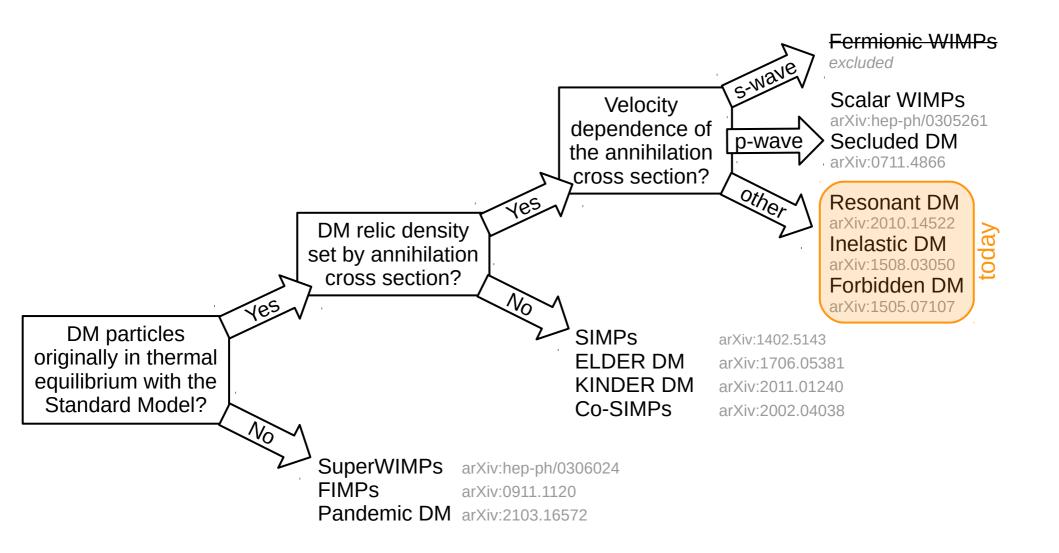

Dark matter at the GeV scale and searches at low-energy experiments

Felix Kahlhoefer Anomalies and Precision in the Belle II Era Vienna / online 8 September 2021

Including results from **arXiv:1907.04346**, **arXiv:1911.03176**, **arXiv:2010.14522**, **arXiv:2011.06604** and **ongoing work** in collaboration with Kai Böse, Juliana Carrasco Mejia, Elias Bernreuther, Michael Duerr, Torben Ferber, Chris Hearty, Saniya Heeba, Michael Krämer, Alessandro Morandini, Kai Schmidt-Hoberg and Patrick Tunney

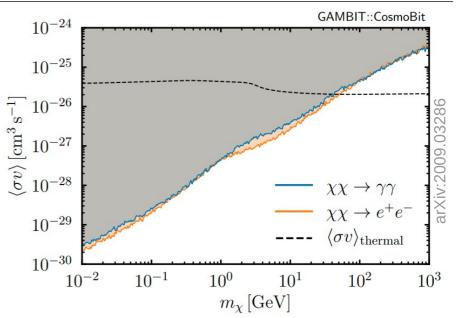
Models for GeV-scale dark matter: Overview


Emmy Noether-Programm DFG ^{Deutsche} reschungsgemeinscheft

2

Models for GeV-scale dark matter: Overview

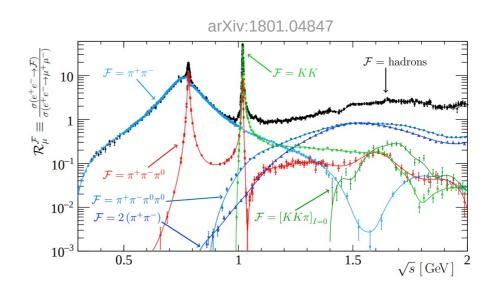
Emmy Noether-Programm DFG Deutsche Forschungsgemeinschaft


