Reactor measurements of θ_{13} CP violation, and current long-baseline experiments
PMNS Matrix

\[U_{\text{PMNS}} = \left(\begin{array}{ccc}
 c_{12} & s_{12} & 0 \\
 -s_{12} & c_{12} & 0 \\
 0 & 0 & 1
\end{array} \right) \left(\begin{array}{ccc}
 c_{13} & 0 & s_{13} e^{-i\delta} \\
 0 & 1 & 0 \\
 -s_{13} e^{i\delta} & 0 & c_{13}
\end{array} \right) \left(\begin{array}{ccc}
 1 & 0 & 0 \\
 0 & c_{23} & s_{23} \\
 0 & -s_{23} & c_{23}
\end{array} \right) \]

\[\theta_{12} = 33.44^\circ + 0.78^\circ - 0.75^\circ \]
\[\theta_{23} = 49.0^\circ + 1.1^\circ - 1.4^\circ \]

- \(\theta_{12} \) and \(\theta_{23} \) are large ("maximal" mixing)
- Angle \(\theta_{13} \) is small and mixes \(\nu_e \) with \(\nu_3 \)
- CPV term (\(\delta \)) \(\propto \theta_{13} \)
- Look for \(\nu_e \) mixing driven by \(\Delta m^2_{32} \)

\[\Delta m^2_{32} = 2.4 \times 10^{-3} \text{ eV}^2 \]
\[\Delta m^2_{21} = 7.8 \times 10^{-5} \text{ eV}^2 \]
“Reactor” Oscillations

“Survival probability” for anti-ν_e from the reactor ($E \approx 3$ MeV)

$$\sin^2(2\theta_{13}) \sin^2 \left(1.27 \frac{\Delta m^2_{32}[eV^2]L[km]}{E[GeV]} \right)$$

$$\Delta m^2_{32} = 2.4 \times 10^{-3} eV^2$$

$$\Delta m^2_{21} = 7.8 \times 10^{-5} eV^2$$

J. Ling, Neutrino 2020
Daya Bay detectors

Each of the 8 detector is 20 tons.

Inverse β decay

$$\bar{\nu}_e + p \rightarrow n + e^+$$
Original θ_{13} measurements (Far/Near)

Double Chooz
with only a far detector
(Nov. 2011)

- Rate+shape: $\sin^2 2\theta_{13} = 0.086 \pm 0.041\text{(stat)} \pm 0.030\text{(syst)}$

Daya Bay
(March 2012)

- Rate only: $\sin^2 2\theta_{13} = 0.092 \pm 0.016\text{(stat.)} \pm 0.005\text{(syst.)}$
- 5.2\sigma

RENO
(April 2012)

- Rate only: $\sin^2 2\theta_{13} = 0.103 \pm 0.013\text{(stat.)} \pm 0.011\text{(syst.)}$
- 4.9\sigma

M.He, NNN
θ_{13} measurement (Daya Bay)

$$\sin^2 2\theta_{13} = 0.0856 \pm 0.0029$$
PMNS Matrix

\[U_{PMNS} = \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} c_{13} & 0 & s_{13} e^{-i\delta} \\ 0 & 1 & 0 \\ -s_{13} e^{i\delta} & 0 & c_{13} \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \]

\[c_{ij} = \cos \theta_{ij}; s_{ij} = \sin \theta_{ij} \]

\[\theta_{12} = 33.44^\circ + 0.78^\circ, \quad 33.44^\circ - 0.78^\circ \]
\[\theta_{23} = 49.0^\circ + 1.1^\circ, \quad 49.0^\circ - 1.4^\circ \]

- Small angle \(\theta_{13} \) mixes \(\nu_e \) with \(\nu_3 \)
- Look for \(\nu_e \) mixing driven by \(\Delta m^2_{32} \)
- Reactor: anti-\(\nu_e \) disappearance
- Accelerator: \(\nu_e \) appearance in \(\nu_\mu \) beam → sensitive to \(\theta_{13} \) and \(\delta \)

\[\Delta m^2_{32} = 2.4 \times 10^{-3} \text{ eV}^2 \]
\[\Delta m^2_{21} = 7.8 \times 10^{-5} \text{ eV}^2 \]
The CKM matrix is almost diagonal, while the PMNS matrix is almost uniform.
Matter and Anti-matter

Dirac equation predicts anti-particle states (1928)

Positron discovered by C.D. Anderson in 1932
A tiny ($\approx 10^{-10}$) asymmetry between particle and anti-particles led to our matter dominated universe.

