

GAZELLE

An Approximately Zero-background Experiment

for Long-Lived Exotics at Belle II

Anastasiia Filimonova

Belle II workshop 8 Sep 2021, Vienna

Based on the SnowMass2021 Contributed Paper [2105.12962] with S. Dreyer, T. Ferber, C. Garcia-Cely, C. Hearty, S. Longo, R. Schäfer K. Schmidt-Hoberg, M. Tammaro, K. Trabelsi, S. Westhoff and J. Zupan.

A far-distance detector for longer lifetimes

No calorimetry required = cheap!

A far-distance detector for longer lifetimes

Possible to reconstruct:

- Vertex
- Mass
- Track direction
- Pointing angle (moderate boost)
- Absolute time (synchronize with Belle II)

No calorimetry required = cheap!

A far-distance detector for longer lifetimes

Possible to reconstruct:

- Vertex
- Mass
- Track direction
- Pointing angle (moderate boost)
- Absolute time (synchronize with Belle II)

No calorimetry required = cheap!

Tsukuba hall can be used?

Tsukuba hall can be used?

GAZELLE: three possible configurations

Main backgrounds

Main backgrounds

Probability of an LLP to decay inside GAZELLE

$$P_{i} = \exp\left(-\frac{\ell_{i}^{in}}{\gamma\beta_{i}c\tau}\right) - \exp\left(-\frac{\ell_{i}^{in} + D}{\gamma\beta_{i}c\tau}\right)$$

Probability of an LLP to decay inside GAZELLE

$$P_{i} = \exp\left(-\frac{\ell_{i}^{in}}{\gamma\beta_{i}c\tau}\right) - \exp\left(-\frac{\ell_{i}^{in} + D}{\gamma\beta_{i}c\tau}\right)$$
$$\gamma\beta_{i}c\tau \gg \ell_{i}^{in}, \ D \quad \Longrightarrow \quad \langle P \rangle = \frac{1}{N} \sum_{i=1}^{N} P_{i} \ \approx \Omega \times \frac{D}{\gamma\beta c\tau}$$

Probability of an LLP to decay inside GAZELLE

$$P_{i} = \exp\left(-\frac{\ell_{i}^{in}}{\gamma\beta_{i}c\tau}\right) - \exp\left(-\frac{\ell_{i}^{in} + D}{\gamma\beta_{i}c\tau}\right)$$
$$\gamma\beta_{i}c\tau \gg \ell_{i}^{in}, D \quad \Longrightarrow \quad \langle P \rangle = \frac{1}{N}\sum_{i=1}^{N}P_{i} \approx \Omega \times \frac{D}{\gamma\beta c\tau}$$

Detector	Belle II	Baby-GAZELLE	L-GAZELLE	GODZILLA
$\Omega \times D$	7 sr m	0.2 sr m	3 sr m	3.4 sr m

*

*

HNL: τ decays

*

HNL: τ decays

HNL: τ decays

IDM: direct production

HNL: τ decays

IDM: direct production

$$\mathcal{L} = -2g_{sb}\frac{\partial^{\mu}a}{\Lambda}\bar{s}\gamma_{\mu}b_{L} + \frac{c_{\ell}}{2}\frac{\partial^{\mu}a}{\Lambda}\bar{\ell}\gamma_{\mu}\gamma_{5}\ell$$

ALP decays inside different GAZELLE configurations

ALP decays inside L-GAZELLE

ALP decays inside L-GAZELLE

Heavy ALPs fly in the forward direction

Heavy ALPs fly in the forward direction

When it comes to numbers...

Projected reach of L-GAZELLE and Belle II for the ALP coupling c_{ℓ}/Λ [TeV⁻¹]

$m_a \; [\text{GeV}]$	g_{sb}	L-GAZELLE	BelleII	LG/BelleII
0.3	$3.9 imes 10^{-9}$	9.4×10^{-6}	$1.6 imes 10^{-5}$	0.57
2.0	3.8×10^{-9}	1.1×10^{-6}	$1.9 imes 10^{-6}$	0.56
4.0	$3.5 imes 10^{-9}$	$2.7 imes 10^{-7}$	6.4×10^{-7}	0.43

*m*_a=0.3 GeV

When it comes to numbers...

Projected reach of L-GAZELLE and Belle II for the ALP coupling c_{ℓ}/Λ [TeV⁻¹] Assumptions: $m_a \, [\text{GeV}]$ L-GAZELLE Belle II LG/Belle II g_{sb} 3.9×10^{-9} 9.4×10^{-6} 1.6×10^{-5} Zero background 0.30.57100% efficiency 3.8×10^{-9} 1.1×10^{-6} 1.9×10^{-6} 2.00.56 3.5×10^{-9} 2.7×10^{-7} 6.4×10^{-7} 4.00.43m_a=0.3 GeV — Belle II 10^{5} - Baby-GAZELLE GODZILLA L-GAZELLE 10^{3} N_{dec} 10^1 $N_{\rm dec} = 3$ 10^{-1} 10^{-7} 10^{-6} 10^{-5} 10^{-4} 10^{-3} 10^{-2} 10^{-1} 10^{0} 10^1 10^{2}

*c*₁/Λ [TeV⁻¹]

When it comes to numbers...

More models for GAZELLE

Emerging jets (e.g. models with dark showers)

 $e^+e^- \to q_D\bar{q}_D \to \pi_D\pi_D \to jets$

e.g. Schwaller et al. 1502.05409

Models with forward enhancement

 $e^+e^- \to \gamma a, \ \gamma A'$

e.g. An et al. 1510.05020, Chen et al. 2001.04382, Fayet hep-ph/0702176

Quirks $e^+e^- \rightarrow Q_D \bar{Q}_D \rightarrow string$

e.g. Kang, Luty 0805.4642

Soft boms

E.g. S. Knapen et al. 1612.00850

Visible and invisible searches are complementary

Belle II itself is an excellent LLP detector

Take-home messages

• GAZELLE gives O(1) improvement over Belle II

• Belle II is a great LLP detector

- Large acceptance, little background
- Complementarity of invisible and displaced searches

- Viable far detector at Belle II should:
 - Have decent angular coverage
 - Be placed far from the interaction point
 - Be put where the target LLP go (e.g., along the beam line)
 - The larger LLP boost, the thicker
 - Belle II can be used to trigger it

Backup

HNLs at GAZELLE

 $\Gamma(N)$

Projected reach of L-GAZELLE and Belle II for the mixing angle U_τ

	$m_N \; [\text{GeV}]$	L-GAZELLE	Belle II	LG/Belle II
$ ightarrow u_{ au} \ell \bar{\ell}) \sim m_N^5 U_{ au} ^2$	0.5	$7.1 imes 10^{-3}$	$2.0 imes 10^{-3}$	3.6
	1.0	2.2×10^{-3}	1.1×10^{-3}	2.0
	1.5	1.4×10^{-3}	$1.6 imes 10^{-3}$	0.85

IDM at GAZELLE

Projected reach of L-GAZELLE and Belle II for the mixing angle θ

Dark scalars: the complete picture

