Muon Detector for Muon Collider *R&D on MPGDs: GEM, Micromegas, µRWell, PICOSEC, and other ongoing developments*

overview and perspectives

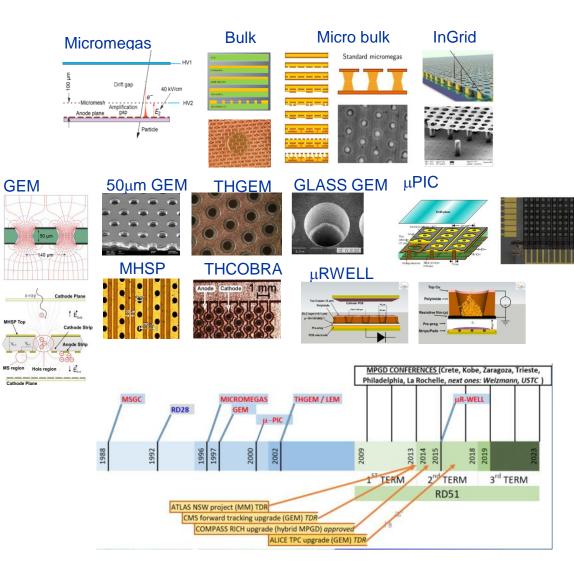
Michele Bianco, CERN EP-CMX

Muon Collider Physics and Detector Workshop, 3rd June 2021

Let me start with disclaimers

- I'll try to present a large picture of MPGD, but I apologize that, this is so large family that a good summary is almost impossible (please look to the backup slides for very wide view of existing MPGD technologies) moreover, I'm sure that I'm biased by my personal experience...
- The intent is to present some MPGD technologies for application in Muon Collider Detector, but absolutely not with the idea to sell any technology in favors of others (again mostly biased by my personal experience)
- Muon Detectors still nowadays the only way to instrument large volume at moderate cost and limited material budget, *MicroPattern Gas Detectors* (*MPGD*) are ideal tools for present and future large-scale use at LHC and behind

MPGD @ Muon Collider: which requirements?


- Time resolution?
- Space resolution?
- Energy Resolution?
- Material budget ?
-

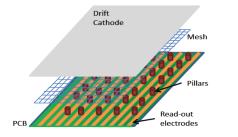
First of all, define the requirements than look to the technology as possible best solution for the use case.

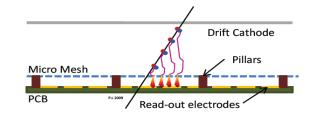
.. again, as specified in the disclaimer the intent is not to suggest any specific technology, (some are more mature of others, some look more interesting for timing, rate capability, ...)

Micro Pattern Gas Detector Family

- High Rate Capability
- High Gain
- High Space Resolution
- Good Time Resolution
- Good Energy Resolution
- Excellent Radiation Hardness
- Good Ageing Properties
- Ion Backflow Reduction
- Photon Feedback Reduction
- Large size m²
- Low material budget
- Low cost
-

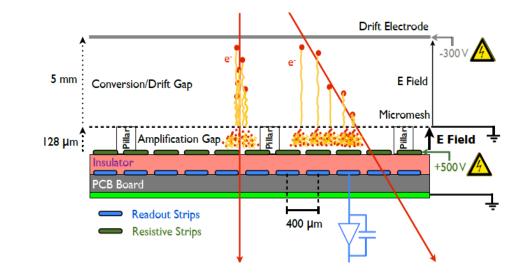
- Up to MHz/mm² (MIP)
- Up to 10⁵-10⁶
- <100µm
- In general few ns , sub-ns in specific configuration
- 10-20% FWHM @ soft X-Ray (6KeV)
 - % level sort of easy, below % in particular configuration


All subjects illustrated by examples: A fully comprehensive review is impossible! Technology share-point R&D51

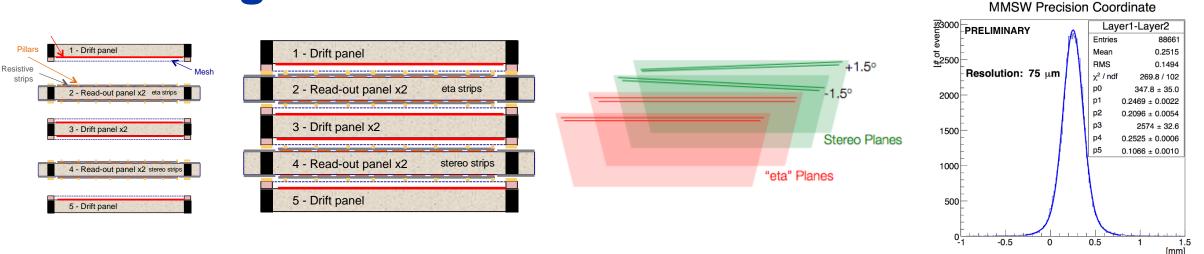


MPDG as Tracking Detector

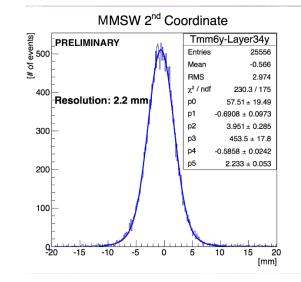
MicroMegas MM



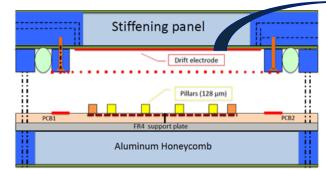
Micromegas (I. Giomataris et al., NIM A 376 (1996) 29) are parallel-plate chambers where the amplification takes place in a thin gap, separated from the conversion region by a fine metallic mesh.

