
## Summary of the input section



# Status of the document

Almost all sections have text, some bulleted and some extended.

This outline does not overlap directly with the talks

- Overview
- Summary of the future facilities requirements
- Silicon at extreme fluences
- Status and evolution of the simulation tools
- Sensors for 4D tracking
  - Sensors without internal gain (pros/cons)
  - Sensors with internal gain (pros/cons)
- MAPS for particle tracking and high time resolution (still empty)
  - Passive CMOS
- Wide band-gap semiconductors (Diamond and more)
  - Diamond
- The future of interconnections
- Summary of panel about industrialization
- Summary of panel about facilities

2

# Overview - I

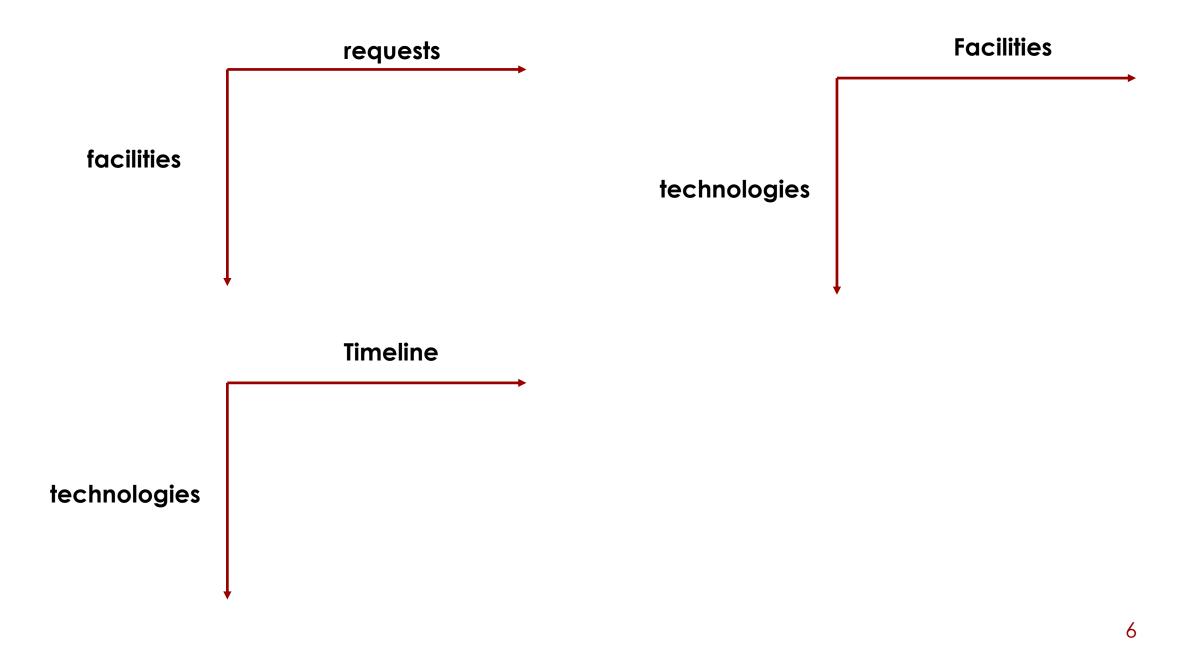
Solid state sensors R&D is broadly dominated by silicon

- Requests for future facilities are both reasonable and absolutley challenging
  - Important point: there is a lot more that extreme fluence. Obviously FCC-hh fill a lot of phase space in R&D, but there is a lot more to do
- Simulation needs to follow this path, with a specific focus on highly irradiated sensors
- R&D is moving away from standard planar silicon
  - MAPS is filling its place
  - Hybrid systems maintain relevance in specialized features such as timing
  - Specialized sensors (such as 3D or diamond) are maintaining a phase space in specific applications
- R&D: it is becoming very costly. Presently is organized in:
  - Blue sky (RD50 from project/experiments, European money, not a sure stream)
  - Experiment driven, often is too late to do blue sky
    - ==> needs to look at a different way

