkmark	-	\checkmark	-	-	(m)	-	(m)	-
$J_{2 c}=V_{2}^{0}$	\checkmark	-	-	\checkmark	-	-	-	-	-	-
$J_{2 s}=V_{2}^{T}$	\checkmark	\checkmark	-	\checkmark	-	-	-	-	-	-
$J_{3}=V_{4}^{T}$	\checkmark	\checkmark	-	\checkmark	-	-	-	-	-	-
$J_{4}=V_{1}^{0 T}$	\checkmark	-	-	\checkmark	-	-	-	-	-	-
$J_{5}=V_{2}^{0 T}$	$\left(m^{2}\right)$	-	-	$\left(m^{2}\right)$	\checkmark	(m)	(m)	-	(m)	\checkmark
$J_{6 c}=V_{3}^{0}$	$\left(m^{2}\right)$	-	-	-	-	(m)	(m)	-	-	\checkmark
$J_{6 s}=V_{3}^{T}$	-	-	-	$\left(m^{2}\right)$	\checkmark	-	(m)	-	(m)	-
$d \Gamma / d q^{2}$	\checkmark	\checkmark	\checkmark	\checkmark	-	(m)	(m)	-	(m)	-
$\operatorname{num}\left(A_{\text {FB }}\right)$	$\left(m^{2}\right)$	-	-	$\left(m^{2}\right)$	\checkmark	(m)	(m)	-	(m)	\checkmark
$\operatorname{num}\left(F_{L}\right)$	\checkmark	-	\checkmark	\checkmark	-	(m)	(m)	-	-	-
$\operatorname{num}\left(F_{L}-1 / 3\right)$	\checkmark	\checkmark	\checkmark	\checkmark	-	(m)	(m)	-	(m)	-
$\operatorname{num}\left(\widetilde{F}_{L}\right)$	\checkmark	$\left(m^{2}\right)$	\checkmark	\checkmark	-	(m)	(m)	-	(m)	-
$\operatorname{num}\left(\widetilde{F}_{L}-1 / 3\right)$	\checkmark	\checkmark	-	\checkmark	-	-	-	-	-	-
$\operatorname{num}\left(S_{3}\right)$	\checkmark	\checkmark	-	\checkmark	-	-	-	-	-	-
$\operatorname{Observable}$	-	-	-	-	$\operatorname{Im}\left(C_{A} C_{V}^{*}\right) \operatorname{Im}\left(C_{A} C_{P}^{*}\right) \operatorname{Im}\left(C_{A} C_{T}^{*}\right)$	$\operatorname{Im}\left(C_{V} C_{P}^{*}\right) \operatorname{Im}\left(C_{V} C_{T}^{*}\right)$	$\operatorname{Im}\left(C_{P} C_{T}^{*}\right)$			
$J_{7}=V_{3}^{0 T}$				$\left(m^{2}\right)$	-	(m)	(m)	-	\checkmark	
$J_{8}=V_{4}^{0 T}$				\checkmark	-	-	-	-	-	
$J_{9}=V_{5}^{T}$				\checkmark	-	-	-	-	-	

TABLE I. The dependence of angular observables on combinations of Wilson coefficients. An entry of \checkmark denotes the presence of

Belle analysis of $\bar{B} \rightarrow D^{*} \ell \bar{\nu}_{\ell}$

Why Belle (II)? $B \rightarrow D^{*}$ angular analysis needs high-precision measurements!

Why Belle (II)? $B \rightarrow D^{*}$ angular analysis needs high-precision measurements!

ANALYSIS OVERVIEW:

- Aim: to measure $\left|V_{c b}\right|$
- Belle sample: $711 \mathrm{fb}^{-1}$
- Untagged analysis
- 3D-Binned Maximum Likelihood fit:
$\diamond \cos \theta_{B Y}$
$\diamond \Delta M$: mass difference $D^{*}-D^{0}$
\diamond Lepton momentum
- Separates electron and muon channel
- Signal yields: ~ 90000 for each channel

Why Belle (II)? $B \rightarrow D^{*}$ angular analysis needs high-precision measurements!

