Analysisat Belle II

Michel Hernandez Villanueva DESY

Analysis in the wider HEP/nuclear community Jun 16, 2021

The Belle II Experiment

1100 members, 123 institutions, 26 countries

Integrated luminosity expected: **50 ab**-1

(x50 than the previous B factories)

The estimated size of the dataset collected by the experiment is ~ 10 PB/year.

Analysis Workflow

From data taking to physics results

Data Formats

In general, Belle II output is stored in ROOT files containing subsets of dataobjects:

- RAW: raw data containing detector information.
 - ~70 kB/event
 - Raw data set during 2019-2021 operation: 5 PB
- cDST: calibration Data Summary Table
 - ~120 kB/event
 - Contains objects needed for calibration. Locally produced.
- mDST: mini Data Summary Table
 - ~15 kB/event
 - Strictly controlled version intended for physics results.
- uDST: user data summary table
 - ~20 kB/event
 - uDST has 10% of the events contained in mDST files.
 - o mDST objects + analysis objects (ParticleLists). Produced from skims.

Belle II analysis software framework

A high-level analysis software

- Basf2: Belle II Analysis Software Framework.
 - o arXiv:1809.04299
- More of a software framework than an "analysis framework" (name is historic).
 - o It performs the unpacking of raw data, detector simulation, tracking, calorimeter clustering, ...
- The executable is a wrapper for IPython 3, which controls the setup and configuration of a path.
- Modules are blocks of code that does a specific unit of data processing.
 - They are added to the path calling them inside the steering file.
- User analysis is performed using the analysis package, with udst as input.

Distributed Computing

The computing model

- The grid system is conformed by 60 computing sites around the world.
 - The Belle II analysis framework is distributed through **CMVFS**.
- Dedicated data centers keep two copies of the full raw data set.
- Raw data is staged, reprocessed, skimmed and distributed over storage sites.
- Analyzers access data and MC sending jobs to the grid and downloading the output to local resources.

Distributed Computing

Architecture Overview

- We adopted DIRAC as the main framework with an extension (BelleDIRAC).
- This year, the Distributed Data Management system was successfully integrated with Rucio.
- Rucio provides new features that will exploited for improving the analysis on grid:
 - User replica management.
 - Async deletion.
 - Data popularity.

Processing Scheme

- Ensure smooth, timely production of data for performance studies and physics analysis.
- Data is calibrated weekly in "prompt buckets", containing ~ 2 TB in mDST format.
- A full reprocessing is performed ~yearly, aiming for physics publications.

MC production campaigns

- Centralized MC production with unique campaign names.
 - Generic MC (BB, qqbar, tau pair, etc).
 - Signal requests by each physics WG.
- Belle II policy:
 - Two replicas of the latest two campaigns.
- Data set available for analysis
 MC13: 1.5 PB; MC14 (ongoing): 700 TB
- Ratio to data for generic MC event samples:

	Apr 2021	Apr 2022	Apr 2023	Apr 2024
	_	_	_	_
Year	Mar 2022	Mar 2023	Mar 2024	Mar 2025
Process				
Hadronic, τ, μ+μ-γ	3,0	2,5	1	1
Bhabha	0,25	0,25	0,25	0,25

Generated on 2021-06-16 07:53:00 UTC

Skimming Scheme

- Each physics working group defines skims, which are also centrally managed producing uDST files.
- The skimming package contains pythonbased classes developed by liaisons of each WG.
- Skim usage is highly correlated with grid performance.
 - Analysts should be working primarily with skimmed datasets (for now, access to mDST is allowed).
 - Some analyses will be challenging to skim, since they can have a high retention.

Requirements:

- Retention should be less than 10% of the mDST sample.
- Processing time for should be less than 500 ms per event.
- Maximum memory usage is 2GB.
- o Maximum log file size is 30 MB.

