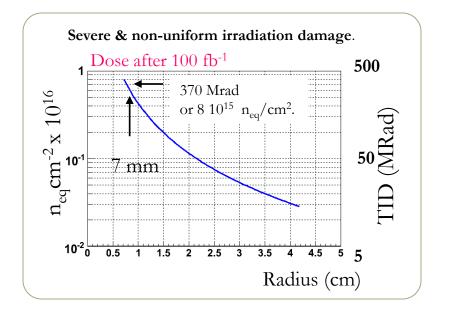
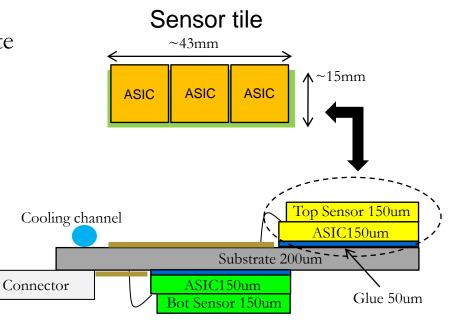

LHCb Velo electronics upgrade. LHCb



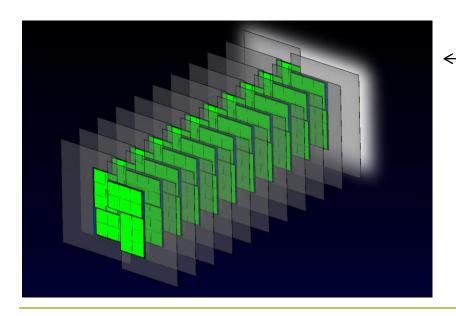
Vertex detector environment.



- => Danger of thermal run away!
- => Silicon must be cooled to -10 °C.
- The detector operates in 10⁻⁶ mbar vacuum.
- Access after installation is VERY difficult!

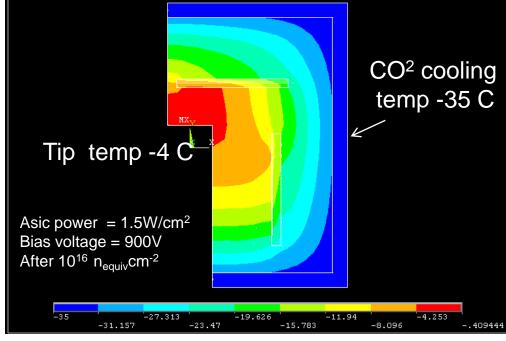
Pixel module.

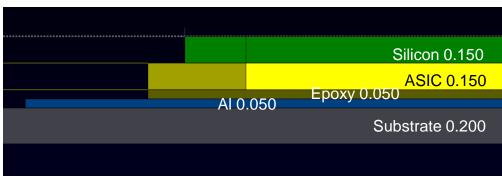

- Sensor tiles: made of 3 readout asic's on a single sensor, with a guard ring of 500 um.
- 2 sensor tiles are mounted on opposite sides of the substrate.
- Substrate choices:
 - Diamond : excellent mechanical and thermal properties: => low mass
 - carbonfibre/TPG: as used for the present VELO.
- Prototype work will start using
 Timepix assemblies ('module 0')
- If the TSV technology becomes accessible soon, single sided modules could be possible.



Pixel module & Detector layout.

- A plane is made of 8 sensor tiles.
 - \square active area is near 100% (except small gaps).
 - □ Closest pixel is at 7.5 mm from the beam center.


- The full detector is composed of 26 planes.
- The modules on either side of the beam are staggered to create overlap regions.
- This layout has been simulated to be fully efficient (4 hit per track) in the LHCb acceptance 250x300mrad.


Module Cooling.

- Initial ANSYS simulations done.
- Model includes radial (r^{-1.9}) and temperature dependent leakage power generated in Si.
- Extreme conditions are just OK...
- Verifications with thermal mockups are planned.