ANALYSIS OVERVIEW:

- Aim: to measure $\left|V_{c b}\right|$
- Belle sample: $711 \mathrm{fb}^{-1}$
- Untagged analysis
- 3D-Binned Maximum Likelihood fit:
$\diamond \cos \theta_{B Y}$
$\theta_{B Y}$: Angle between directions of the B-meson and the $D^{*} \ell(Y)$ system
$\diamond \Delta M$: mass difference $D^{*}-D^{0}$
\diamond Lepton momentum
- Separates electron and muon channel
- Signal yields: ~ 90000 for each channel

$$
\begin{equation*}
\cos \theta_{B Y}=\frac{2 E_{B}^{*} E_{Y}^{*}-2 M_{B}^{2}-m_{Y}^{2}}{2 p_{B}^{*} p_{Y}^{*}} \tag{8}
\end{equation*}
$$

Belle analysis

Next step: Extraction of observables, sensitive to BSM physics

[arXiv:2104.02094v1]

Belle analysis

Next step: Extraction of observables, sensitive to BSM physics

[arXiv:2104.02094v1]

Measurements of observables

Measurements of observables

Measurements of observables

- Stable with respect to the type of fit and the systematic correlations
- Correlation matrices of the statistical uncertainties are incorrect

Measurements of observables

- Stable with respect to the type of fit and the systematic correlations
- Correlation matrices of the statistical uncertainties are incorrect
? Beyond the Standard Model physics scenario
? Wrong assumptions \rightarrow But why no discrepancy in other parameters?

Measurements of observables

- Stable with respect to the type of fit and the systematic correlations
- Correlation matrices of the statistical uncertainties are incorrect
? Beyond the Standard Model physics scenario
? Wrong assumptions \rightarrow But why no discrepancy in other parameters?
- Further studies are needed
- e / μ flavours should be studied separately

Belle II Studies of $\bar{B}^{0} \rightarrow D^{*+} \ell^{-} \bar{\nu}_{\ell}$

Main objectives

Measurements of $\left|V_{c b}\right|$ and $A_{F B}$

Analysis overview:

- Similar to Belle analysis
- Untagged approach
- Fitting variable: $\cos \theta_{B Y}$
- Separation between e and μ channel
- Measurements of several observables, like q^{2} and angle distributions

Belle II Studies of $\bar{B}^{0} \rightarrow D^{*+} \ell^{-} \bar{\nu}_{\ell}$

Main objectives

Measurements of $\left|V_{c b}\right|$ and $A_{F B}$

Analysis overview:

- Similar to Belle analysis
- Untagged approach
- Fitting variable: $\cos \theta_{B Y}$
- Separation between e and μ channel
- Measurements of several observables, like q^{2} and angle distributions

Event	$\begin{aligned} & n \text { Tracks } \geq 3 \\ & \mathrm{E}^{*} \text { Vis }>4 \mathrm{GeV} \\ & \text { FoxWolframR2 }<0.3 \end{aligned}$
Tracking	$\begin{aligned} & \left\|z_{0}\right\|<2 \mathrm{~cm} \\ & \left\|d_{0}\right\|<0.5 \mathrm{~cm} \\ & \Theta \text { in CDC acceptance } \end{aligned}$
Brems-Photon	$0.05 \leq \mathrm{E} \leq 0.15 \mathrm{GeV}$
Leptons	$\begin{aligned} & \ell \text { ID }>0.9 \\ & 1.2<\mathrm{p}_{\ell}^{*}<2.4 \mathrm{GeV} \end{aligned}$
Slow pions	$\mathrm{p}^{*}{ }_{\mathrm{Ts}}<0.4 \mathrm{GeV}$
D mesons	$\begin{aligned} & 1.85<m_{\mathrm{D}}<1.88 \mathrm{GeV} \\ & 0.144<\Delta \mathrm{m}_{\mathrm{D}}<0.148 \mathrm{GeV} \\ & \mathrm{p}_{\mathrm{D}^{*}}<2.5 \mathrm{GeV} \end{aligned}$
$\cos \Theta_{B Y}$	$\left\|\cos \Theta_{\mathrm{BY}}\right\| \leq 4$
For kinematic variables only	$\mathrm{w} \leq 1.5$