Gbasf2

The distributed analysis client for Belle II

- Gbasf2 is a command-line tool for users intended to submit grid-based jobs.
- The same Python steering files used with Basf2, work with gbasf2 on the grid.
 - User develop his/her job on local resources at first, then submit the job with same steering file.
- Authentication is performed presenting x509 certificates to a VOMS server.
- Users monitor jobs and download the output through a set of command-line tools provided within the gbasf2 environment:

~ \$ gb2_project_summary Project	date 1w Owner	/ Status	Done	Fail	Run	Wait	Submission	Time(UTC)	Duration
gb2Tutorial_Bd2JpsiKs	michmx	Good	 5	0	0	0	2020-07-07	08:41:40	00:18:04
BdJpsiKs_proc11_exp10	michmx	Good	874	0	0	0	2020-07-07	09:29:07	02:24:27
gb2Tutorial_B02JpsiKs	michmx	Good	5	0	0	0	2020-07-07	21:53:12	02:49:34
gb2TutorialProc11Exp10	michmx	Bad	95	779	0	0	2020-07-07	22:32:23	00:34:38

Analysis on the grid

Performing grid-based analysis on data since Jan 2020

 Production activities dominate the grid CPU usage

MC production: 81%

Data processing: 7%

Skimming: 2%

User analysis represents the 10%.

Issues identified:

- Analysis with non-skimmed data put a heavy load on the grid services.
- Sometimes, large projects submitted with errors keep the resources busy.
- Current limit in the size of the sandbox for user analysis is 5 GB. Advanced usage, like training of BDTs, reach that limit.

12

Scout Jobs

Preventing failed jobs from users

 If the main project has a large number of jobs, a part of them are copied as a group of scout jobs.

 Main submission proceed only if scout jobs finish without errors.

 Otherwise, user is notified.

Successfully implemented in production.

Documentation and Training

Belle II for newcomers and experts

- Efforts to maintain a clear documentation for beginners and advanced users.
- Tutorials developed in order to introduce the framework and the analysis on the grid.
- Belle II performs Starterkit workshops three times per year.
- Additionally, we encourage users to participate as data production shifters, where they learn concepts about the software and the computing system.

Collaborative Services

Support for Analyzers

- Collaborative services as a mail forum and an <u>Askbot</u> server have been deployed to provide support.
 - ~100% messages answered. In some cases, multiple solutions.
 - Not only experts, but users provide help too.
 - Users also suggest new features. Great feedback for developers.

Summary

- Belle II is expected to produce tens of petabytes of real and simulated data per year.
- Datasets intended for analysis are produced by data production experts on the grid. Skims are defined for each physics working group.
- Some analysis are not compatible with our current skimming scheme (the retention rate is too high).
 Several solutions are on discussion.
- The Integration of the DDM system with Rucio was successfully performed this year.
- Gbasf2 is the command line client for submitting grid-based Basf2 jobs.
 Allow submission with the same high-level steering files used in offline analysis.
- We are working with scout jobs and improving of documentation to prevent a large number of failed jobs.

Backup

A simple example

```
pmake.set name('ParticleCombiner ' + decayString)
                             pmake.param('decayString', decayString)
                             pmake.param('cut', cut)
                             pmake.param('decayMode', dmID)
import basf2
from modularAnalysis import pmake.param('writeOut', writeOut)
from stdCharged import stdP if candidate_limit is not None:
                                 pmake.param("maximumNumberOfCandidates", candidate_limit)
from stdPhotons import stdP
                             pmake.param("ignoreIfTooManyCandidates", ignoreIfTooManyCandidates)
                             path.add module(pmake)
mypath = basf2.Path()
# configure modules
inputMdst("default", basf2.find_file('analysis/tests/mdst.root'), path=mypath)
stdPi("good", path=mypath)
stdPhotons("good", path=mypath)
reconstructDe_ay('rho0:myrhos -> pi+:good pi-:good', '0.5 < M < 1.0', path=mypath)
fitVertex('\( \int_{00}\):myrhos', path=mypath)
reconstructDecay('B0:myBs -> rho0:myrhos gamma:good', '5.0 < M < 6.0', path=mypath)
# output modules
momenta = ['px', 'py', 'pz']
variablesToNtuple('B0:myBs', momenta, path=mypath)
basf2.process(mypath)
                                                                             Basf2: link to slides
```

pmake = register_module('ParticleCombiner')

Contact

DESY. Deutsches Elektronen-Synchrotron

www.desy.de

Michel Hernandez Villanueva

michel.hernandez.villanueva@desy.de

Orcid: <u>0000-0002-6322-5587</u>