Material	Thermal Conductivity (W / m K)
Silicon	150
ASICs	190
Glue	1
Aluminum	200
CVD Diamond	1600

All dimensions in mm

ASIC development: analog

- We are collaborating with the Timepix2 design:
 - ightharpoonup Analog requirements overlap $\sim 100\%$:

Input charge	Bipolar (h+ and e-)		
Leakage current compensation	YES (both polarities)		
Peaking time	≤ 25ns		
Preamp output linear dynamic range	< 40 Ke-		
TOT linearity and range	<200 Ke- → Maximize linearity >200 Ke- → Monotonic response		
ENC (σ _{ENC})	~75 e-		
Detector capacitance	< 50 fF		
Discriminator response time	< 2ns		
Full chip minimum detectable charge	< 500 e-		
Threshold spread after tuning	< 30 e-		
Pixel analog power consumption	< 15-20 μW @ 1.2V		

Full chip analog < 1.3W static. (leaves 1.7 W for digital ...)

ASIC development: digital

Timepix2:

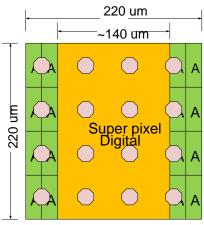
- □ Digital functionality:
 - Simultaneous Time-over-threshold and time identification.
 - Sparse and data driven readout.
 - High speed output links >N x 500Mbit/s.
 - Many features still under discussion.
- Peripheral logic and DAC's from Medipix3
- □ Total power budget <1.5W/cm² @ 1.2 V. \Leftrightarrow <3W full chip
- □ Radiation hardness TID 400Mrad, but not SEU.
- Final VELOpix will be derived from Timepix2:
 - Only modifications in digital parts : Clustering, formatting & buffering,
 SEU protection.
 - Addition of multi-Gbit output links.

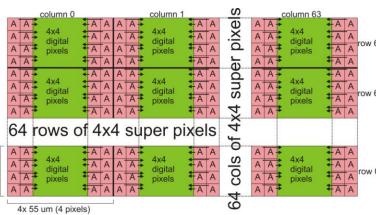
Data rates

- Numbers at highest occupancies:
 - average particle rate per 'hottest' asic ~ 5 particles/25ns = 200MHz
 - average pixel cluster size ~3: (pessimistic assumption, 300um Si)
- Information bits per pixel: 32!
 - 4 bit : Time over Threshold value.
 - □ 12 bit : bunch identification
 - □ 16 bit : pixel address.
 - => Single asic data production can reach 19 Gbit/s!
- 30% data reduction can be achieved by clustering data: 13.6Gbit/s
 - share the bunch id (12bit) between clustered pixels,
 - 'share' address bits (by special encoding).
 - must be done before column readout, i.e. inside pixel array!
 - most efficiently done in units of 4x4 pixels = "Super pixel"

Super pixel

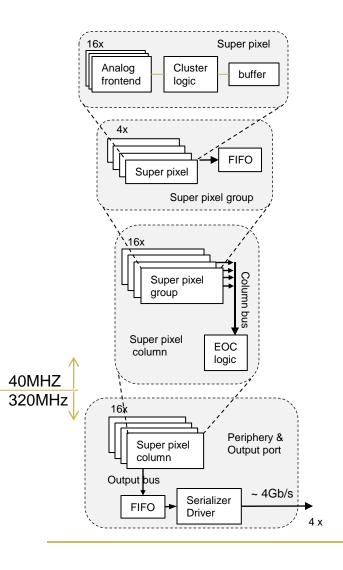
Super pixel layout:


- group digital logic in a single area.
 - Advantages:
 - □ Space saving: some functional blocks can be common (time-multiplexed).
 - More efficient distribution of power and global signals.
 - □ Better analog/digital isolation.
 - Digital column logic is synthesized with standard library. Ease, reliability, yield ...

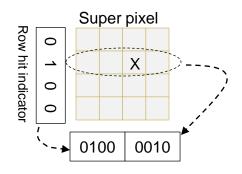

Disadvantages:

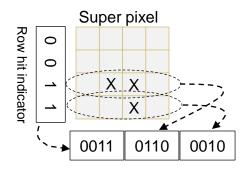
- Bonding pads on top of digital circuit:
 - => digital feedback in analog frontend. Shielding?
- □ Non-uniform analog input capacitance:
 - => Only small effect

Status:


- ☐ Analog part under development (Xavi Llopart)
- The verilog code for digital column exists and has been laid out. Final simulations are done. We will have realistic power estimates soon. (Tuomas Poikela)
- It would be extremely useful to have a 'low speed/low power' library for IBM 130nm! Would result in a big saving in area and power!