Belle II Studies of $\bar{B}^{0} \rightarrow D^{*+} \ell^{-} \bar{\nu}_{\ell}$

Main objectives

Measurements of $\left|V_{c b}\right|$ and $A_{F B}$

Analysis overview:

- Similar to Belle analysis
- Untagged approach
- Fitting variable: $\cos \theta_{B Y}$
- Separation between e and μ channel
- Measurements of several observables, like q^{2} and angle distributions

Event	$\begin{aligned} & n \text { Tracks } \geq 3 \\ & \mathrm{E}^{*}{ }_{\text {Vis }}>4 \mathrm{GeV} \\ & \text { FoxWolframR2 }<0.3 \end{aligned}$
Tracking	$\begin{aligned} & \left\|z_{0}\right\|<2 \mathrm{~cm} \\ & \left\|d_{0}\right\|<0.5 \mathrm{~cm} \\ & \Theta \text { in CDC acceptance } \end{aligned}$
Brems-Photon	$0.05 \leq \mathrm{E} \leq 0.15 \mathrm{GeV}$
Leptons	$\begin{aligned} & \text { थID }>0.9 \\ & 1.2<\mathrm{p}_{\ell}^{*}<2.4 \mathrm{GeV} \end{aligned}$
Slow pions	$\mathrm{p}^{*}{ }_{\text {Ts }}<0.4 \mathrm{GeV}$
D mesons	$\begin{aligned} & 1.85<\mathrm{m}_{\mathrm{D}}<1.88 \mathrm{GeV} \\ & 0.144<\Delta \mathrm{m}_{\mathrm{D}}<0.148 \mathrm{GeV} \\ & \mathrm{p}_{\mathrm{D}^{*}}^{*}<2.5 \mathrm{GeV} \end{aligned}$
$\cos \Theta_{\mathrm{BY}}$	$\left\|\cos \Theta_{\mathrm{BY}}\right\| \leq 4$
For kinematic variables only	$\mathrm{w} \leq 1.5$

Data samples

- Belle II data collected in the years 2019 and 2020 equivalent to $62.8 \mathrm{fb}^{-1}$
- Background and signal are modeled by Monte Carlo sample of $300 \mathrm{fb}^{-1}$

Untagged analysis: B rest frame reconstruction

Belle II reconstruction framework uses dedicated algorithms to improve B rest frame reconstruction.

Untagged analysis: B rest frame reconstruction

Belle II reconstruction framework uses dedicated algorithms to improve B rest frame reconstruction.

DIAMOND FRAME

- B-mesons generated perpendicularly to the direction of the $\Upsilon(4 S)$ in $\Upsilon(4 S) \rightarrow B \bar{B}$
- Self-consistent coordinate system is computed
- Constant opening angle of constructed B vector: infinite amount of possibilities
- Four azimuthal angles ϕ for the weighted average (compromise between computing and precision)

Untagged analysis: B rest frame reconstruction

Belle II reconstruction framework uses dedicated algorithms to improve B rest frame reconstruction.

DIAMOND FRAME

- B-mesons generated perpendicularly to the direction of the $\Upsilon(4 S)$ in $\Upsilon(4 S) \rightarrow B \bar{B}$
- Self-consistent coordinate system is computed
- Constant opening angle of constructed B vector: infinite amount of possibilities
- Four azimuthal angles ϕ for the weighted average (compromise between computing and precision)
Rest-Of-Event (ROE) FRAME
- Estimate momentum $\vec{p}_{\text {incl }}$ of non-signal B-meson
- Choose direction of cone based on $\vec{p}_{\text {incl }}$

$B^{0} \rightarrow D^{*-} \ell^{+} \nu_{\ell}:$ Fitting procedure

- Binned Likelihood Fit of $\cos \theta_{B Y}$
- Three MC templates (shapes) are used:
\diamond Signal events
$\diamond B \bar{B}$ backgrounds
\diamond Continuum $\left(e^{+} e^{-} \rightarrow q \bar{q}\right)$

$$
\cos \theta_{B Y}=\frac{2 E_{B}^{*} E_{Y}^{*}-2 M_{B}^{2}-m_{Y}^{2}}{2 p_{B}^{*} p_{Y}^{*}}
$$