3

Velocity dependence of DM annihilations

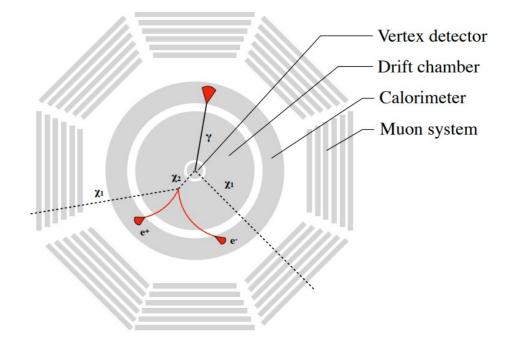
- Thermal freeze-out requires annihilation cross section σv ~ 10⁻²⁶ cm³/s
- If σv is velocity independent, DM annihilations are still ongoing during recombination and in the present universe
 - → Strong constraints on GeV-scale DM from CMB observations and indirect detection experiments

- To evade these constraints, it is necessary to suppress the annihilation cross section at small velocities
- Three main avenues:
 - Suppression of co-annihilation partners \rightarrow Inelastic dark matter
 - Strongly energy-dependent matrix element → Resonant dark matter
 - Strongly energy-dependent phase space → Forbidden dark matter



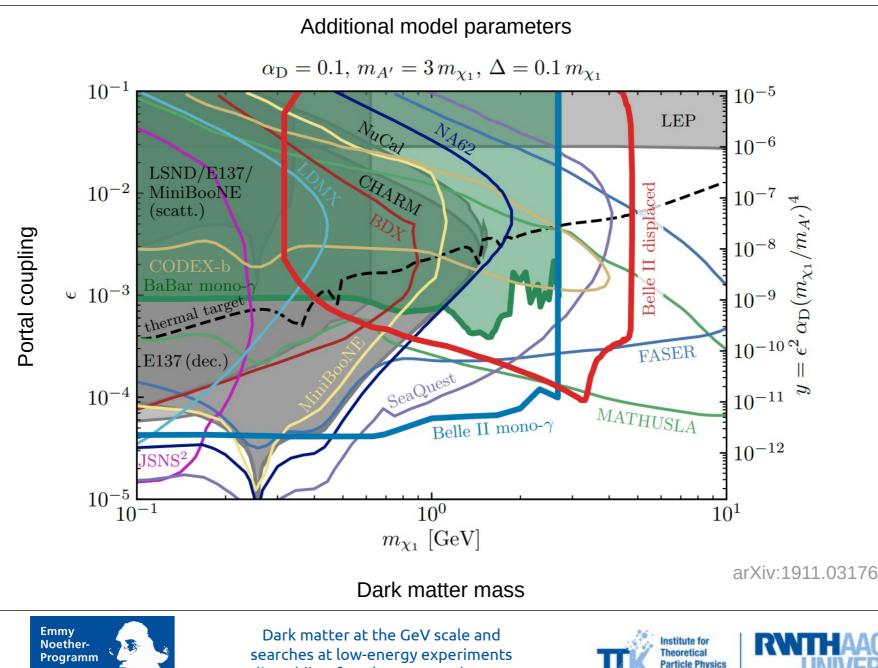
Quick interlude: Portal interactions

- Mechanisms discussed in this talk largely independent of how the dark sector couples to the Standard Model
- For simplicity, consider a dark photon mediator with kinetic mixing
 - → Couplings proportional to electric charge
- Many other interesting options:
 - Gauged baryon-minus-lepton number (B-L)
 - Gauged baryon number (B)
 - Axial or chiral couplings
 - (Pseudo-)scalar mediators
 - → Determines experimental signatures
 - Final-state leptons?
 - Missing energy (neutrinos)?
 - Photonic decays?
- Ideally all of these possibilities should be explored!


5

Inelastic dark matter

- Mass splitting Δ between ground state x_1 and excited state x_2
- Relative abundance of excited state scales ~ $exp(-\Delta/T)$ in the early universe
- All interactions involve one ground state and one excited state
 - → Annihilation rate becomes suppressed for $T < \Delta$
- Also: Strong suppression of scattering in direct detection experiments
- Key prediction: Long-lived excited state
 - Decay length may be in mm-cm range
 - Interesting decay mode: $x_2 \rightarrow x_1 e^+e^-$
- Possible search at Belle II:
 - ISR photon allows for triggering (three isolated clusters)
 - Even better prospects with dedicated displaced vertex trigger
 - Complementary constraints from single-photon search