# Overview - II

#### • Very important R&D in interconnections

- 3D stacking essential for both MAPS and hybrids
- future facilities requires more compact and more reliable packging.
- Large area/sensors producers: dependance on a single producer should be addressed
  - MAPS is a way to get away from it, important to push passive CMOS R&D
  - A focused industrial policy is another
    => aka magnet R&D led by CERN


### Facilities:

- Very difficult to handle irradiated sensors, we are not ready to handle, ship, and test them
- Charge hadron facilities cannot irradiate at 1E17 n/cm2. Need to plan for it
- Beamtest are a luxury, we need to actively support them

# Cross issues to be worked out in the next days

- **TF6 Calorimetry:** Large area sensors for calorimetry not in TF3. Silicon timing not directly addressed
- **TF7- Electronics:** not in TF3. High timing is a common problem, not a sensors' or frontends'
- **TF8 Integration:** hybridization, 3D integration is present
- TFO Training: formal recognition is key. We need a patent of "detector guru" The brand "CERN" is excellent, a "CERN expert detector patent" would be great to have. I wish I had it..
  - No problem in finding jobs outside academia

### Summaries: how many and what format



# Problem in showing summary

The document begins with a summary. It is difficult to combine clarity and precision This table has facilities vs technology

- Contains a lot of info
- took a long time to fill
- Impossible to see
- The numbers are important

This is a practical problem: how do we display it?

