Towards a physics driven assessment of detector requirements

Michele Selvaggi

CERN

Philosophy

- The interest in the TH/pheno community is to assess the physics reach at the highest possible energies sqrt(s) = 10, 14, 30 TeV
- Guiding principles for designing a detector are machine constraints and physics
- A generic detector serves as a starting point for:
 - benchmarking physics reach of the machine
 - identify:
 - challenges of building such an experiment
 - topics where R&D needed
- Most likely, the outcome is not "THE OPTIMAL" detector. Maybe the optimal route will be to have several detectors optimized for specific signatures.
- Also, expected improvements in technology may lead to more ambitious and less-conventional approaches of detector concepts in the future

Approach

- Proposed approach:
 - Define physics goals via identifying key benchmark physics processes
 - **define a target** for the detector performance and **parameterise** it
 - study benchmark physics channels with target performance
 - study impact of variations of detector performance around nominal on physics
 - iterate on detector design

Physics goals for a high energy muon collider

- High energy (central) final states:
 - Precision via high energy probes:
 - $\mu\mu \rightarrow XX$:
 - ZH,WW, tt, cc, Hy

$$\delta O \sim \left(\frac{Q}{\Lambda}\right)^2$$

 \Rightarrow kinematic reach probes large Λ

$\begin{array}{c} \ell & \ddots V, H \\ \hline & \ell^+ \ell^- \to W^+ W^- \\ \hline & \ell^+ \ell^- \to ZH \\ \hline & \ddots V, H \end{array}$

See talk D. Buttazzo for details

Physics goals for a high energy muon collider

- High energy (central) final states:
 - direct exploration at > 10 TeV for new EW produced states:
 - WIMP EW multiplets:
 - Mono(di)-X searches (X boosted)
 - Exotic (Disappearing Tracks)

Majorana 5-plet	E = 30 TeV,	$\mathcal{L} = 90 \mathrm{ab}^{-1}$
- mono-γ		-
mono-W (inclusive)		-
mono-W (leptonic)		-
mono-Z		- ont
- WW		eze-(
- γγ		fre
Combined missing mass		-
 Disappearing tracks (single) 		-
- Disappearing tracks (double)		
0 2 4 6 8	10 12	14
M_{γ} [TeV	7]	

Need to be able to reconstruct central multi-TeV objects !

See talk D. Buttazzo for details

Physics goals for a high energy muon collider

- Low energy (forward) final states:
 - Precision via high rate, e.g.

- λ_{3} , λ_{4} via HH/HHH production
- Neutral VBS $ZZ \rightarrow H$

2012.11555 2003.13628 1.5 $\sqrt{s} = 3 \text{ TeV}$ 10^{3} $p_T^b > 20 \text{ GeV}$ 6 TeV $W^+W^- \to h$ 10 TeV $|\eta_b| < 3$ 1 10^{2} 14 TeV $W^+W^- \to tt$ 30 TeV 10^{1} 0.5 σ [fb] 10^{0} δ_4 0 10^{-1} $\ell^+\ell^- \to hZ$ 10^{-2} -0.5 10^{-3} -1510 1520253010 100 1000 1 $L \,[ab^{-1}]$ $E_{\rm cm}$ [TeV]

Need to be able to reconstruct objects ~ 10-100 GeV

See talk D. Buttazzo for details

Beam induced background

- High energy Muon collider specs are not known yet, can only extrapolate from low energy:
- Beam-induced background:
 - For 0.75 TeV beams, N = 2e12 muons/ bunch → 4e5 muon decays/m
 - For 7.5 TeV beams \rightarrow 4e4 muon decays/m
 - But x10 more energetic, more forward
 - Conservatively assume ~ similar energy deposited in detector (will be distributed differently however)
- vs. pile-up at hadron collider:
 - \sim diffuse low energy deposit in detector
 - *≠* not pointing towards beamspot, much wider time profile
 - more handles

Tracks E > 50 MeV

Occupancy

@first pixel ~ 2 cm from beam-pipe

At MuonCollider can afford **low power pixel** sensors thanks to **low BX rate** (70 kHz) e.g MAPs (30 μ m x 30 μ m):

→ occupancy: 0.6% (700 / (1cm² / 30 μ m²)) ~ 2x HL-LHC or 0.5x FCC-hh

Definitely challenging, but not impossible ...