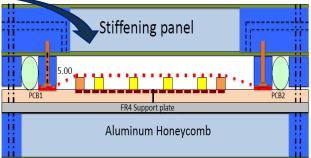

ATLAS MM

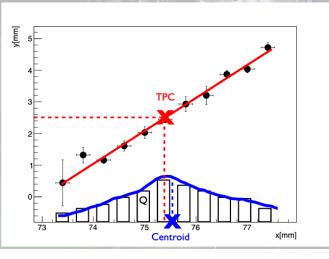
- Drift region: 5 mm
- Grounded mesh (stainless steel, 325 lines/inch)
- Floating Mesh (Not bulked detector)
- Amplification region: thin gap (128 µm)
- High electric field, fast ions evacuation and high rate tolerance
- e⁻ drift towards the mesh (95% transparent)
- Resistive strips for spark-protection
- Capacitive coupling of the resistive strips with readout strips
- The detector becomes spark tolerant by adding a layer of resistive strips(5-20MOhm/cm)
- Operated with an Ar/CO2 93/7 mixture

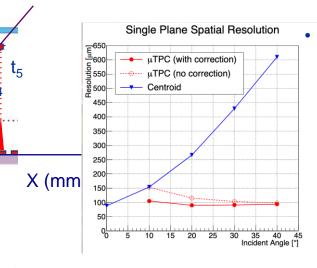


MicroMegas


- Space resolution : ~ 80 um (10.1109/NSSMIC.2014.7431235)
- Time resolution : 7-9 ns (NIMA 577 (2007) 455)
- Gain
 - COMPASS: G ~ 6400 (NIMA 469 (2001) 133)
 - T2K TPC: G ~ 1500 (NIMA 637 (2011) 25)
- Rate capability ATLAS-NSW resistive, lin. up to 100kHz/cm

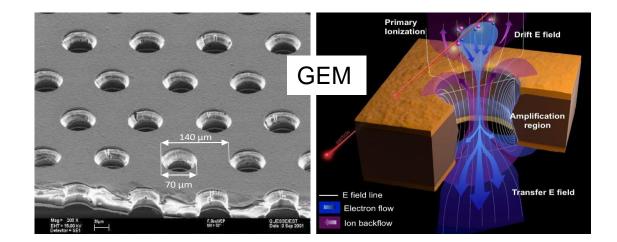


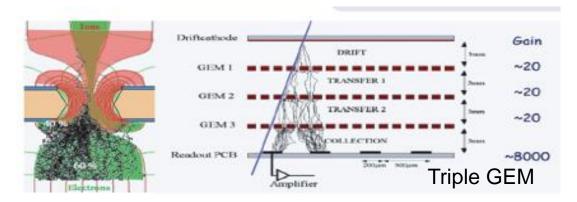

Non-bulk technique (**floating mesh**) that uses also pillars to keep the mesh at a defined distance from the board, the mesh is integrated with the drift-electrode panel and placed on the pillars when the chamber is closed. This allows us to build very large chambers using standard printed circuit boards (PCB).



Hit & Track reconstruction

- Using charge amplitude (Centroid hit)
 - Accuracy rapidly decreasing for larger track angles
- *Using time information (uTPC segment)*
 - Performance improving with increasing cluster size

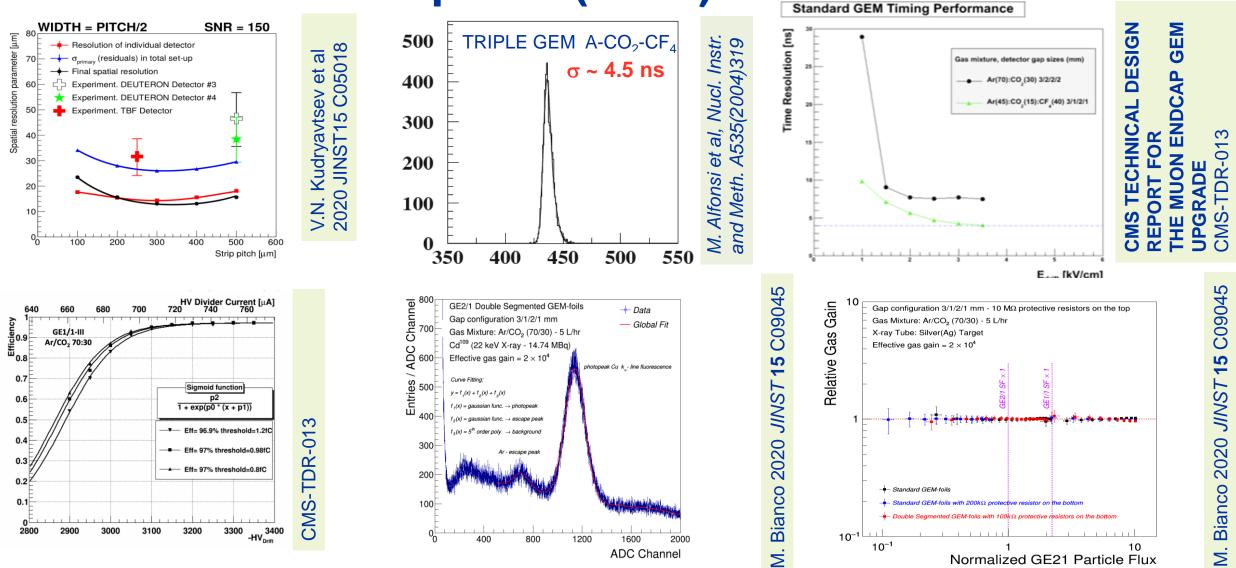

K. Nteakas ATL-MUON-PROC-2014-011 <u>10.1109/NSSMIC.2014.7431235</u> Jinst10 (2015) C02026



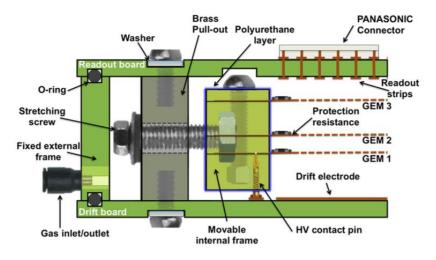
Gas Electron Multipliers (GEM)