|                                                                            | Timescale                             | -<br>α <sub>iz</sub> (μm)       | Pitch<br>(µm)   | X/Xc (%)<br>/ layer   | integratio<br>n Time                             | Time Resolution                                               | Rates                                                               | Tempera<br>ture | Power<br>Consumption      | NIEL<br>(1 MeV neq/om <sup>2</sup> )                       | TID<br>(Mrad) | Sensor<br>size                     | Detector area (m2)                                                                                | Technology Options and R&D                                                                                                                                                                                                                                                                                                                   |
|----------------------------------------------------------------------------|---------------------------------------|---------------------------------|-----------------|-----------------------|--------------------------------------------------|---------------------------------------------------------------|---------------------------------------------------------------------|-----------------|---------------------------|------------------------------------------------------------|---------------|------------------------------------|---------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Panda (Fair/GSI)                                                           | 2025                                  | 50                              | 2007            | 0.1                   | 100ms???                                         | 10 ms                                                         | 10 kHz/cm2                                                          |                 |                           | 1x10E14                                                    | 10 Mrad       |                                    | 0(10)?                                                                                            | Hybrid pixels and Strips 100um thick. Continuous readout: monolithic pixel<br>detectors with a<br>formewise readout which allows high spatial resolution and a low<br>reliation length but with only a moderate time resolution.                                                                                                             |
| CBM (Fair/GSI)                                                             | 2025                                  | 5                               | 30              | 0.1                   | 5 μs                                             | 0.1 - 5 µs                                                    | 70 MHz/cm <sup>2</sup>                                              |                 | 60 mW/cm <sup>2</sup>     | 3x10E13                                                    | 1             | Stiching                           | 4                                                                                                 | Technologies under exploration:<br>180 nm Ti (modified).<br>65 nm TL.<br>Stiching.                                                                                                                                                                                                                                                           |
| NA62<br>ALICE inner layer r =<br>18 - 5 mm                                 | 2025<br>2025-27 (LS3) -<br>2031 (LS4) | 3                               | 300<br>≰25 - 10 | 0.3 - 0.5             | 5 μs - 0.1<br>μs                                 | 2550 ps<br>1 μs - 25 ms                                       | 800<br>Alida /cm 3<br>6 - 100<br>MHz/cm <sup>2</sup>                |                 | 20 mW/cm <sup>2</sup>     | 2.3x10E15<br>10 <sup>13</sup> - 10 <sup>14</sup> (/year 7) | 100<br>3 - 10 | 12" - 28<br>x 10 cm <sup>2</sup>   |                                                                                                   | plana/3d/LGADS 28nm ASIC?                                                                                                                                                                                                                                                                                                                    |
| Belle-II                                                                   | 2030                                  | 10                              | 30              | 0.1%*                 | 25 ns<br>(100 ns<br>total<br>integration<br>time |                                                               | 100<br>MHz/cm²                                                      |                 | ≴ 200 mW/cm²              | 10E14                                                      | 100           |                                    |                                                                                                   | Fast, high granulatity, low mass replacement for current VXD: study of depleted<br>CMOS MAPS; SOI sensors; thin strips. Timing layers: Possible use as TOF to<br>improve PID performance                                                                                                                                                     |
| Інсь                                                                       | 2031 (L54)                            | 10                              | 55              | 1%                    | 25ns                                             | <b>\$</b> 50 ps                                               | **250<br>Gbps/cm <sup>2</sup><br>= 5 GHz/cm2<br>for 50 bit<br>words |                 |                           | 6x10 <sup>16</sup> (r=5 mm)                                | 1Grad?        |                                    | Velo -> 0 (0.1) UT-> 0(10)                                                                        | Hjehid pixel detector with thin, 3D, or LGAD sensors.                                                                                                                                                                                                                                                                                        |
| ATLAS-CMS                                                                  | 2031 (L54) - 2035<br>(L55)            | 10                              | <b>15</b> 50    |                       | 25 ns                                            | <b>≴</b> 50 ps                                                | 3 GHz/cm <sup>2</sup>                                               |                 |                           | 2.5x10E16                                                  | 1 GRad        |                                    | 0(100)                                                                                            | Large size, ultrathin CMOS in deeper node (65 nm, standard, depleted); Thin<br>hybrid planar/30 pixel sensor; 3D integration ; radiation hard LGAD ,                                                                                                                                                                                         |
| EIC                                                                        | 2031                                  | \$5                             | 20              | 5% or less<br>total   |                                                  | 25-35 ps                                                      | 500kHz                                                              |                 |                           | 1E10 per year                                              | kRad /        |                                    | O(100) ?                                                                                          | Sensor: MAPS with < 20µm pitch. LGADs or LAPPD for TOF.                                                                                                                                                                                                                                                                                      |
| ιιc                                                                        | 2035                                  | 3                               | <b>\$</b> 25    | <b>\$</b> 0.2         | 1-10 µs                                          | Sns                                                           | O(10)MHz/c<br>m2                                                    |                 |                           | 1811                                                       | 0.1           | 8/12"                              | Vertex O(100) Calorimeter<br>2500                                                                 | Lowest possible mass, highest possible resolution: " 3 $\mu$ m single point resolution < " 3.2% to per layer -> kir flow cooling only<br>Time resolution 7 so for barber ). Interesting additional potential when pushing<br>to the ps range. Advances in both hybrid and monolithic technologies needed -<br>fine-pitch hump bonding, speed |
| CLIC                                                                       | 3035                                  | vertex<br>3um<br>tracker<br>7um | <b>\$</b> 25    | \$\$0.2<br>20 ∪.1     | 1-10 µs                                          | 5 ns                                                          | 6 GHz/cm <sup>2</sup>                                               | air cooled      | 50mW/cm2<br>power pulsing | 2x10E12 (6x10E10<br>/year)                                 | 300Gy/y       |                                    | vertex (10) ? tracker 140                                                                         | low-mass sillcon pixel vertex detector sumounded by a low-mass sillcon tracker,<br>and high-ganular calorimetry. Vertex : monolithic CMOS technologies (SOI, HV-<br>CMOS, HK-CMOS, CLC-Specific fully integrated designs. Calorimeter : silicon<br>photomultipliers (SIPM)                                                                   |