FCC-hh

3

2

-1

0

-2

-3

Data rates

• LHC Phase II :

- Raw Event size ~ 5 Mb
- ATLAS/CMS calorimeters/muons readout @40MHz and sent via optical fibres to Level I trigger outside the cavern to create LI trigger decisions (25 Tb/s)
- Full detector readout at @IMHz ~ 5 Tb/s (@40MHz ~ 200 Tb/s)

• <u>FCC-hh:</u>

- Raw Event size ~ 25 Mb
- At FCC-hh Calo+Muon would correspond to 250 Tb/s (seems feasible)
- However full detector would correspond to I-2 Pb/s
 - Seems hardly feasible (30 yrs from now)

At MuonCollider, we collide at much lower rate $\sim 10-20 \ \mu s$ bunch crossing (@ 50 kHz)

Assuming similar event size as FCC-hh \rightarrow I Tb/s, we can probably read full detector without triggering

Low pT physics, high rate

At high energy, the SM particles are increasingly:

- produced via weak boson fusion (at threshold)
- more forward

In order to maintain sensitivity in such measurements need large rapidity (with tracking) and low p_T coverage

Low pT physics, high rate

- Recording on tape low p_T objects is probably ok (assuming triggerless)
- Constraints the acceptance on the shielding coverage (nozzle)
- Challenge:
 - Maintain high performance at low momenta:
 - relative impact of BIB on low p_T objects is larger, will dominate resolution of jets (crucial for Higgs processes)

11

- LHC lesson for pile-up identification:
 - high granularity (tracking + HG calorimetry required), finer segmentation can be afforded here
 - timing (~ 10's ps resolution)

See talk P. Harris for details

Very forward physics

Neutral $ZZ \rightarrow X$ scattering:

- Very speculative, but equally interesting possibility to be explored:
 - Extremely high energy muon ($\sim E_{beam}$)
 - Highly forward ($\theta \sim m_H / E_{beam}$)
- Would require dedicated outside detector cavern
- To be investigated:
 - Needed resolution?
 - BIB impact?
 - Acceptance?

most forward muon

Boosted physics

• The boosted regime:

→ measure multi-TeV leptons, photons, muons, jets

Tracking:
$$\frac{\sigma(p)}{p} \approx \frac{p\sigma_x}{BL^2}$$
 Calorimeters: $\frac{\sigma(E)}{E} \approx \frac{A}{\sqrt{E}} \bigoplus B$

→ target specifications:

- Tracking target : $\sigma / p = 20\% @10 \text{ TeV}$
- Muons target: $\sigma / p = 10\%$ @20 TeV
- Calorimeters target: containment of $p_T = 20$ TeV jets

→ should be studied carefully (maybe no need for extreme energy momentum/resolution)

 Calorimeter depth determines size of solenoidwhich in turn drives detector cost

High p_T muons

- pT = 4 GeV muons enter the muon system
- pT = 5.5 GeV leave coil at 45 degrees •
- Standalone muon measurement with angle of track • exiting the coil
- Target muon resolution can be easily achieved with 50 • µm position resolution (combining with tracker)
- Good standalone resolution below $|\eta| < 2.5$ •

Boosted physics

→ measure W, H, top jets from multi-TeV resonances

- Highly boosted hadronically decaying SM heavy states (W, Z, H or t) will have highly collimated decay products
- The ability to distinguish such boosted states from vanilla QCD light jets is an essential tool for

 $\mu \mu \rightarrow jj/tt/VV/ZH$

ex: W(10 TeV) will have decay products separated by DR = 0.01 = 10 mrad

Boosted physics

Physics constraints

- The boosted regime:
 → measure b-jets, taus from multi-TeV resonances
- Long-lived particles live longer:
 - ex: 5 TeV b-Hadron travels 50 cm before decaying 5 TeV cHadron/tau lepton travels 10 cm before decaying
 - → extend pixel detector further?
 - useful also for exotic topologies (disappearing tracks and generic BSM Long-lived charged particles)
 - number of channels over large area can get too high
 - \rightarrow re-think reconstruction algorithms:
 - hard to reconstruct displaced vertices
 - exploit hit multiplicity discontinuity

Only 71% 5 TeV b-hadrons decay < 5th layer.