One of the conditions for this asymmetry is violation of \textit{CP} symmetry.

The observation of \textit{CP violation} involving neutrinos could provide support for a theory called \textit{Leptogenesis}.

\begin{itemize}
 \item Baryon number violation
 \item CP violation
 \item Departure from thermal equilibrium
\end{itemize}

\textbf{TIME}

\textbf{SAKHAROV}

\begin{itemize}
 \item MEMOIRS OF A 20TH CENTURY GIANT
\end{itemize}

\textbf{Born:} 21 May 1921, Moscow, Russia
A 2x2 "rotation" matrix is real, whereas a 3x3 rotation matrix is imaginary (phase δ).

CP violation (the difference between a process and its CP conjugate) is only possible when the matrix is imaginary (3 generations!).
• The same is true for the CKM matrix, where CP violation has been observed for quark processes.
• CP violation in the quark sector is too small to describe the matter dominance in the Universe.
• Discovery of CP violation with neutrinos would lend support to the Leptogenesis model – Leptogenesis would happen at large scales, e.g. through a heavy right-handed neutrino N_R (see-saw mechanism).
Neutrinos differ from quarks (Dirac particles), as they can be their own anti-particles (Majorana particles).

This gives rise to additional complex phases in the PMNS matrix.

These complex phases appear on the diagonal of the matrix so they have no impact on neutrino oscillations.
• As neutrinos are neutral, they cannot be focused, and a magnetic horn is thus used to focus the pions.
• Invented by Simon van der Meer at CERN
Making a neutrino beam

Pion decay at rest:

\[E^*_\nu = \frac{m^2_\pi - m^2_\mu}{2m_\pi} = 29.8 \text{ MeV} \]

\[\bar{\nu}_l \leftrightarrow \pi^+ \rightarrow l^+ \]

Boost into lab system:

\[E_\nu = \frac{m_\pi E^*_\nu}{E_\pi - p_\pi \cos \theta} \]

\[= \frac{E^*_\nu}{\gamma_\pi \left(1 - \beta_\pi \cos \theta \right)} \]

\[E_\pi = 9 \text{ GeV at } \theta = 0 : \]

\[\gamma_\pi = 64.5 \implies E_\nu = 3.8 \text{ GeV} \]

\[\text{Medium Energy Tune} \]

\[\text{v}_e \text{ CC events / kt / 1E21 POT / 0.2 GeV} \]
Forward/Reverse Horn Current

Neutrinos from NuMI beam

“Neutrino mode”

“Antineutrino mode”
Finding the oscillation maximum

Typical neutrino beam energy is around 2.5 GeV

Baseline/Neutrino energy
Optimizing L/E for neutrino oscillations

\[\frac{\Delta m^2 L}{4E} \sim \frac{\pi}{2} \]

L ≈ 300 km

- \(L/E = 300 \text{ km} / 0.6 \text{ GeV} = 500 \text{ km/GeV} \)
- no matter effects; first oscillation maximum.
- use narrow width neutrino beam (off axis) with \(E < 1 \text{ GeV} \)

L = 1300 km

- \(L/E = 1300 \text{ km} / 2.5 \text{ GeV} = 500 \text{ km/GeV} (1^{st} \text{ max}) \)
- \(L/E = 1300 \text{ km} / 0.8 \text{ GeV} = 1700 \text{ km/GeV} (2^{nd} \text{ max}) \)
- matter effects; first and second oscillation maximum.
- use broad-band neutrino beam (on axis).
Off-axis vs on-axis beams

