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Optimizing L/E for neutrino oscillations

L ≈ 300 km

L = 1300 km

• L/E = 300 km /0.6 GeV = 500 km/GeV
• no matter effects; first oscillation maximum.
• use narrow width neutrino beam (off axis) with E < 1 GeV
• benefit from large mass

• L/E = 1300 km/2.5 GeV = 500 km/GeV (1st max), 
• L/E = 1300 km/0.8 GeV = 1700 km/GeV (2nd max)
• matter effects; first and second oscillation maximum.
• use broad-band neutrino beam (on axis).
• need good energy reconstruction

Water Cherenkov (T2K,HK)

Liquid argon (DUNE)
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Hyper-Kamiokande
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An international project
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• An upgraded version of the current ND280 

detector.

• Addition of a 1kt Cherenkov water detector at a 

baseline of 1 km with vertical movement – PRISM 

concept

An upgraded Near Detector
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Hyper-Kamiokande to Korea? 
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April 2015
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DUNE – a global collaboration

1317 collaborators from
208 institutions in 33 countries (plus CERN)
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L/E = 500 km/GeV ⇒ L = 1300 km
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Proton Improvement Plan (PIP-II)

• Goal: Deliver world-leading beam power to the 

DUNE/LBNF neutrino programme while providing a 

flexible platform for the future

– 1.2 MW to LBNF over 60-120 GeV; 

– upgradable to 2.4 MW

• Scope

– 800-MeV SC Linac

– Modifications to Booster, Recycler, Main Injector

• Broad international effort
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Sanford Underground Research Facility (SURF)



17

The Homestake Mine in 1889
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Hoist technology upgrade (Tardis?)
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• Experimental facilities at 
1478 m (about 1 mile)

• Two vertical access shafts

Davis Campus:
• LUX
• Majorana
• …
• LZ

new excavation for DUNE
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Four cryostats filled with liquid argon

External Dimensions: 19 m x 18 m x 66 m               

Each of the four cryostats contains 17,000 tons of liquid argon at 89 K (-184°C or -299°F)
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3.4 m  about 2 ms

170 kV
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A liquid-argon “Bubble Chamber”

• Few mm resolution.

• Excellent energy 

measurement.

• Excellent e-γ separation.

• Particle identification 

through dE/dx, range,..

• Timing through 

scintillation light
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75 cm
Run 3493 Event 41075, October 23

rd
, 2015 

The invisible neutrino is 

coming in here
Cosmic background

Cosmic background

Cosmic background
Two showers with visible offset from 

origin: might be 𝝅0 -> γ + γD
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Horizontal Drift Detector (Module 1)

ANODE CATHODE ANODE CATHODE ANODE
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Vertical Drift Detector (Module 2)

Perforated Anode
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CERN Neutrino Platform
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ProtoDUNE-Single Phase (HD)

Need to correct for 
space charge effects!
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ProtoDUNE-Single Phase (HD)
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Beam Monitor
(SAND) ND-GAr ND-LAr
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The PRISM Concept

K. Duffy, L. Pickering
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The PRISM Concept

L. Pickering

𝛎

𝛎 𝛎

𝛎

𝛎

Linear superposition of spectra allows to construct oscillated flux distribution.
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DUNE νμ disappearance

νμ

anti-νμ

νe
7 years
of data 

• Rates for running for 7 years with both neutrinos and anti-neutrinos
• Excellent energy reconstruction crucial for broad band beam 
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DUNE νμ disappearance/ νe appearance

νμ

anti-νμ

νe

anti-νe
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νe appearance gives access to δ
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•  e appearance amplitude 
depends simultaneously on 
 13,  23, CP, and matter 
effects –

• Measurements of all four 
possible in a single 
experiment.
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νe appearance gives access to δ

a =
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•  e appearance amplitude 
depends simultaneously on 
 13,  23, CP, and matter 
effects –

• Measurements of all four 
possible in a single 
experiment.

• Need to resolve degeneracies 
(e.g., MO vs. CP).



variation with
mass ordering

variation with 𝛿CP
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νe appearance (MO/CP phase)
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DUNE Mass ordering and CPV

CPV sensitivity Mass ordering sensitivity
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Mass ordering either 
constrained by external 
measurement or by 
atmospheric neutrinos

Hyper-Kamiokande CPV only
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Sensitivity versus time

CPv sensitivity

• Difficult to compare because of different assumptions about staging and startup
• Both experiments need to ramp up quickly – expected to start data taking at the end of the decade
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Supernova 1987A
in the Large Magellanic Cloud (55 kpc away)

For comparison: the Milky Way is about 34 kpc across
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Supernova 1987A
in the Large Magellanic Cloud (55 kpc away)

For comparison: the Milky Way is about 34 kpc across

SN1987A, about 24 neutrinos
observed, 3 hours before photons.
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Supernova neutrinos in DUNE

CC, 20 MeVNC, 10 MeV
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Supernova signal in DUNE

• Neutrinos arrive before the light and can 
trigger observation by optical telescopes.

• Potentially a signal of 1000s of neutrinos in 
DUNE.

• Signal will teach us both about neutrinos 
and about the supernova mechanism.
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• I have only been able to cover a small amount of the rich neutrino 

physics programme at accelerators.

• These next-generation experiments will test the three-flavour

paradigm, provide precision measurements of the neutrino sector, 

search for non-standard physics (sterile neutrinos, dark matter…), 

and much more.

• This is complemented by an exciting non-accelerator physics 

programme, studying solar, atmospheric, and supernova neutrinos.

• Please contact me (stefan.soldner-rembold@cern.ch) if you have 

any questions.

Neutrino physics at accelerators

mailto:stefan.soldner-rembold@cern.ch