• displaced vertices

Parametric simulation

 The interest in the TH/pheno community is to assess the physics reach at the highest possible energies sqrt(s) = 10, 14, 30 TeV

(at any rate, such a detector would perform great also at 1.5, 3 TeV)

- Need to be able to reconstruct: mu, ele, jets, tops, V from few GeVs up to $p_T = 15 \text{ TeV}$
 - $\mu \mu \rightarrow \mu \mu$, e e , j j, t t~ (hadronic) ,VV (hadronic)
 - $\mu \mu \rightarrow v v X$, $\mu \mu X$ (X=V,H,VV, HH...)

With many respects, the constraints from physics at high p_T are similar: to the **FCC-hh** and **CLIC** (also easier to start from existing detector concept)

 \rightarrow parameterised simulation for muon collider detector concept is an **hybrid** of the FCC-hh and CLIC card

Muon Collider card

******** # Order of execution of various modules # Muon Collider Detector TARGET model # # Michele Selvaggi michele.selvaggi@cern.ch set ExecutionPath { # Ulrike Schnoor ulrike.schnoor@cern.ch ParticlePropagator TrackMergerProp # ± DenseProp # !!! DISCLAIMER !!! DenseMergeTracks Ξ DenseTrackFilter # The parameterisation of the Muon Collider ChargedHadronTrackingEfficiency # has to be intended as a target performance. ElectronTrackingEfficiency # This has not been validated by full simulation. MuonTrackingEfficiency # Hybrid between FCC-hh and CLIC performance. ± ChargedHadronMomentumSmearing ElectronMomentumSmearing ********* MuonMomentumSmearing

- v0 can be found here:
 - <u>https://github.com/delphes/delphes/blob/master/cards/delphes_card_MuonColliderDet.tcl</u>
 - <u>https://github.com/delphes/delphes/tree/master/cards/MuonCollider</u>

Possible detector variations studies

• p_T acceptance:

- final state objects (pt = [10-50]) in particular $HH\rightarrow 4b$
- angular detector acceptance:
 - the baseline detector card assumes a maximum rapidity of $|\eta|=2.5$.
 - ranges between [1.5, 3.0] can be studied.
 - simulates various assumptions on the dead cone introduced by the nozzle shielding.

forward muon detector performance:

- no detector concept currently exists for reconstructing muons in the challenging BIB environment at small angles.
- both the acceptance and the resolution for reconstructing such muons can be explored.
- This can be studied in the context of neutral vector boson scattering.

Possible detector variations studies

• Track and Calorimeter resolutions:

- can be degraded by factor 2-4 in physics studies that involve (non-)resonant signals.
- alternatively, the jet energy resolution can also be degraded by similar factors.
- this can be studied for instance in the context of double and triple Higgs production in fully hadronic final states.
- Calorimeter granularity:
- study impact on highly boosted hadronic decays (H,W,top)
- Identification efficiencies:
- in particular lepton, photons ID, and heavy flavour tagging.
- in the context of double and triple Higgs production where b/c/light flavour discrimination can be important.
- LLP studies:
 - detector volume
 - timing resolution
 - track reconstruction efficiency as a function of displacement for LLP studies and exotic signatures

Conclusions

- A detectors able to extract all the physics potential from such a machine can be built, but a high profile R&D programme for detectors and electronics technologies has to be conducted (picosecond timing, granularity, high speed low power optical links)
- A general purpose target detector has been designed to set the scale of the challenges of performing experiments with such machine
- Its performance has been parameterised in Delphes for phenomenological investigations
- Impacts of variations around nominal (target performance) have been investigated using benchmark physics channels and used to:
 - identify areas of needed improvement (timing, granularity etc ..)
 - further optimise detector design (e.g. reduce cost for instance)

Backup

Tracking efficiency/resolution

inspired from FCC-hh

Calorimeters/PF

E/mu/gamma efficiency

inspired from CLIC det

BTagging (Medium Working point)

inspired from CLIC det

Tau-tagging

inspired from CMS/FCChh

Forward muon collection