Inelastic dark matter: Results

Felix Kahlhoefer | 8 September 2021

and Cosmology

DFG Deutsche Forschung

Resonant dark matter

If the DM mass is close to twice the mediator mass, annihilations receive a resonant enhancement


$$\sigma v_{\rm lab} = F(\epsilon) \frac{m_{A'} \Gamma_{A'}}{(s - m_{A'}^2)^2 + m_{A'}^2 \Gamma_{A'}^2}$$

- No strong constraints from CMB \rightarrow and indirect detection
- Relic density requirement can be \rightarrow satisfied even for tiny couplings

Reduced

arXiv:2010.14522

ce parameter:
$$\epsilon_R = \frac{m_{A'}^2 - 4m_{\chi}^2}{4m_{\chi}^2}$$

invisible width: $\gamma_{inv} \equiv \frac{\Gamma_{DM}}{m'_A} = \frac{g_{\chi}^2}{12\pi} \left(1 - \frac{1}{1 + \epsilon_R}\right)^{1/2} \left(1 + \frac{1}{2(1 + \epsilon_R)}\right)$

Resonant dark matter: Results

- Blue shading: Viable parameter space (light blue: viable only for DM sub-component)
 - arXiv:2010.14522 $\gamma_{\rm inv} = 10^{-5}$ $\gamma_{\rm inv} = 10^{-13}$ 10^{-1} 10^{-1} 10^{0} $\Gamma_{SM} = \Gamma_{DM}$ 10^{-2} 10^{-2} - 10-1 10^{-3} 10^{-3} Belle II $= \Omega h^2 / 0.12$ 10^{-4} 10^{-4} ₹10⁻² M M 10^{-5} 10^{-5} R $\Gamma_{\rm SM} = \Gamma_{\rm DM}$ LDMX 10^{-6} 10^{-6} - 10-3 10^{-7} 10^{-7} $\Omega h^2 > 0.12$ $\Omega h^2 > 0.12$ - SeaQuest SHiP Dominantly invisible decays Dominantly visible decays 10^{-8} 10^{-8} 10^{-4} 10^{-1} 10^{0} 10^{-1} 10^{0} 10^{1} 10^{1} $m_{A'}$ [GeV] $m_{A'}$ [GeV]
- Orange shading: Existing constraints

 Comprehensive exploration requires combination of searches for visible and invisible final states

Forbidden dark matter

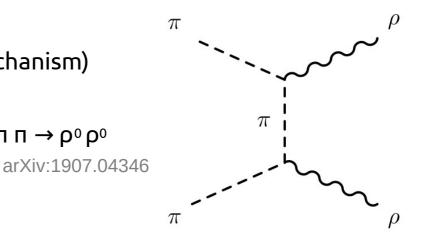
- Dark matter freeze-out proceeds via annihilation into dark sector states: $x x \rightarrow A' A'$
 - Assumption: A' unstable with $m_{A'}$ < 2 m_x
 - → Any A' produced decays into SM states
 - Additional assumption: m_{A'} > m_x
 - → Annihilations are kinematically allowed only at finite temperature/energy
 - → Exponential suppression of annihilations at late times

arXiv:1505.07107

- Original idea: A' is a dark photon that couples to SM particles via kinetic mixing
 - Similarity of m_{A'} and m_x largely accidental
- Alternative perspective: x and A' both arise as bound states from a strongly-interacting dark sector that resembles QCD
 - Dark matter particles ↔ pseudoscalar mesons (dark pions)
 - Annihilation partners ↔ vector mesons (dark rho mesons)
 - \rightarrow Underlying motivation for $m_x < m_{A'} < 2 m_x$

arXiv:1907.04346

10



Strongly-interacting dark sectors: Example

- Consider SU(N) gauge group with N = 3 (like QCD)
- Focus on the case of two light quarks with equal mass
- Assume that the two quarks couple to a dark photon with opposite charge
 - → Confinement gives rise to three light pions (π^+ , π^- , π^0)
 - → All three pions may be stable and suitable dark matter candidates

```
arXiv:1801.05805
```