T2K at 2.5 degrees

\[\sin^2 2\theta_{23} = 1.0 \]
\[\Delta m^2_{32} = 2.4 \times 10^{-3} \text{ eV}^2 \]

\[\Phi_{\nu_{\mu} \rightarrow \nu_{\mu}} \]

[Diagram showing distributions for different angles: OA 0.0°, OA 2.0°, OA 2.5°]

DUNE on-axis beam

[v flux \text{m}^2/\text{GeV}/10^{20} \text{ POT at 1300 km}]

[Graph showing energy distribution]
Off-axis vs on-axis beams

T2K at 2.5 degrees

\[\Delta m^2_{21} = 7.37 \times 10^{-5} \text{ eV}^2 \]
\[\sin^2(\theta_{12}) = 0.297 \]
\[\Delta m^2_{32} = 2.46 \times 10^{-3} \text{ eV}^2 \]
\[\sin^2(\theta_{13}) = 0.0214 \]
\[\sin^2(\theta_{23}) = 0.526 \]
\[\delta_{CP} = 0 \]

DUNE on-axis beam

\[\nu_\mu \text{ CC spectrum at } 1300 \text{ km, } \Delta m^2 = 2.4 \times 10^{-3} \text{ eV}^2 \]
How to measure LBL neutrino oscillations

• Measure flavour change as a function of energy over a long distance.
• Starting with a muon-neutrino beam, we observe muon-neutrino disappearance and electron-neutrino appearance.
• We measure event rates and not the flux directly.
• Measurement is a convolution of the oscillation probabilities P, the neutrino flux Φ, the cross sections σ, and the detector response T.

$$\frac{N^{FD}}{N^{ND}}(E_{\text{rec}}) = \frac{\Phi^{FD}(E) \cdot P(E) \cdot \sigma^{Ar} \cdot T^{FD}(E, E_{\text{rec}}) \, dE \, \Phi^{FD}(E) \cdot \sigma^{X} \cdot T^{ND}(E, E_{\text{rec}}) \, dE}{\Phi^{ND}(E) \cdot \sigma^{Ar} \cdot T^{ND}(E, E_{\text{rec}}) \, dE}$$
Neutrino sources, flux, and cross sections

C. Spiering, arXiv:1207.4952

Neutrino-nucleon interaction

- **Elastic scattering**
 - $\nu_l \rightarrow \nu_l$
 - $Z \rightarrow n, n$

- **Quasi-elastic scattering** (lowest energies)
 - $\nu_l \rightarrow l^-
 - W \rightarrow n, p$

- **Resonance** (Energies ~1 GeV)
 - $\nu_l \rightarrow l^-$
 - $W \rightarrow \Delta^{++}, \pi^+$
 - $\Delta^{++} \rightarrow p, p$

- **Deep inelastic scattering** (Highest energies >1 GeV)
 - $\nu_l \rightarrow l^-$
 - $W \rightarrow p$
 - Hadrons
Neutrino-nucleon interactions and cross sections

Muon neutrino data

- At lower energies, quasi-elastic dominates.
- At higher energies, resonance production and deep-inelastic scattering
- An important systematic limitation for long-baseline neutrino experiments
- Interaction modelling will affect energy reconstruction.
Measuring neutrino cross sections with MINERνA

Muon neutrinos

Liquid Helium Target 0.25t

Nuclear Target Region (C, Pb, Fe, H$_2$O)

Active Tracker Region 8.3 tons total

Electromagnetic Calorimeter 15 tons

Hadronic Calorimeter 30 tons

Side ECAL 0.6 tons

Side HCAL 116 tons

ν-Beam

(Vector)

P

MINOS Near Detector (Muon Spectrometer)
MINER^{νA} ν_μ quasi-elastic interaction

Quasielastic scattering

p \rightarrow n \rightarrow \bar{ν}_μ \rightarrow μ^+ \rightarrow W → Neutron
Antimuon
MINERνA deep inelastic scattering event
Another Complication

Need to understand nuclear effects – which are messy!