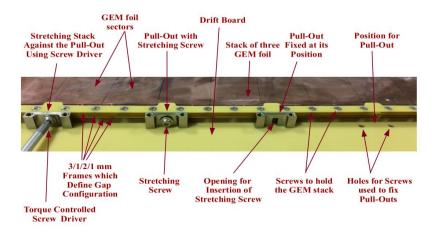
CMS GEM

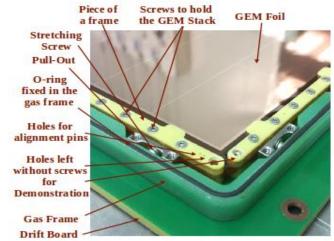
- Triple GEM detector 3/1/2/1 mm
- Drift region: 3 mm
- Maximum geometric acceptance within the given CMS envelope
- Rate capabilities up to 100's kHz/cm2
- Gain uniformity of 10% or better across a chamber and between chambers
- High spatial and good time resolution
- Operated with an Ar/CO2 93/7 mixture



F. Sauli, *GEM: A new concept for electron amplification in gas detectors*, **NIMA386 (1997) 531**.


Gas Electron Multipliers (GEM)





M. Bianco | Muon Collider Physics and Detector Workshop | 3rd June 2021 | MPDG

Gas Electron Multipliers (GEM)

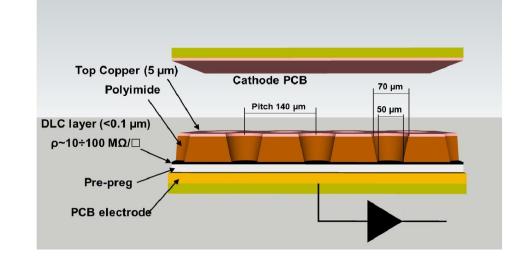


GEM Performances:

- Space resolution : ~ 40 um (JINST 15 CO5018)
- Time resolution : 4-9 ns (NIMA 535 (2004) 319)
- Gain
 - CMS up to 4*10^4 (and more) (JINST 15 C09045)
- Rate capability CMS GE1/1 configuration 20 kHz/cm2 (strongly dependent on spark protection resistances)

The µ-RWELL technology

The device is composed of two elements:

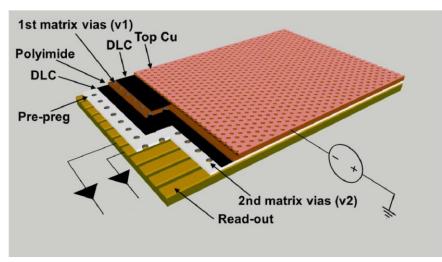

- µ-RWELL_PCB
- drift/cathode PCB defining the gas gap


 μ -RWELL_PCB = amplification-stage \oplus resistive stage \oplus readout PCB

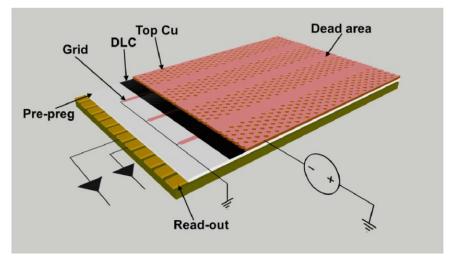
large area & flexible geometry

- The "WELL" acts as a multiplication channel for the ionization produced in the gas of the drift gap
- The charge induced on the resistive layer is spread with a time constant, $\tau\sim\rho{\times}\mathcal{C}$

 $C = \varepsilon_0 \times \varepsilon_r \times \frac{s}{t} = 35 \ pF \times S(cm^2)$



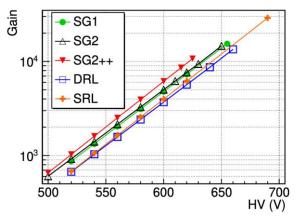
µ-RWELL High-Rate Layout


The purpose of these HR versions is to reduce the distance to be "travelled" by the charge towards the ground

Double Resistive layer (DRL)

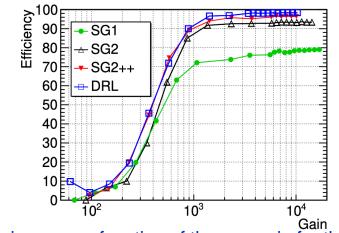
- 3-D grounding
- Double DLC layers connected through matrices of conductive vias to the readout electrodes (density 1/cm2)

Silver Grid (SG)



- 2-D grounding
- Single DLC layer grounded by means conductive strip lines realized on the DLC layer (density 1/cm)

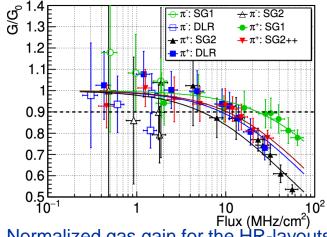
Silver Grid design introduced to simplify the e technology transfer, since the TT of the DRL industrial production is difficult, The new design, is based on the simple single-resistive layout with a suitable surface current evacuation scheme, the Grid layout (to avoid sparks) introduce dead area which reduce the geometrical acceptance


µ-RWELL Performances

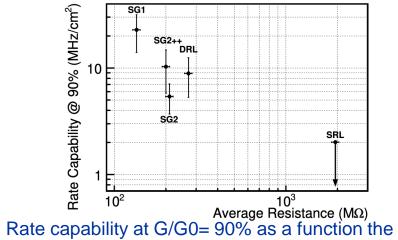
Gas gain of the uRwell (different HR layout) characterized at PSI

Thanks to the resistive plane: •very reliable • very low discharge rate •adequate for high particle rates O(1MHz/cm₂)

•gain ≥10⁴
•space resolution < 60 μm
•time resolution < 6 ns


Efficiency as a function of the gas gain for the HR layouts (SG1 affected by geometrical acceptance)

