The $\mathcal{R}(D^{(*)})$ Anomaly and New Physics

Monika Blanke

Anomalies and Precision in the Belle II Era Mauerbach/Zoom – September 7, 2021

The $\mathcal{R}(D^{(*)})$ Anomaly

Test of lepton flavour universality in semi-leptonic B decays

$$\mathcal{R}(D^{(*)}) = \frac{\mathsf{BR}(B \to D^{(*)} \tau \nu)}{\mathsf{BR}(B \to D^{(*)} \ell \nu)} \qquad (\ell = e, \mu)$$

➤ tension between SM prediction and data for almost 10 years!

- theoretically clean, as hadronic uncertainties largely cancel in ratio
- measurements by BaBar, Belle, and LHCb (so far $\mathcal{R}(D^*)$ only) in good agreement with each other
- LHCb found $\mathcal{R}(J/\psi)$ to be larger than expected in SM
- $> 3.1\sigma$ anomaly HFLAV (2019)

Effective Hamiltonian for $b \to c \tau \nu$

New Physics above B meson scale described model-independently by

$$\mathcal{H}_{\mathrm{eff}}^{\mathsf{NP}} = 2\sqrt{2}G_F V_{cb} \Big[(1+C_V^L)O_V^L + C_S^R O_S^R + C_S^L O_S^L + C_T O_T \Big]$$

with the vector, scalar and tensor operators

$$\begin{split} O_V^L &= \left(\bar{c}\gamma^\mu P_L b\right) \left(\bar{\tau}\gamma_\mu P_L \nu_\tau\right) \\ O_S^R &= \left(\bar{c}P_R b\right) \left(\bar{\tau}P_L \nu_\tau\right) \\ O_S^L &= \left(\bar{c}P_L b\right) \left(\bar{\tau}P_L \nu_\tau\right) \\ O_T &= \left(\bar{c}\sigma^{\mu\nu} P_L b\right) \left(\bar{\tau}\sigma_{\mu\nu} P_L \nu_\tau\right) \end{split}$$

Note: $(\bar{c}\gamma^{\mu}P_Rb)(\bar{\tau}\gamma_{\mu}P_L\nu_{\tau})$ not generated at dimension-six level in the $SU(2)_L \times U(1)_Y$ -invariant theory

¹assuming heavy/no ν_R and NP only in au channel

Additional Observables

ratio of baryonic decay rates

$$\mathcal{R}(\Lambda_c) = \frac{\mathsf{BR}(\Lambda_b \to \Lambda_c \tau \nu)}{\mathsf{BR}(\Lambda_b \to \Lambda_c \ell \nu)} \qquad (\ell = e, \mu)$$

• longitudinal D^* polarisation

$$F_L(D^*) = \frac{\Gamma(B \to D_L^* \tau \nu)}{\Gamma(B \to D^* \tau \nu)}$$
 Belle: $0.60 \pm 0.08 \pm 0.035$ SM: 0.46 ± 0.04

ullet au polarisation asymmetries

$$P_{\tau}(D^{(*)}) = \frac{\Gamma(B \to D^{(*)}\tau^{\lambda = +1/2}\nu) - \Gamma(B \to D^{(*)}\tau^{\lambda = -1/2}\nu)}{\Gamma(B \to D^{(*)}\tau\nu)}$$

ullet BR $(B_c
ightarrow au
u)$ – particularly sensitive to scalar contributions

A Closer Look at $B_c \to au u$

- no direct experimental bound on ${\sf BR}(B_c o au
 u)$
- constraints advocated in the literature

```
AKEROYD, CHEN (2017)
```

ightharpoonup searches for $B_{u,c} \to \tau \nu$ at LEP1: ${\sf BR}(B_c \to \tau \nu) < 10\%$

caveats of theory interpretation

- ullet relies crucially on ratio of $b o B_c$ vs. $b o B_u$ fragmentation functions
- Tevatron and LHC determinations of f_c/f_u not applicable to LEP (hadron collisions vs. Z peak observables)
- ullet indeed NRQCD yields smaller f_c value \qquad ZHENG ET AL. (2017), (2019)

A Closer Look at $B_c o au u$

- no direct experimental bound on ${\sf BR}(B_c o au
 u)$
- constraints advocated in the literature

```
AKEROYD, CHEN (2017)
```

ightharpoonup searches for $B_{u,c} \to \tau \nu$ at LEP1: $\mathsf{BR}(B_c \to \tau \nu) < 10\%$

Alonso, Grinstein, Martin Camalich (2016)

ightharpoonup measured total B_c lifetime: ${\sf BR}(B_c \to \tau \nu) < 30\%$

caveats of τ_{B_c} theory prediction

Beneke, Buchalla (1996)

- large m_c dependence (LO QCD calculation, $1.4\,\mathrm{GeV} < m_c < 1.6\,\mathrm{GeV})$
- \bullet based on heavy quark expansion and non-rel. QCD, but B_c decays dominantly through charm decay