Branching fraction

$$
\begin{equation*}
\mathcal{B}\left(\bar{B}^{0} \rightarrow D^{*+} \ell^{-} \bar{\nu}_{\ell}\right)=\frac{N_{\mathrm{sig}}^{\ell}}{N_{B^{0}} \times \epsilon_{B^{0}} \times \mathcal{B}\left(D^{*+} \rightarrow D^{0} \pi_{s}^{+}\right) \times \mathcal{B}\left(D^{0} \rightarrow K^{-} \pi^{+}\right)} \tag{9}
\end{equation*}
$$

$$
\begin{aligned}
& N_{\mathrm{sig}}^{\ell} \ldots \text { number of signal events } \\
& N_{\bar{B} O} \ldots \text { the number of } B^{0} \text { mesons in the data sample } \\
& \epsilon_{\bar{B} O} \ldots \text { the total signal selection efficiency }
\end{aligned}
$$

Branching fraction

$$
\begin{equation*}
\mathcal{B}\left(\bar{B}^{0} \rightarrow D^{*+} \ell^{-} \bar{\nu}_{\ell}\right)=\frac{N_{\mathrm{sig}}^{\ell}}{N_{B^{0}} \times \epsilon_{B^{0}} \times \mathcal{B}\left(D^{*+} \rightarrow D^{0} \pi_{s}^{+}\right) \times \mathcal{B}\left(D^{0} \rightarrow K^{-} \pi^{+}\right)} \tag{9}
\end{equation*}
$$

```
N
N
\epsilon}\mp@subsup{\overline{B}}{0}{0}\ldots\mathrm{ the total signal selection efficiency
```

Combined \mathcal{B} :

- Weighted average of fractions
- Statistical uncertainty from fit
- Systematics: determined individually and propagated

Branching fraction

$$
\begin{equation*}
\mathcal{B}\left(\bar{B}^{0} \rightarrow D^{*+} \ell^{-} \bar{\nu}_{\ell}\right)=\frac{N_{\mathrm{sig}}^{\ell}}{N_{B^{0}} \times \epsilon_{B^{0}} \times \mathcal{B}\left(D^{*+} \rightarrow D^{0} \pi_{s}^{+}\right) \times \mathcal{B}\left(D^{0} \rightarrow K^{-} \pi^{+}\right)} \tag{9}
\end{equation*}
$$

```
N
N
\epsilon}\mp@subsup{\overline{B}}{\overline{B}}{}\ldots\mathrm{ ... the total signal selection efficiency
```

Combined \mathcal{B} :

- Weighted average of fractions
- Statistical uncertainty from fit

Lepton universality:

- Probed by ratio of

$$
\mathcal{B}_{e} / \mathcal{B}_{\mu}=1.001 \pm 0.016
$$

- Systematics: determined individually and propagated

Back to $A_{F B \ldots}$

\rightarrow Besides the three angles $\left(\cos \theta_{\ell}, \cos \theta_{D}, \chi\right)$ and q^{2}, we define one more variable, w:

$$
\begin{gather*}
q^{2}=M_{\ell \nu}^{2}=2\left(E_{\ell} E_{\nu}-\overrightarrow{p_{\ell}} \cdot \overrightarrow{p_{\nu}}\right) \tag{10}\\
w=\frac{p_{B} \cdot p_{D^{*}}}{m_{B} m_{D^{*}}}=\frac{m_{B}^{2}+m_{D^{*}}^{2}-q^{2}}{2 m_{B} m_{D^{*}}} \tag{11}
\end{gather*}
$$

\rightarrow Different theories use either q^{2} or w as an input
\rightarrow Limits restricted by kinematics: $q^{2} \in[0,10.69] \mathrm{GeV}^{2}$ and $w \in[1,1.504]$