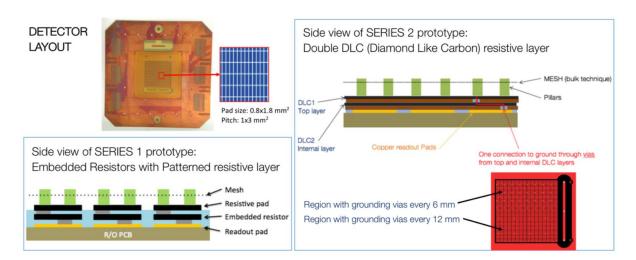
Perspectives

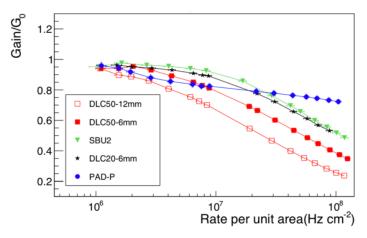

Single resistive layer (Moderate rate):

- Quick progressing toward large size
- > TT ongoing
- Industrial Partner ELTOS, MDT

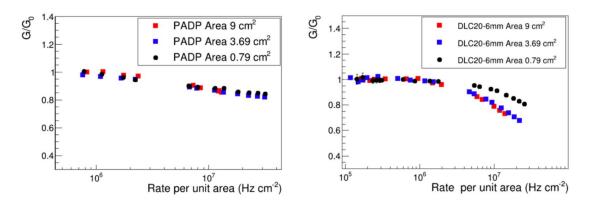
G. Bencivenni et al 2019 JINST14 P05014

Normalized gas gain for the HR-layouts as a function of the pion flux in PSI beam tests


Rate capability at G/G0= 90% as a function the effective resistance Ω eff. For the SRL, an upper limit of its rate capability is given


Small-PAD Resistive MM

MPGD for very high-rate application


M. lodice et al 2020 JINST 15 C09043

Top-left: photo of the anode plane PCB with an expanded view of the pad structure; bottom- Left: side view sketch of the padpatterned resistive scheme; right: side view sketch of the DLC detectors with a top view of the grounding vias layout.

Dependence of the gains of the PAD-P, DLC and SBU detectors, normalized to their value at low rates, as a function of the X-Rays hit rates, in the range 1–100 MHz/cm . Irradiated area of 1 cm diameter (0.79 cm2). Gain about 6500 at 100 kHz/cm2 for all the detectors

Dependence of the relative gain on the X-Rays hit rates for the PAD-P (left) and DLC-20-6mm (right) detectors for three different areas of exposure: 0.79, 3.69, 9 cm²

MPDG as Timing Detector

Fast Timing MPGD (FTM)

- Time resolution of <u>all</u> proportional gas detectors (GEM,MM,uRWELL,...) is limited to 5-10ns [1]
- Typical <u>fluctuation of closest primary electron</u> to amplification structure: $\lambda \sim 2.8 \text{mm}^{-1} \rightarrow \langle d \rangle = 350 \mu \text{m} @ v_{drift} = 50-70 \mu \text{m/ns} \rightarrow \sigma_t = 5-7 \text{ ns time resolution [2]}$

Test Beam Results (2 layers)

Drift electrode

106

2.4 / 4 0.66

 25 ± 0.2

 1.7 ± 0.1

Time(ns)

polyimide

diamond-like

polyimide

polyimide

carbon

5.9e+02 ± 6.2e+01

Entries

 χ^2 / nd

Prob

Amp

Mean

Sigma

Both Lavers powered

Drift Fields = 8 kV/cm

Amplification Fields = 120 kV/cm Gas Mixture = Ar/CO₂ 70/30 Signal pickup from drift electrode

70 80

Pion Beam

30 40 50 60

40

35

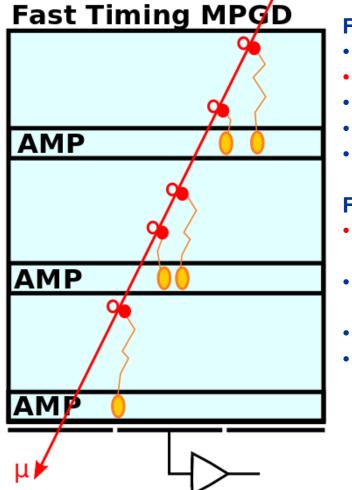
30F

25

20

15F

10


25µm

250µm

50µm

25µm

Events/2ns

Fast Timing MPGD: Working Principle

- Divide drift in multiple layers, each with Amplification
- Resistive electrodes => Electrode Transparency
- Closest primary electron => Fastest Signal
- Time Resolution $\sigma_t = 1/(\lambda \cdot v_{drift} \cdot N)$, where N = layers
- Observed: 2ns with 2 layer-detector [4] (\rightarrow OK)

Fast Timing MPGD: Challenges

- Fully Resistive MPGD (no Copper, only DLC, resist. kapton)
- Detect single-electron (or single cluster) instead of many primary+secondary electrons created in drift gap
- Requires High Gain Structures: G = 10⁴ 10⁵
- **Requires sensitive front-end** (< 1fC, few ns rise-time)

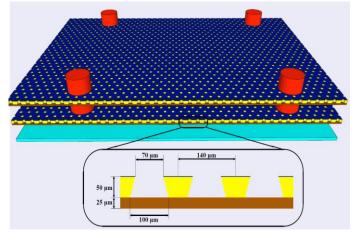
References:

F.Sauli, Yellow Report, CERN-77-09 (1977)
 P.Verwilligen *et al.* J.Phys.Conf.Ser. 1498 (2020)
 M.Maggi *et al.* arXiv:1503.05330 (2015)
 I.Vai *et al.* NIM A 845 (2017) 313