Some effects can be mitigated by use of same nuclear targets
Operating Long-baseline experiments

NOvA baseline: 810 km

T2K baseline: 295 km
T2K Experiment

- Muon (anti) neutrino beam generated at J-PARC
- Beam travels 295 km to large SK far detector to be measured after oscillations
- Near detector complex, ND280 constrains beam flux and interaction cross-section before oscillation
- Important to constrain non-oscillation parts of model to avoid bias
Super-Kamiokande

- 50,000 tons of water surrounded by 11,000 PMTs (20 inch).
- 1 km rock overburden
- 39.3m in diameter and 41.4m in height
Super-Kamiokande – electron or muon ring?
Super-Kamiokande – electron or muon ring?

\[\nu_\mu + X \rightarrow \mu^- + X' \]

\[\nu_e + X \rightarrow e^- + X' \]
The T2K Near Detector (ND280)

Different technology/target for near and far detector
• NuMI beam: ν_μ or $\bar{\nu}_\mu$

• 2 functionally identical, tracking calorimeter detectors
 – Near: 300 T underground
 – Far: 14 kT on the surface
 – Placed off-axis to produce a narrow-band spectrum

• 810 km baseline
 – Longest baseline of current experiments.
NOvA is on the surface.

- 14 kt Far Detector
- Equivalent Near Detector
- Liquid scintillator (oil)
- Readout by APDs
NOvA uses Convolutional Neural Networks (CVNs) to reconstruct images.
ν_μ and $\bar{\nu}_\mu$ disappearance at the NOvA Far Detector

Reconstructed neutrino energy (GeV)

- 211 events, 8.2 background
- 105 events, 2.1 background

No change in strategy.
ν_e and ν̅_e appearance at the NOvA Far Detector

Table:

<table>
<thead>
<tr>
<th></th>
<th>Total Observed</th>
<th>Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>ν_e</td>
<td>82</td>
<td></td>
</tr>
<tr>
<td>ν̅_e</td>
<td>33</td>
<td></td>
</tr>
</tbody>
</table>

Events / 13.60 10^{20} POT-equiv

<table>
<thead>
<tr>
<th></th>
<th>Events / 12.50 10^{20} POT</th>
</tr>
</thead>
<tbody>
<tr>
<td>ν_e</td>
<td></td>
</tr>
<tr>
<td>ν̅_e</td>
<td></td>
</tr>
</tbody>
</table>

Total Observed 82 Range 52-110

Total Prediction 85.8 52-110

Total Bkgd. 26.8 26-28

Total Observed 33 Range 25-45

Total Prediction 33.2 25-45

Total Bkgd. 14.0 13-15

>4σ evidence of ν_e appearance

Alex Himmel,
Neutrino 2020
ν_μ and $\bar{\nu}_\mu$ disappearance at the T2K Far Detector (SK)

Muon-like rings
ν_e and $\bar{\nu}_e$ appearance at the T2K Far Detector (SK)

electron-like rings ($0\,\pi^0$)
Extracting the Information

How many ν_μs are left? ("ν_μ disappearance")

100s of km

How many ν_es show up? ("ν_e appearance")

J. Wolcott
Extracting the Information

Simultaneous fits of

- Data samples in Near and Far Detector
- Flux model, incl. beam monitor and hadron production (NA61-SHINE)
- Cross section models
- Detector models for Near and Far Detector
- Error correlation matrix
- Oscillations Parameters
Electron-neutrino appearance is sensitive to the CP phase.

Mass ordering effect depends on electron density N_e.

Simultaneous determination of mass ordering and CP phase only possible with long-baselines by fitting the energy dependence of the flux modulation (unless we add atmospheric data).
• Sensitivity to combination of CP phase and mass ordering.
• Normal ordering slightly preferred (1σ)
• Exclude IO, $\delta = \pi/2$ at > 3σ
• Disfavour NO, $\delta = 3\pi/2$ at ~2σ

• CP conversation (0,π) excluded at 90% confidence level
• Normal ordering preferred
The Status Quo

- Current data are inconclusive – expect some improvements with further running
- Need next-generation experiments to discover CPV and resolve mass ordering