A Closer Look at $B_c o au u$

- no direct experimental bound on $\mathsf{BR}(B_c \to \tau \nu)$
- constraints advocated in the literature

AKEROYD, CHEN (2017)

ightharpoonup searches for $B_{u,c} o au
u$ at LEP1: $\mathsf{BR}(B_c o au
u) < 10\%$

Alonso, Grinstein, Martin Camalich (2016)

ightharpoonup measured total B_c lifetime: $\mathsf{BR}(B_c \to \tau \nu) < 30\%$

Our critical assessment (2018/2019)

- more refined studies needed
- ullet conservative (agnostic) bound: ${\sf BR}(B_c o au
 u) \lesssim 60\%$

MB, Crivellin, de Boer, Kitahara, Moscati, Nierste, Nišandžić (2018), (2019)

Recent News on the B_c Lifetime

• updated SM prediction using OPE

Aebischer, Grinstein (2021-I)
large uncertainties and significant scheme dependence

$$\begin{split} \Gamma_{B_c}^{\overline{\rm MS}} &= (1.51 \pm 0.38|^{\mu} \pm 0.08|^{\rm n.p.} \pm \dots) \, \rm ps^{-1} \\ \Gamma_{B_c}^{\rm meson} &= (1.70 \pm 0.24|^{\mu} \pm 0.20|^{\rm n.p.} \pm \dots) \, \rm ps^{-1} \\ \Gamma_{B_c}^{\rm Upsilon} &= (2.40 \pm 0.19|^{\mu} \pm 0.21|^{\rm n.p.} \pm \dots) \, \rm ps^{-1} \end{split}$$

- \triangleright no clear-cut conclusion on size of NP effects in Γ_{B_c} possible
- ullet determination from B, D decay rates Aebischer, Grinstein (2021-II) based on quark-hadron duality

$$\Gamma_{B_c} \sim (3.0 \pm 0.5) \, \mathrm{ps}^{-1}$$

- ightharpoonup significantly larger than $\Gamma_{B_c}^{\rm exp}=1.961(35)\,{\rm ps}^{-1}$
- underestimated uncertainties? failure of quark-hadron duality?
- > would require destructive NP interference

Possible Single-Particle Explanations

New Physics fit scenarios

 C_V^L

MB, Crivellin, Kitahara, Moscati, Nierste, Nišandžić (2019) vector $SU(2)_L$ -triplet W'

$$(C_V^L, C_S^L = -4C_T)$$
 SU(2)_L-singlet scalar leptoquark (LQ)

M. Blanke

$$(C_V^L, C_S^R)$$
 SU(2)_L-singlet vector LQ

$$(C_S^R,\,C_S^L)$$
 charged Higgs

$$({
m Re}[C_S^L=4C_T], \qquad {
m scalar} \ {
m SU}(2)_L$$
-doublet LQ ${
m Im}[C_S^L=4C_T]) \qquad {
m with} \ {
m CP}$ -violating couplings

see also Aebischer et al (2019); Murgui et al (2019); Shi et al (2019)...

Two-Dimensional Fit Results (I)

MB, Crivellin, Kitahara, Moscati, Nierste, Nišandžić (2019)

- ullet good fit for both $(C_V^L,\,C_S^L=-4C_T)$ and $(C_V^L,\,C_S^R)$
- \bullet consistent with only $C_V^L \neq 0$ (W' scenario; challenged by EWP tests)
- small impact of $BR(B_c \to \tau \nu)$ and LHC mono- τ constraints

Two-Dimensional Fit Results (II)

MB, Crivellin, Kitahara, Moscati, Nierste, Nišandžić (2019)

ullet very good fit for $(C_S^R,\,C_S^L)$, but implies large ${\sf BR}(B_c o au
u)$

M. Blanke

- decent fit for $(C_S^L = 4C_T)$, unless $BR(B_c \to \tau \nu) < 10\%$ is imposed
- ullet soon to be probed by LHC searches with au's

LHC Mono- τ Searches

Greljo, Martin Camalich, Ruiz-Alvarez (2018)

- crossing symmetry relates $b \to c \tau \nu$ to $pp \to X\tau\nu$
- high- p_T tails constrain EFT operators (as opposed to resonance searches)

- > LHC has become competitive in testing the $b \to c \tau \nu$ anomaly
 - pure tensor (two LQs) and RH neutrino solutions disfavoured
 - HL-LHC will probe all possible NP explanations of anomaly

M. Blanke

The $\mathcal{R}(\Lambda_c)$ Sum Rule

MB, Crivellin, de Boer, Kitahara, Moscati, Nierste, Nišandžić (2018), (2019)