Design of single Layer: Perforated GEM foil with DLC electrode

20

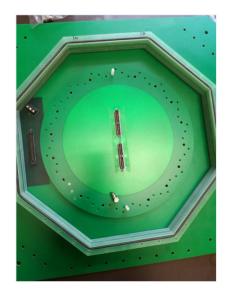
140µm


50µm

70µm

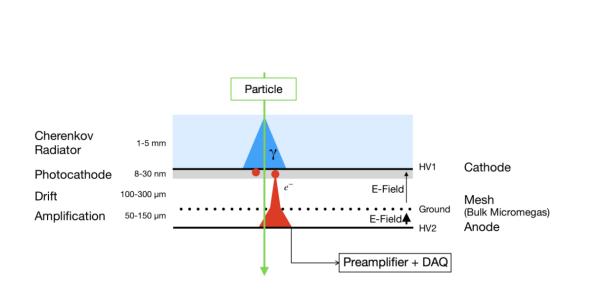
10

Fast Timing MPGD (FTM): Design


Single layer specifications:

- Drift layer: 250µm drift layer
- Gain layer: 50µm Kapton (Yellow: GEM foil: 70µm hole, 140µm pitch)
- Support Layer: 200µm
- (Red: Dupont Coverlay spacers) w: GFM foil: 70um hole, 140um pitch)
- (Brown: Pre-Preg (glue) + FR4 PCB)
- Resistive coating: 10–100 nm,~100 M Ω/\Box

FTM requirements:


detection of single photo-e⁻(closest) instead of alle-in drift (i.e. factor 10 reduction in charge) detection with single amplification layer(Triple GEM has amplification divided in three stages) **Therefore:**

⇒need high gain structure, with low spark/discharge rate ⇒need low noise detector and low noise electronics ⇒need electronics that can process pulse with low charge ($10^4e^-= 1.6$ fC) ⇒need electronics that can process and preserve a fast pulse

(Blue: DLC)

Amplifying Stage Amplifying Stage Amplifying Stage Readout Readout Readout Primary electrons at the same time in the same place

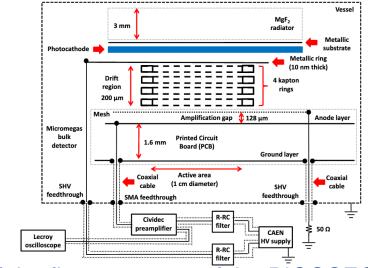
MР

Conversion Layer

ransfer Volume

Amplifying Stage

Conversion Layer


Transfer Volume

Readout

The PICOSEC detection concept

PICOSEC

The passage of a charged particle through the Cherenkov radiator produces UV photons, which are then absorbed at the photocathode and partially converted into electrons. These electrons are subsequently preamplified and then amplified in the two high-field drift stages and induce a signal which is measured between the anode and the mesh.

Sketch of the first prototype of the PICOSEC detector,

ШР

Sensitive Volume

Amplifying Stage

Sensitive Volume

Readout

LOCALIZED

Solid Converters

in SPACE

 δt_1

 δt_2

MIP

δt₁

 δt_2

Cherenkov Radiator

Transfer Volume

Amplifying Stage

Cherenkov Radiator

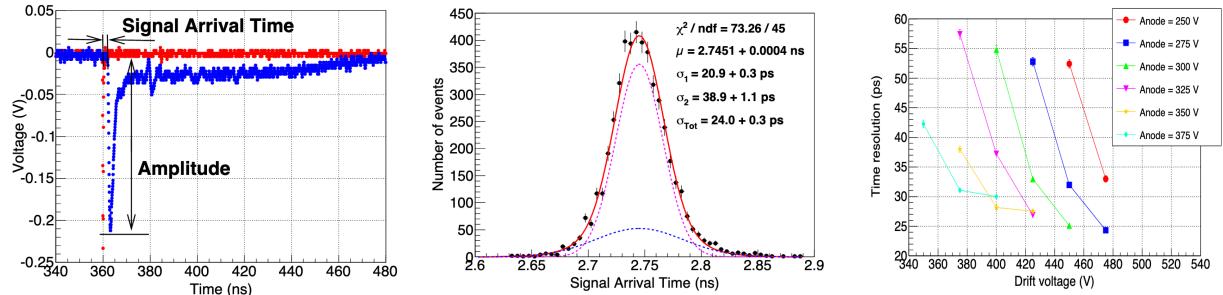
Transfer Volume

Readout

Cherenkov (prompt) Photons

LOCALIZED

in TIME


δt₁

 δt_2

https://arxiv.org/pdf/1712.05256.pdf

An example of an induced signal from the PICOSEC detector generated by 150 GeV muons (blue points), recorded together with the timing reference of the microchannel plate MCP signal (red points) An example of the signal arrival time distribution for 150 GeV muons, and the superimposed fit with a two Gaussian function, for an anode and drift voltage of275 V and 475 V, respectively. Dependence of the time resolution on the drift and anode voltage fora PICOSEC detector irradiated by 150 GeV muons.

R&D and Technological Transfer

Many R&D are ongoing, mostly within the R&D51 collaboration

- Improving performances: rate, space resolution with limited number of channels, timing, high gain...
- Resistive layers/electrodes: stability, space resolution, simple/single stage...
- Material budget, minimized dead areas...
- Gas mixtures, New material, New manufacturing techniques for new structures and fast prototyping (etching, 3D,..)..
- Simplified structures with simplified production processes..

The TT is a key point for future large production

- TT Fundamental for Large Productions / Large Project (LP/LP)
- LP/LP (having responsibility for scientific aspects & related financial resources) have to identify
 resources and have cover the TT as well as the learning/training process
- Manpower from LP/LP is fundamental

- The MPGD is a brand-new family of gas detectors, many of them conceived and developed in the last 10 years.
- Some of them are quite mature technologies (LHC Phase2 is making large use of MPGD), others promising but still require not negligible R&D and developments,
- To highlight that the results achieved in the recent years are surprising and the rate of the speed with which new ideas/detectors are presented, implemented, tested is exceptional
- Critical point for the MPGD is the engineering and realization of large area detector (scaling up of surface may become very challenging for mechanical reasons/tolerances)

> Personal comments

- Looking to the time scale of the Muon Collider project any technology (idea / detector model) selection looks to be premature, we cannot exclude that the correct technology will show up only in the incoming years; still enough time to develop/test/prove
- > All R&D, on the base of the potential performance (not on the actual obtained results) should be sustained, technological development are so fast that good ideas have in front enough time to become good detectors