Back to $A_{F B \ldots}$

\rightarrow Besides the three angles $\left(\cos \theta_{\ell}, \cos \theta_{D}, \chi\right)$ and q^{2}, we define one more variable, w:

$$
\begin{gather*}
q^{2}=M_{\ell \nu}^{2}=2\left(E_{\ell} E_{\nu}-\overrightarrow{p_{\ell}} \cdot \overrightarrow{p_{\nu}}\right) \tag{10}\\
w=\frac{p_{B} \cdot p_{D^{*}}}{m_{B} m_{D^{*}}}=\frac{m_{B}^{2}+m_{D^{*}}^{2}-q^{2}}{2 m_{B} m_{D^{*}}} \tag{11}
\end{gather*}
$$

\rightarrow Different theories use either q^{2} or w as an input
\rightarrow Limits restricted by kinematics: $q^{2} \in[0,10.69] \mathrm{GeV}^{2}$ and $w \in[1,1.504]$

RESOLUTIONS

	Belle	Belle II
w	0.025	0.026
$\cos \theta_{D}$	0.050	0.060
$\cos \theta_{\ell}$	0.049	0.044
χ	$13.48^{\circ}{ }^{*}$	0.288 rad
	$\sim 0.235 \mathrm{rad}$	

Belle: $141 \mathrm{fb}^{-1}$, Belle II: $300 \mathrm{fb}^{-1}$
(different methods for resolution determinations)

Summary \& Outlook

BELLE RESULTS

- $\sim 4 \sigma$ discrepancy between data and SM for $\Delta A_{F B}$
- Physics beyond SM? Issues in model assumptions? \rightarrow Further studies are needed!

Summary \& Outlook

BELLE RESULTS

- $\sim 4 \sigma$ discrepancy between data and SM for $\Delta A_{F B}$
- Physics beyond SM? Issues in model assumptions? \rightarrow Further studies are needed!

BELLE II PROSPECTS

- Branching ratios, obtained with $62.8 \mathrm{fb}^{-1}$ of Belle II data, are in good agreement with the current world averages

$$
\begin{gathered}
\mathcal{B}\left(\bar{B}^{0} \rightarrow D^{*+} \ell^{-} \bar{\nu}_{\ell}\right)=\left(4.82 \pm 0.04_{\text {stat }} \pm 0.29_{\text {sys }}\right) \% \\
R(e / \mu)=1.00 \pm 0.02_{\text {stat }}
\end{gathered}
$$

- Observables for $A_{F B}$ determination were measured
- New measurements with larger data sample will be used for $A_{F B}$ extraction

Summary \& Outlook

BELLE RESULTS

- $\sim 4 \sigma$ discrepancy between data and SM for $\Delta A_{F B}$
- Physics beyond SM? Issues in model assumptions? \rightarrow Further studies are needed!

BELLE II PROSPECTS

- Branching ratios, obtained with $62.8 \mathrm{fb}^{-1}$ of Belle II data, are in good agreement with the current world averages

$$
\begin{gathered}
\mathcal{B}\left(\bar{B}^{0} \rightarrow D^{*+} \ell^{-} \bar{\nu}_{\ell}\right)=\left(4.82 \pm 0.04_{\text {stat }} \pm 0.29_{\text {sys }}\right) \% \\
R(e / \mu)=1.00 \pm 0.02_{\text {stat }}
\end{gathered}
$$

- Observables for $A_{F B}$ determination were measured
- New measurements with larger data sample will be used for $A_{F B}$ extraction

$$
\text { We plan to obtain } A_{F B} \text { with Belle II data soon! :) }
$$

BACKUP

Distributions of observables $-\mu$ mode

Resolution determination

Different methods were tried:

- Fit with one gaussian distributions
- Fit with two gaussian distributions
- Integrating over $\mu \pm 1 \sigma$

	Belle		Belle II	
	σ_{1}	σ_{2}	σ_{1}	σ_{2}
$\cos \theta_{D}$	0.033	0.086	0.026	0.080
$\cos \theta_{\ell}$	0.028	0.095	0.024	0.082
χ	0.055	0.175	0.142	0.403