| FCC-ee                                                                     | 2040                                  |                                 | <b>\$ 25</b>    | inner 0.3-<br>0.5% X0 | <b>1-10</b> μs                                   | TOF 10ps                                                      | 50 MHz/cm <sup>2</sup>                                              | air<br>cooled   |                           | 2x10E14                                                    | 1             |                                    | 0(100)                                                                                            | High spatial resolution (3-5 µm), timing (at least 20 ns for BX assignment), low<br>material budget, low power consumption.                                                                                                                                                                                                                  |
| HE-LHC                                                                     | 2040                                  |                                 |                 |                       | 25 ns                                            |                                                               |                                                                     |                 |                           | 2x10 <sup>17</sup>                                         | 6 Grad        |                                    |                                                                                                   | Explore the radiation tolerance limit of present technologies (3D detectors,                                                                                                                                                                                                                                                                 |
| FCC-hh                                                                     | 2060                                  | 7                               | 25 x 50         | 1                     | 25 ns                                            | 15 10 ps<br>20-00 ps                                          | 30 GHz/cm <sup>2</sup>                                              |                 |                           | 1x10618                                                    | 30 Grad       |                                    | O(1000)                                                                                           | Diamond). Explore new materials: WBS, 2D material. Higher granularity pixels for<br>calorimetry (TIF6). Need to explore innovative technologies                                                                                                                                                                                              |
| Muon-collider                                                              | ×2035                                 | 5                               | <b>\$</b> 25    |                       |                                                  | defined by BC<br>crossing time to<br>minimize Beam<br>Induced | 50-100 MHz                                                          |                 |                           | 1x10E12                                                    | 0.1           |                                    | Pixel sensor 0.5m2<br>Strip/long pixels sensors: *<br>88 m2<br>Barral: * 69 m2<br>Endcap: * 19 m2 | Lage size, thin CMOS in deep sub-microse techn. (28-65 nm, standard, depleted).<br>DEPFET, thin pixeland LGAD (AC, resistive)                                                                                                                                                                                                                |
| LHeC-FCC-eh-Perle                                                          | 2024-2031                             | 5-10                            | 10-20           | 4                     |                                                  | 25-35                                                         |                                                                     |                 |                           | low                                                        |               |                                    | 41                                                                                                | CMOS Active Pixel Sensors for vertex and tracking layers: small pitch pixels, low-<br>power, fast timing Low-cost, highly automated, module assembly, integration and<br>test for large area trackers                                                                                                                                        |
| SPS AMBER                                                                  | 2022 - 2026                           | 23                              | 80x81           | 0.02                  | 25ns?                                            | 100ps                                                         | O(50-100)<br>MHz/mm/l<br>abda                                       |                 |                           | 1.00E+14                                                   |               | 1x1.7cm2                           |                                                                                                   | Pixelized Silicon Tracking Stations: MuPix10 chip. Scifi Tracker Stations :<br>scintillaring fibre are coupled to individual silicon photomultipliers (SIPMs).                                                                                                                                                                               |
| SPS MuonE                                                                  |                                       | 5                               |                 | 0.1                   |                                                  |                                                               | 700 kHz/cm <sup>3</sup>                                             |                 | 5.4W 2S<br>module         |                                                            |               | 10x10cm<br>2                       |                                                                                                   | Promising technology : DMAPS (Depleted Monolithic Pixel Sensors).<br>Silicon sensors foreseen for the CMS HL-LHC Outer Tracker (OT) are 320<br>µm thick sensors with nin-<br>p polarity produced by Hamamatsu Photonics (HPK).                                                                                                               |
| SPS NA61/shine                                                             |                                       | 3.5                             | 18.4            | 0.1                   |                                                  | 100us                                                         |                                                                     |                 | 250 mW/cm2                | 1E13/y                                                     | 0.3 /y        | 21.2 x<br>10.6 mm2                 |                                                                                                   | CMOS Monolithic Active Pixel Sensors (MAPS), MIMOSA                                                                                                                                                                                                                                                                                          |
| NA60+                                                                      |                                       | <b>\$</b> 5                     | 10x10           | 0.1                   |                                                  | 200ns                                                         | 100 MHz                                                             |                 |                           | 1.005+15                                                   |               | 150x150<br>mm2<br>with<br>stiching |                                                                                                   | Sensor Holchess: few tens of microns of silicon<br>New large area sensors (based on stitching): No support under sensitive area →<br>material budget<br>40.154 X0. → MAPS TOWER 65nm                                                                                                                                                         |
| Existing in<br>experiments<br>Existing in<br>demonstrators<br>Not existing |                                       |                                 |                 |                       |                                                  |                                                               |                                                                     |                 |                           |                                                            |               |                                    |                                                                                                   |                                                                                                                                                                                                                                                                                                                                              |