Reference

- CERN EP Department R&D on experimental technologies 1st WG2 Meeting <u>https://indico.cern.ch/event/702148</u>
- CERN EP Department R&D on experimental technologies
 <u>https://indico.cern.ch/event/696066/contributions/2927894/attachments/1618327/257321
 1/RDonGaseousDetectorTechnologies.pdf</u>
- ECFA Detector R&D Roadmap Symposium of Task Force 1 Gaseous Detectors <u>https://indico.cern.ch/event/999799/</u>
- Mini-Workshop on gas transport parameters for present and future generation of experiments <u>https://indico.cern.ch/event/1022051/timetable/?view=standard</u>
- <u>https://indico.desy.de/event/22513/contributions/46788/attachments/30337/38104/20200</u>
 <u>224-EDIT-GaseousDetectors.pdf</u>
- <u>https://detectors.fnal.gov/wp-content/uploads/2018/02/FNAL_dallatorre_13feb2018.pdf</u>

Probably the most exhaustive list I know...

LHC

							IAIL OD I	GUIIIUIUyica		IIIGIIIauuuia	i Lingai Vui	IUCI
Experiment/ Fimescale	Application Domain	MPGD Technology	Total detector size / Single module size	Operation Characteristics / Performance	Special Requirements/ Remarks		Experiment / Timescale	Application Domain	MPGD Technology	Total detector size / Single	Operation Characteristics /	Spec
ATLAS Muon System Upgrade: art: 2019 (for 15 y.)	High Energy Physics (Tracking/Triggering)	Micromegas	Total area: 1200 m ² Single unit detect: (2.2x1.4m ²) - 2-3 m ²	Max. rate:15 kHz/cm ² Spatial res.: <100µm Time res.: - 10 ns Rad. Hard.: - 0.5C/cm ²	 Redundant tracking and triggering; Challenging constr. in mechanical precision: 		ILC Time Projection Chamber for ILD:	High Energy Physics (tracking)	Micromegas GEM (pads)	module size Total area: - 20 m ² Single unit detect:	Performance Max.rate:<1kH Spatjal	Rem
ATLAS Muon gger Upgrade: Start: > 2023	High Energy Physics (Tracking/triggering)	µ-PIC	Total area: - 2m ²	Max.rate:100kHz/cm ² Spatial res.: < 100µm			Start: > 2030		InGrid (pixels)	~ 400 cm² (pade) ~ 130	nleve	owe
CMS Muon stem Upgrade: Start: > 2020	High Energy Physics (Tracking/Triggering)	GEM	Total area: - 143 m ² Single unit detect: 0.3-0.4m ²	Max. rate:10 kHz/cm ² Spatial res.: -100µm Time res.: ~ 5-7 ns Rad. Hard.: ~ 0.5 C/cm ²	- Redundant tracking and triggering		ILC Time Projection Chamber for ILD: Start: > 2030 ILC Hadronic (DHCAL) Calorimetry for ILD/SiD Start > 2030	High Energy Physics (calorimetry)	c0.0	ern.	Spatial res.: ~ 1cm Time res.: ~ 300 ns Rad. Hard.: no	Jet En resolu Powe
S Calorimetry E) Upgrade itart > 2023	High energy Physics (Calorimetry)	Micromegas, GEM	Total area: - 100 m ² Single unit detect: 0.5m ²	Max. rate: 100 MHz/cm ² Spatial res.: - mm	Not main option; could be used with HGCAL (BE part)		+ https	silling		Particle	Flow Calorimetr	y (ILI
E Time n Chamber: : > 2020	Heavy-Ion Physics (Tracking + dE/dx)	GEM w/ TPC	Total area: - 32 m ² Single unit detect: up to 0.3m ²	Max.rate:100kHz/cm ² Spatial res.: ~300µm Time res.: ~ 100 ns dE/dx: 12% (Fe55) Rad. Hard.	- 50 kHz Pb-Pb rate; - Continues TPO readout	WC					PFA Calorimeter	
TOTEM: : 2009-now	High Energy/ Forward Physics (5.3≤ eta ≤6.5)	GEM (semicircular shape)	Total area: - 4 m ² Single	FAME	outisions.				SiD Concep	t: ECAL Tungsten	Tungst	en
ICb Muon System : 2010- now	High Energy / B-flavor physic (mu aldo y/Muon)	Olive	20-24 cm ²	Spatial res.: - cm Time res.: - 3 ns Rad. Hard.: - C/cm ²	- Redundant triggering				R	analog dig	ital an	alog
E	aldu	d, 1HGEM Micromegas, μ-PIC, InGrid	Total area: 10.000 m ² (for MPGDs around 1.000 m ²)	Max.rate:100 kHz/cm ² Spatial res.: <100 µm Time res.: - 1 ns	Maintenance free for decades					Silicon Scintillator	MAPS Sointilato	RPC

lindrical MPGDs as Inner Trackers for Particle / Nuclear Physics

Particle Physics/ Cylindrical GEM Total area: 3.5m² Spatial res:(r phi) - 250um - Mat. budget 2% X0

L(length) = 700mm

R (radius) = 130, 155, 180, 205 mm

2 cylindrical lavers R~20 cm

R = 85, 95 mm

2 cylindrical layers

Nuclear structure TPC w/ cylindrical 1 cylindrical layer Spatial res.: <5 mm FWHM - Low material Micromegas L=30 cm, R = 10cm Trigger rate up to =1 KHz budget

R ~ 20 cm

Partcile Physics/ Cylindrical GEM 3 cylindrical layers Max rate: 10 kHz/cm²

Nuclear Physics/ Planar (forward) & Total area: Max.rate: - 30 MHz

(harrel)