Approximate sum rule relating $\mathcal{R}(D^{(*)})$ and $\mathcal{R}(\Lambda_c)$

$$\frac{\mathcal{R}(\Lambda_c)}{\mathcal{R}_{\mathrm{SM}}(\Lambda_c)} \simeq 0.262 \frac{\mathcal{R}(D)}{\mathcal{R}_{\mathrm{SM}}(D)} + 0.738 \frac{\mathcal{R}(D^*)}{\mathcal{R}^{\mathrm{SM}}(D^*)}$$

- enhancement of $\mathcal{R}(D^{(*)})$ implies $\mathcal{R}(\Lambda_c) > \mathcal{R}_{SM}(\Lambda_c) = 0.33 \pm 0.01$
- consistent with expectation from heavy-quark symmetry

Model-independent prediction² from current $\mathcal{R}(D^{(*)})$ data:

$$\mathcal{R}(\Lambda_c) = 0.38 \pm 0.01_{\mathcal{R}(D^{(*)})} \pm 0.01_{\mathsf{form factors}}$$

 \succ experimental consistency check of $\mathcal{R}(D^{(*)})$ anomaly

²even in the presence of light ν_R

Correlations between Polarization Observables (I)

MB, CRIVELLIN, KITAHARA, MOSCATI, NIERSTE, NIŠANDŽIĆ(2019)

Disentangling between different NP scenarios

- different pattern of effects in polarization observables
- ullet only (C_S^R,C_S^L) scenario can enhance $F_L(D^*)$ into 1σ exp. region

M. Blanke

$$F_L(D^*)_{\mathsf{Belle}} = 0.60 \pm 0.08 \pm 0.035$$

Correlations between Polarization Observables (II)

MB, CRIVELLIN, KITAHARA, MOSCATI, NIERSTE, NIŠANDŽIĆ(2019)

Disentangling between different NP scenarios

- ullet remaining ambiguity can be resolved by inclusion of $P_{ au}(D^*)$
- more precise measurements and form-factor predictions needed!

for full $B \to D^* \tau \nu$ angular analysis, see Becirevic et al. (2019)

Complementary Constraints

Implied by $SU(2)_L$ **symmetry** (dep. on operator structure)

- large impact on $B \to K^{(*)} \nu \bar{\nu}$, $B_s \to \tau^+ \tau^-$, $B \to K \tau^+ \tau^-$ Crivellin, Müller, Ota (2017)
- ullet contributions to $\Upsilon o au^+ au^-$ and $\psi o au^+ au^-$

Complementary probes in high- p_T searches

- ullet stringent limits from direct searches for W'/Z' and leptoquarks
- ullet strong constraints from mono-au and $au^+ au^-$ searches at LHC

Faroughy, Greljo, Kamenik (2016); Altmannshofer, Dev, Soni (2017) Greljo, Martin Camalich, Ruiz-Alvarez (2018)

 \succeq full NP resolution of $\mathcal{R}(D^{(*)})$ anomaly challenging

Summary

$\mathcal{R}(D^{(*)})$ anomaly approaching its 10th birthday

- ullet anomaly persists at 3σ level, central values shifted towards SM
- ullet experimental consistency check by sum rule prediction $\mathcal{R}(\Lambda_c)=0.38\pm0.01$
- possible NP origins new tree-level contributions
 - ullet W' gauge boson
 - charged Higgs
 - scalar or vector leptoquark
- model-discriminating complementary constraints

M. Blanke

- polarization observables
- $SU(2)_L$ -related decays
- high- p_T LHC data
- > challenging for many concrete NP models

Backup slides

Few Technical Remarks on our Fit

- ullet assume NP only in au channel e and μ channels are SM like
- no light right-handed neutrinos
- ullet fit includes $\mathcal{R}(D)$, $\mathcal{R}(D^*)$, $P_{ au}(D^*)$, $F_L(D^*)$
- fit uses central values of form factors
 - ullet B o D vector and scalar form factors from FLAG Working Group
 - $B \to D^*$: V, A_1 , A_2 fit results from HFLAV A_0 from Bernlochner et al (2017)
 - tensor form factors from Bernlochner et al (2017)
 - full set of baryonic $\Lambda_b \to \Lambda_c$ form factors from Detmold et al. (2015); Datta et al. (2017)
- ullet values of Wilson coefficients correspond to scale $\mu=1\,\mathrm{TeV}$

One-Dimensional Fit Results

- \bullet best fit for $C_V^L \sim 0.07$
- ullet noticeable improvement also for $C_S^R \sim 0.09$

One-Dimensional Fit Results

- ullet best fit for $C_V^L \sim 0.07$
- noticeable improvement also for $C_S^R \sim 0.09$
- ullet large impact of $\mathsf{BR}(B_c o au
 u)$ on C^L_S scenario
- ullet no relevant improvement for $C_S^L=4C_T$ with real Wilson coefficients

Correlations between Polarization Observables (III)