### One of goal of the next few days

#### Find a way to give the correct message clearly

|                                                                                                                                                                                                 |                          | tart Date of |          | 2025      |  | 202  | 5-2030             |                  | 20  | 30-20 | 45                |                    |                 | 2035 | 5-204           | 0              |               | 20 | 40-20                  | 045                   |  | 204 | 5-205           | 0                     | Ι      |  | >2050 | ) |                                         |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|--------------|----------|-----------|--|------|--------------------|------------------|-----|-------|-------------------|--------------------|-----------------|------|-----------------|----------------|---------------|----|------------------------|-----------------------|--|-----|-----------------|-----------------------|--------|--|-------|---|-----------------------------------------|
| Facility (This means, where<br>the dates are not known,<br>the earliest technically<br>feasible start date is<br>indicated - such that<br>detector R&D readiness is<br>not the delaying factor) | NA62/KLEVER<br>PANDA/CBM |              | BELLE-II | ALICE LS3 |  | LHCb | ATLAS/CMS (Vertex) | ATLAS/CMS (HGTD) | EIC | LHeC  | ILC/CLIC (vertex) | ILC/CLIC (tracker) | ILC/CLIC (calo) |      | FCC-ee (Vertex) | FCC-ee (Track) | FCC-ee (lumi) |    | Muon Collider (Vertex) | Muon Collider (Track) |  |     | FCC-hh (Vertex) | FCC-hh (Track/B-ECAL) | FCC-eh |  |       |   |                                         |
| Ë                                                                                                                                                                                               |                          | rad-hard     |          |           |  |      |                    |                  |     |       |                   |                    |                 |      |                 |                |               |    |                        |                       |  |     |                 |                       |        |  |       |   | Must have to meet main physics goals    |
| sic gain                                                                                                                                                                                        | nond                     | low X0       |          |           |  |      |                    |                  |     |       |                   |                    |                 |      |                 |                |               |    |                        |                       |  |     |                 |                       |        |  |       |   | Important to meet several physics goals |
| intrinsic                                                                                                                                                                                       | Si/Diamond               | low power    |          |           |  |      |                    |                  |     |       |                   |                    |                 |      |                 |                |               |    |                        |                       |  |     |                 |                       |        |  |       |   | Desirable to enhance physics reach      |
| without                                                                                                                                                                                         | 3D<br>OS                 | fast timing  |          |           |  |      |                    |                  |     |       |                   |                    |                 |      |                 |                |               |    |                        |                       |  |     |                 |                       |        |  |       |   |                                         |
| ld wit                                                                                                                                                                                          | ar and                   | small nixel  |          |           |  |      |                    |                  |     |       |                   |                    |                 |      |                 |                |               |    |                        |                       |  |     |                 |                       |        |  |       |   |                                         |
| Hybrid                                                                                                                                                                                          | Planar<br>Passive        | large array  |          |           |  |      |                    |                  |     |       |                   |                    |                 |      |                 |                |               |    |                        |                       |  |     |                 |                       |        |  |       |   |                                         |
|                                                                                                                                                                                                 |                          |              |          |           |  |      |                    | _                |     |       |                   |                    |                 |      |                 |                |               |    |                        |                       |  |     |                 |                       |        |  |       |   |                                         |
| :                                                                                                                                                                                               |                          |              |          |           |  |      |                    |                  |     |       |                   |                    |                 |      |                 |                |               |    |                        |                       |  |     |                 |                       |        |  |       |   |                                         |
| Hybrid                                                                                                                                                                                          |                          |              |          |           |  |      |                    | _                |     |       |                   |                    |                 |      |                 |                | -             |    | <u> </u>               |                       |  |     |                 |                       | _      |  |       |   |                                         |