Micromegas

Cylindrical

GEM

(Tracking and vertexing Micromegas 2D L = 60 cm

Nucleon structure Cylindrical Forward - 0.6 m² Spatial res.: < 200um

Particle physics Cylindrical Total arear: - 3m² Spatial res.: -100µm

4 cylindrical layers Spat. res.(z) - 350um

Barrel ~ 3.7 m² Time res.: - 20 ns

2 cylindrical layers Max. trigger rate: kHz

Spatial res:(xy) - 130um

Spat. res.(z) = 1 mm

Spatial res.: ~200um

Time res.: - 10 ns

Rad. Hard.: 1 C/cm²

- Operation in 0.5 T

- Material < 1.5% of

X_o for all layers

- Operation in 1T

- Low material

budget : 0.4 % X0 - Remote

Large magnetic

from -3 to 4T in the

field that varies

active area

electronics

MPGD Technologies for the International Linear Collider

MPGD Tracking Concepts for Hadron / Nuclear Physics

Special Requireme

Required beam

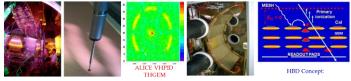
tracking (pixelized central/beam an

Remarks

Gating grid

operation ~ 1kHz ^4 nuclei Work with various

> gas (He mixture, iC4H10 D2...)


Special Requirements	periment/ lescale	Application Domain	MPGD Technology	Total detector size / Single module size	Operation Characteristics/ Performance
Requirements Reprime 1999799	OMPASS @ CERN Run: 2002 - now	Hadron Physics (Tracking)	GEM Micromegas w/ GEM preampl.	Total area: 2.6 m ² Single unit detect: 0.31x0.31 m ² Total area: - 2 m ² Single unit detect: 0.4x0.4 m ²	Max.rate:10 ^{,7} Hz (-100kHz/mm ²) Spatial res.: -70-100 µm (strip), -120µm (pixel) Time res.: - 8 ns Rad. Hard.: 2500 mC/cm ²
Jet Energy resolution: 3-4 %	KEDR @ BINP Run: 2010-now	Particle Physics (Tracking)	GEM	Toral area: ~0.1 m ²	Max. rate:1 MHz/mm ² Spatial res.: ~70µm
Power-pulsing, self- triggering readout	SBS in Hall A @ JLAB Start: > 2017	Nuclear Physics (Tracking) nucleon form factors/struct.	GEM	Total area: 14 m ² Single unit detect. 0.6x0.5m ²	Max. rate:400 kHz/cm ² Spatial res.: ~70µm Time res.: ~ 15 ns Rad. Hard.: 0.1-1 kGy/y.
ry (ILD/SiD):	pRad in Hall B @ JLAB Start: 2017	Nuclear Physics (Tracking) precision meas. of proton radius	GEM	Total area: 1.5m ² Single unit detect. 1.2x0.6 m2	Max. rate:5 kHz/cm ² Spatial res.: ~70µm Time res.: ~ 15 ns Rad. Hard.: 10 kGy/y.
HCAL	SoLID in Hall A@ JLAB Start: ~ > 2020	Nuclear Physics (Tracking)	GEM	Total area: 40m ² Single unit detect. 1.2x0.6 m2	Max. rate:600 kHz/cm ² Spatial res.: ~100µm Time res.: ~ 15 ns Rad. Hard.: 0.8-1 kGy/y.
ten Iron alog digital	E42 and E45 @JPARC Start: -2020	Hadron Physics (Tracking)	TPC w/ GEM, gating grid	Total area: 0.26m ² 0.52m(diameter) x0.5m(drift length)	Max. rate:10 ⁶ kHz/cm ² Spatial res.: 0.2-0.4 mm
W RPC GEM Micro	ACTAR TPC Start: ~2020 for 10 y.	Nuclear physics Nuclear structure Reaction processes	TPC w/ Micromegas (amp. gap -220 µm)	2 detectors: 25*25 cm2 and 12.5*50cm2	Counting rate < 10^4 nucle but higher if some beam masks are used.

MPGD Tracking for Heavy Ion / Nuclear Physics

Experiment/ Timescale	Application Domain	MPGD Technology	Total detector size / Single module size	Operation Characteristics / Performance	Special Requirements/ Remarks
STAR Forward GEM Tracker @ RHIC Run: 2012-present	Heavy Ion Physics (tracking)	GEM	Total area: - 3 m ² Single unit detect: - 0.4 x 0.4 m ²	Spatial res.: 60-100 µm	Low material budget:: < 1% X0 pe tracking layer
Nuclotron BM@N @ NICA/JINR Start: > 2017	Heavy Ions Physics (tracking)	GEM	Total area: - 12 m ² Single unit detect: ~ 0.9 m ²	Max. rate: ~ 300 MHz Spatial res.: ~ 200µm	Magnetic field 0.5T orthogonal to electrifield
SuperFRS @ FAIR Run: 2018-2022	Heavy Ion Physics (tracking/diagnostics at the In-Fly Super Fragment Separator)	TPC w/ GEMs	Total area:- few m ² Single unit detect: Type I : 50 x 9 cm ² Type II: 50 x 16 cm ²	Max. rate:- 10^7 Hz/spill Spatial res.: < 1 mm	High dynamic rang Particle detection from p to Uranium
PANDA @FAIR Start > 2020	Nuclear physics p - anti-p (tracking)	Micromegas/ GEMs	Total area: ~ 50 m ² Single unit detect: ~ 1.5 m ²	Max. rate: < 140kHz/cm ² Spatial res.: - 150µm	Continuous-wave operation: 10 ¹¹ interaction/s
CBM @ FAIR: Start: > 2020	Nuclear Physics (Muon System)	GEM	Total area: 9m ² Single unit detect: 0.8x0.5m ² 0.4m ²	Spatial res.: <1 mm Max. rate: 0.4 MHz/cm ² Time res.: - 15ns Rad hard.: 10 ¹³ n.eq./cm ² /year	Self-triggered electronics
Electron-Ion Collider (EIC) Start: > 2025	Hadron Physics (tracking, RICH)	TPC w/GEM readout Large area GEM planar tracking detectors	Total area: - 3 m ² Total area: - 25 m ²	Spatial res.: - 100 um (rø) Luminosity (e-p): 10 ³³ Spatial res.: - 50-100 um Max.rate: - MH2/cm ²	Low material budge

