Neutrino Oscillations

Stefan Söldner-Rembold University of Manchester

Academic Training Lecture Programme May 2021

AL AL AL

Future long-baseline experiments

Optimizing L/E for neutrino oscillations

$$\frac{\Delta m_{31}^2 L}{4E} \sim \frac{\pi}{2}$$

L ≈ 300 km

- L/E = 300 km /0.6 GeV = 500 km/GeV
- no matter effects; first oscillation maximum.
- use narrow width neutrino beam (off axis) with E < 1 GeV
- benefit from large mass

L = 1300 km

- L/E = 1300 km/2.5 GeV = 500 km/GeV (1st max),
- L/E = 1300 km/0.8 GeV = 1700 km/GeV (2nd max)
- matter effects; first <u>and</u> second oscillation maximum.
- use broad-band neutrino beam (on axis).
- need good energy reconstruction

Water Cherenkov (T2K,HK)

Liquid argon (DUNE)

Hyper-Kamiokande

Super-Kamiokande

	Super-K	Hyper-K
Overburden	1000 m	650 m
Number of ID PMT	11,000	40,000
Photo-coverage	40%	40% (×2 sensitivity)
Total/Fiducial vol.	50 / 22.5 kton	260 / 188 kton

295km

E141

Hyper-Kamiokande

An international project

18 countries, 82 institutes, ~390 people

An upgraded Near Detector

- An upgraded version of the current ND280 detector.
- Addition of a 1kt Cherenkov water detector at a baseline of 1 km with vertical movement – PRISM concept

Hyper-Kamiokande to Korea?

Deep Underground Neutrino Experiment

Probability of detecting electron, muon and tau neutrinos

DUNE – a global collaboration

1317 collaborators from208 institutions in 33 countries (plus CERN)

$L/E = 500 \text{ km/GeV} \Rightarrow L = 1300 \text{ km}$

Proton Improvement Plan (PIP-II)

- Goal: Deliver world-leading beam power to the DUNE/LBNF neutrino programme while providing a flexible platform for the future
 - 1.2 MW to LBNF over 60-120 GeV;
 - upgradable to 2.4 MW
- Scope
 - 800-MeV SC Linac
 - Modifications to Booster, Recycler, Main Injector
- Broad international effort

Sanford Underground Research Facility (SURF)

The Homestake Mine in 1889

No. 2004. "Mills and Mines." Part of the great Homestake works: 1834 City, Dak Photo and Copyright by Grabiil, 1889.

CONTRACTOR OF

Hoist technology upgrade (Tardis?)

Davis Campus:

- LUX
- Majorana
- ...

• LZ

Experimental facilities at
1478 m (about 1 mile)
Two vertical access shafts

new excavation for DUNE

Testing the Rock Conveyor System at SURF

Intrantit

-

THE HORE

Four cryostats filled with liquid argon

External Dimensions: 19 m x 18 m x 66 m

Long-Baseline Neutrino Facility South Dakota Site

Ross Shaft 1.5 km to surface Neutrinos from Fermi National Accelerator Laboratory in Illinois

Facility
and cryogenic
support systems

One of four detector modules of the Deep Underground Neutrino Experiment

4850 Level of Sanford Underground Research Facility

time

3.4 m \rightarrow about 2 ms

A liquid-argon "Bubble Chamber"

ullet

Horizontal Drift Detector (Module 1)

Vertical Drift Detector (Module 2)

MANCHESTER 1824

CERNCOURIER | International |

Home | About | News | Features | Community | Viewpoint | Reviews | Archive | Past Issues | Jobs

Q

FEATURE ProtoDUNE revealed 15 February 2017

CERN makes rapid progress toward prototype DUNE detectors.

Latest Articles

Meet the Extremely Brilliant Source Cosmic research poles apart The tale of a billion-trillion protons Viewpoint: Fixing gender in theory The deepest clean lab in the world Doubly-strange baryon observed in Japan Inside Story: On the Courier's new future

CERN Neutrino Platform

ProtoDUNE-Single Phase (HD)

ProtoDUNE-SP Run 5770 Event 50648 @2018-11-02 20:32:06 UTC

space charge effects!

ProtoDUNE-Single Phase (HD)

Deep Underground Neutrino Experiment

Probability of detecting electron, muon and tau neutrinos

The PRISM Concept

K. Duffy, L. Pickering

The PRISM Concept

Linear superposition of spectra allows to construct oscillated flux distribution.

L. Pickering

DUNE v_{μ} disappearance

- Rates for running for 7 years with both neutrinos and anti-neutrinos
- Excellent energy reconstruction crucial for broad band beam

DUNE v_u disappearance/ v_e appearance

v_{ρ} appearance gives access to δ

- depends simultaneously on
- Measurements of all four possible in a single experiment.

v_{e} appearance gives access to δ

- depends simultaneously on
- Measurements of all four possible in a single experiment.

v_{ρ} appearance gives access to δ

0.04

0.02

E (GeV)

10

Measurements of all four possible in a single experiment.

250

200

150

100

50

v_{ρ} appearance gives access to δ

- depends simultaneously on
- Measurements of all four possible in a single experiment.
- Need to resolve degeneracies (e.g., MO vs. CP).

v_e appearance (MO/CP phase)

variation with mass ordering

variation with δ_{CP}

DUNE Mass ordering and CPV

Hyper-Kamiokande CPV only

Mass ordering either constrained by external measurement or by atmospheric neutrinos

Sensitivity versus time

- Difficult to compare because of different assumptions about staging and startup
- Both experiments need to ramp up quickly expected to start data taking at the end of the decade

Supernova 1987A in the Large Magellanic Cloud (55 kpc away)

For comparison: the Milky Way is about 34 kpc across

SN1987A, about 24 neutrinos observed, 3 hours before photons. in the Large Magellanic Cloud (55 kpc away)

For comparison: the Milky Way is about 34 kpc across

Supernova neutrinos in DUNE

Supernova signal in DUNE

Events per bin

- Neutrinos arrive before the light and can trigger observation by optical telescopes.
- Potentially a signal of 1000s of neutrinos in DUNE.
- Signal will teach us both about neutrinos and about the supernova mechanism.

Neutrino physics at accelerators

- I have only been able to cover a small amount of the rich neutrino physics programme at accelerators.
- These next-generation experiments will test the three-flavour paradigm, provide precision measurements of the neutrino sector, search for non-standard physics (sterile neutrinos, dark matter...), and much more.
- This is complemented by an exciting non-accelerator physics programme, studying solar, atmospheric, and supernova neutrinos.
- Please contact me (<u>stefan.soldner-rembold@cern.ch</u>) if you have any questions.