- The neutral vector meson (ρ_0) mixes with both the dark and the SM photon
 - \rightarrow Long-lived particle that decays into SM final states
- No $3 \rightarrow 2$ processes (as required for the SIMP mechanism)
- Relic density set by the forbidden annihilations $\pi \pi \rightarrow \rho^{0} \rho^{0}$

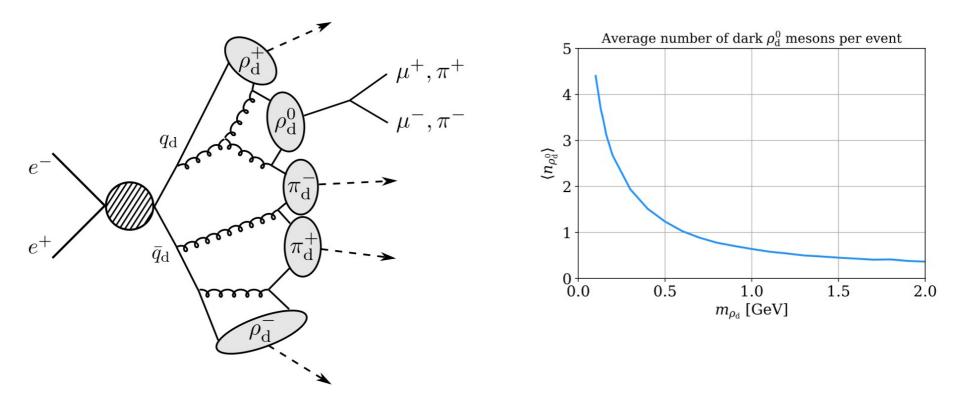
11

Strongly-interacting dark sectors at Belle II

- No preferred energy scale for the confinement of the dark sector
- Confinement scales < 50 MeV are in conflict with bounds on DM self-interactions
 - \rightarrow Interesting to think about dark sectors in the 100 MeV 1 GeV range
- Dark photon could be significantly heavier
 - → Interactions between dark quarks and SM described by effective operator

$$\mathcal{L}_{\rm eff} \supset \frac{1}{\Lambda^2} \sum_f q_f \bar{f} \gamma^{\mu} f \bar{q}_{\rm d} \gamma_{\mu} q_{\rm d}$$

- → For Λ ~ TeV the dark rho meson has detector-size decay length
- Highly interesting scenario for electron-positron colliders!



Dark showers at Belle II

- Dark quarks produced in e+e- collisions will hadronise and create a dark shower
- Multiplicity (and boost) of long-lived dark rho mesons depends on mass scale

• Possible strategy: Search for events with a muon pair from a displaced vertex

13

Existing exclusion limits and projections

- *B* factory LLP limits 10^{5} Existing BaBar limit from model-independent search for LLPs 10^{4} Belle II, 100 fb^{-1} arXiv:1502.02580 10^{3} $c au_{
 ho_{
 m d}}$ [mm] Belle II projection based on similar 10^{2} assumptions as for inelastic DM 10^{1} arXiv:2012.08595 BaBar µµ 10^{0} Interesting parameter regions 10^{-1} compatible with other constraints 1.0 1.2 0.2 0.60.8 1.40.4(EWPT, Z boson invisible width, ...) m_{ρ_d} [GeV]
- Not shown: Additional exclusion limits from searches for displaced di-muon resonances in LHCb
 - → Comparison cannot be done in EFT approach (dark photon produced on-shell)

14

Conclusions

- Huge variety of models for GeV-scale dark sectors
- Dark matter particles may reproduce observed relic abundance via freeze-out
- Constraints require annihilation rate with non-standard velocity dependence

Inelastic dark matter

 \rightarrow Excited state has three-body decay with macroscopic decay length

Resonant dark matter

 \rightarrow Tiny couplings viable for both visible and invisible decays

Forbidden dark matter

- \rightarrow Well-motivated annihilation partners from strongly-interacting dark sectors
- \rightarrow Prediction: Dark showers at e+e- collisions
- \rightarrow Evaluation of existing constraints and projected sensitivities ongoing