MPGD Technologies for Photon Detection

Experiment/ Timescale	Application Domain	MPGD Technology	Total detector size / Single module size	Operation Characteristics / Performance	Special Requirements / Remarks
COMPASS RICH UPGRADE Start > 2016	Hadron Physics (RICH - detection of single VUV photons)	Hybrid (THGEM + CsI and MM)	Total area: - 1.4 m ² Single unit detect: - 0.6 x 0.6 m ²	Max.rate:100Hz/cm ² Spatial res.: <- 2.5 mm Time res.: ~ 10 ns	Production of large area THGEM of sufficient quality
PHENIX HBD Run: 2009-2010	Nuclear Physics (RICH – e/h separation)	GEM+CsI detectors	Total area: - 1.2 m ² Single unit detect: ~ 0.3 x 0.3 m ²	Max. rate: low Spatial res.: ~ 5 mm (rø) Single el. eff.: ~ 90 %	Single el. eff. depends from hadron rejection factor
SPHENIX Run: 2021-2023	Heavy Ions Physics (tracking)	TPC w/GEM readout	Total area: - 3 m ²	Multiplicity: dNch/dy - 600 Spatial res.: - 100 um (rø)	Runs with Heavy Ions and comparison to pp operation
Electron-Ion Collider (EIC) Start: > 2025	Hadron Physics (tracking, RICH)	TPC w/GEM readout + Cherenkov	Total area: ~ 3 m ²	Spatial res.: - 100 um (rø) Luminosity (e-p): 10 ³³	Low material budget
		RICH with GEM readout	Total area: ~ 10 m ²	Spatial res.: - few mm	High single electron efficiency

Maksym Titov, Conference Summary, 5th International Conference on Micro-Pattern Gas Detectors (MPGD2017), Temple University, Philadelphia,

KLOE-2@DAFNE

Run: 2014-2017

BESIII Upgrade @

Beijing

Run: 2018-2022

Start: > 2017

Run: 2014 - now

MINOS

@ BINP

Start: > -20197

Run: 2014-2016 CMD-3 Upgrade

ASACUSA @ CERN Nuclear Physics

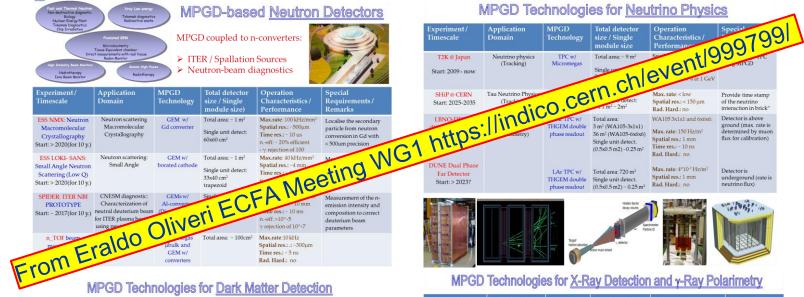
CLAS12 @ JLAB

K-flavor physics

(Tracking)

e+e- collider

(Tracking)


(tracking)

of pions resulting from

the p-antip annihilation

(z-chamber, tracking)

Probably the most exhaustive list I know...

MPGD Technologies for Dark Matter Detection

Experiment/ Timescale	Application Domain	MPGD Technology	Total detector size / Single module size	Operation Characteristics / Performance	Special Requirements/ Remarks	
DARWIN (multi-ton dual-phase LXe TPC) Start: >2020s	Dark Matter Detection	THGEM-based GPMT	Total area: -30m ² Single unit detect. -20 x20 cm ²	Max.rate: 100 Hz/cm ² Spatial res.: - 1cm Time res.: - few ns Rad. Hard.: no	Operation at ~180K, radiopure materials dark count rate ~1 Hz/cm ²	
PANDAX III @ China Start: > 2017	Astroparticle physics Neutrinoless double beta decay	TPC w/ Micromegas µbulk	Total area: 1.5 m ²	Energy Res.: ~ 1-3% @ 2 MeV Spatial res.: ~ 1 mm	High radiopurity High-pressure (10b Xe)	
NEWAGE@ Kamioka Run: 2004-now	Dark Matter Detection	TPC w/ GEM+µPIC	Single unit det. ~ 30x30x41(cm ³)	Angular resolution: 40° @ 50keV		
CAST © CERN: Run: 2002-now	AstroParticle Physics: Axions, Dark Energy/ Matter, Chameleons detection	Micromegas µbulk and InGrid (coupled to X- ray focusing device)	Total area: 3 MM µbulks of 7x 7cm ² Total area: 1 InGrid of 2cm ²	Spatial res: ~100μm Energy Res: 14% (FWHM) @ 6keV Low bkg. levels (2-7 keV): μMM: 10-6 cts s-1keV-1cm-2 InGrid: 10-5 cts s-1 keV-1cm-2	High radiopurity, good separation of tracklike bkg. from X-rays	
IAXO Start: > 2023 ?	AstroParticle Physics: Axions, Dark Energy/ Matter, Chameleons detection	Micromegas µbulk, CCD, InGrid (+ X- ray focusing device)	Total area: 8 μbulks of 7 x 7cm2	Energy Res: 12% (FWHM) © 6keV Low bkg. Levels (1-7 keV): µbulk: 10-7cts s-1keV-1cm-2	High radiopurity, good separation of tracklike bkg. from X-rays	

Maksym Titov, Conference Summary, 5th International Conference on Micro-Pattern Gas Detectors (MPGD2017), Temple University, Philadelphia

https://indico.cern.ch/event/581417/contribut ions/2558346/attachments/1465881/226616 1/2017 05 Philadelphia MPGD2017-ConferenceSummary 25052017 MS.pdf

Impressive compilation.

Thanks Maxim....

Some update needed (table ref. to 2017) Please check if you are not there and send us the missing info

home.cern