Pixel matrix readout architecture.

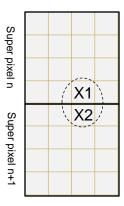



- Pixel matrix readout architecture
 - Internal bus speeds:
 - Column bus: 8bit@40MHz=320 Mbit/s
 - Output bus: 16bit@320MHz=5 Gbit/s
 - □ Total ASIC output : \sim 16Gb/s.
 - Buffering in :
 - Super pixel : 2 clusters
 - Super pixel group FIFO : ~400 bit
 - Output FIFO: multi kbyte
 - Simulation shows losses < 0.5% in highest occupancy conditions.

ASIC design. Data reduction

- Address encoding in 4x4 super pixel :
 - □ "Row hit indicator": indicate which rows have hits (4 bit, always present).
 - □ 0 to 4 "row hit patterns": indicate which pixels in row are hit (4bit).
 - Super pixel address: 12 bit.
 - Examples:

- Gain compared to individual pixel address:
- □ Overall 20% data reduction
- Alos: reject large multiplicity event :
 - If hit > N then no readout.
 - = 11 Int > 1 \ then no readout.


# hits	Individual address	Row hit encoding	
1	16 bit	20 bit	
2	32 bit	24 bit	
3	48 bit	28 bit	
4	64 bit	32 bit	

N is configurable and rejection can be de-activated.

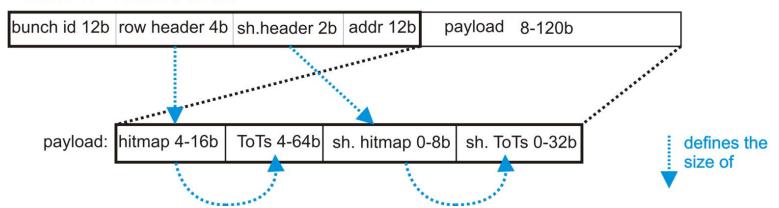
ASIC design. Data reduction

- Sharing across super pixel boundaries :
 - Only in 1 direction (column)
 - some limitations may lead to wrong or no clustering. But never loss of data.
 - \square Results in ~10% data reduction.

Hit X1 will be transferred to super pixel n+1

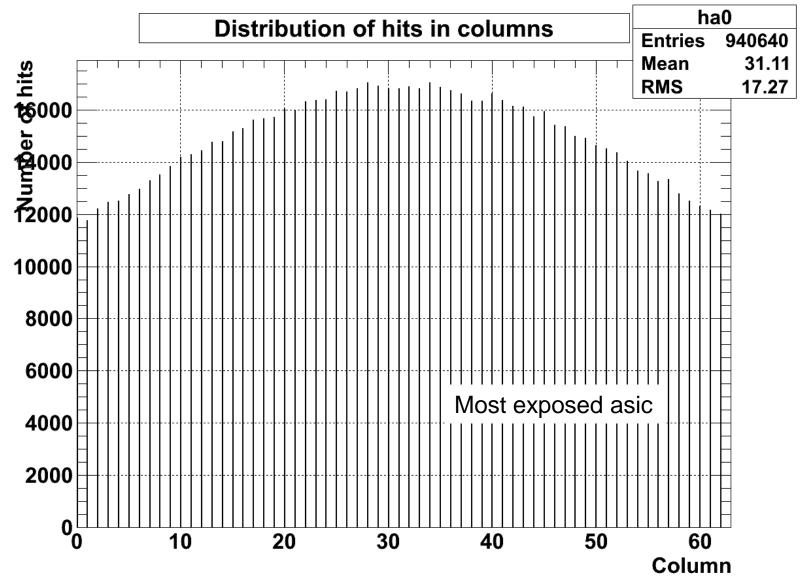
Packet format

Header(fixed size) 30 bits: bunch ID 12 bits, row header 4 bits, sharing header 2 bits, address 12 bits


Payload(varying size but fields in specified order):

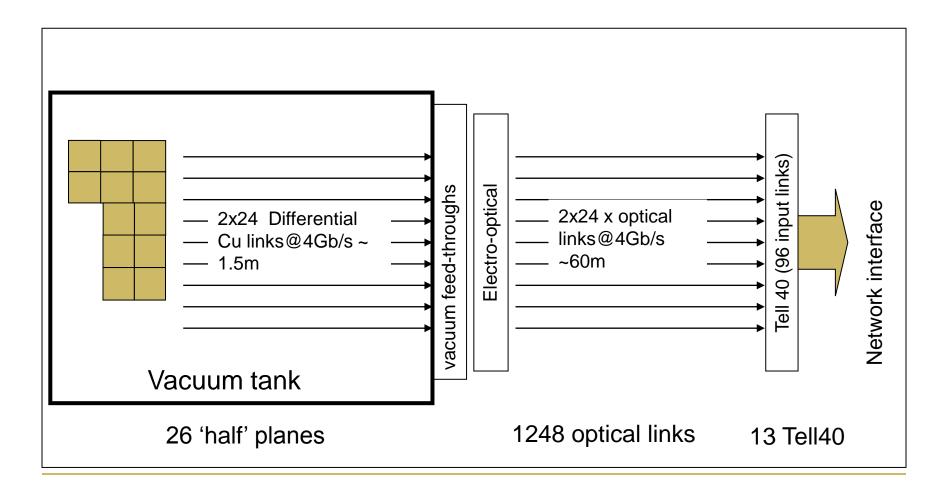
- Hitmap: 4-16 bits

- Time-over-threshold (ToT) values: 4-64 bits


- Shared hitmap: 0-8 bits

- Shared ToT values: 0-32 bits

Simulations with Gauss/Boole data


Simulations with Gauss/Boole data

Column	Efficiency (only missing packets)*	Efficiency (correct packets)	FIFO buffer size, # words, header/data	Avg. data rate, Mbps	Proportional and absolute area of FIFO
28	99.150 %	98.916 %	3/9	241.450	
28	89.816 %	88.906 %	4/8	218.606	
28	99.264 %	99.120 %	4/9	241.748	
28	99.341 %	99.192 %	4/10	241.924	14.7 %, 16612 um²
28	99.395 %	99.264 %	4/11	242.050	
28	99.407 %	99.276 %	4/12	242.072	15.7%, 18000 um²
28	99.413 %	99.282 %	4/14	242.089	
28	99.401 %	99.240 %	5/10	242.057	
28	99.497 %	99.383 %	5/12	242.303	
28	99.563 %	99.473 %	6/12	242.400	ore simulations st
28	99.677 %	99.623 %	8/16	242.723	eded. Investigate
28	99.731 %	99.695 %	10/20	242.863	argins.
28	99.749 %	99.719 %	12/24	242.908	
28	99.77 %	99.74 %	16/32	242.97	

Readout of one VELO half:

Tell 40 issues.

- Possible tasks in Tell40:
 - □ Re-order the VELOpix packets in time ?
 - VELOpix produce non-time-ordered packets.
 - Aggregate the packets from the same event :
 - Group clusters with same time identification.
 - Remove redundant time-id (12bit) ?
 - less packets, reduced network traffic.
 - Perform correct clustering:
 - Superpixel cluster' may contain 2 or more clusters : split ?
 - Combine clusters in 'row dimension'? VELOpix cannot combine across superpixel in row direction.
 - Correct data per pixel for gain and offset non-uniformity?
 - □ Compute a cluster center position?
 - Big data reduction!
 - Reformat (total charge, position)?
 - Eta-weighted interpolation: non trivial! Also, don't know the track angle!
 - Add alignement constants?
 - Could save CPU time?
- One Tell40 will also provide the configuration and fast control signals (GBT-SCA) to 2 'half planes'